

Remove Unimportant Features from True Colored Images Using the Segmentation Technique

Shahad A. Hasso

College of Computing and Mathematics
University of Mosul

Received on: 24/10/2010 Accepted on: 10/11/2010

ABSTRACT

In this work a new approach was built to apply k-means algorithm on true colored images (24bit images) which are usually treated by researchers as three image (RGB) that are classified to 15 class maximum only. We find the true image as 24 bit and classify it to more than 50 classes. As we know k-means algorithm classify images to many independent classes or features and we could increase the class number therefore we could remove the classes or features that have minimum number of pixels which are considered unimportant features and reconstruct the images.

Correlation factor and Signal to Noise Ratio were used to measure the work and the results seems that by increasing the image resolution the effect of removing minimum features is decreased.

The CSharp (Visual Studio 2008) programming language was used to build the algorithms which are able to allocate huge matrices in high execution time. Keywords: true colored images, Correlation, Segmentation technique.

إلغاء الصفات غير المهمة من الصور حقيقية الالوان باستخدام تقنية التقطيع

شهد عبدالرحمن حسّو كلية عوم الحاسبات والرياضيات جامعة الموصل

تاريخ قبول البحث:١/١٥/١٢٠/٠٢٠٢

تاريخ استلام البحث:٢٠١٥/١٥/

الملخص

تم في هذا العمل بناء طريقة جديدة لتطبيق خوارزمية k-means على الصور الملونة الحقيقية (24bit) والتي اعتاد الباحثون عند التعامل معها على تقسيمها الى ثلاثة صور RGB والتي عادة لا يمكن ان يتعدى عدد اصنافها 15 صنف فقط، حيث قمنا بإيجاد الصورة الفعلية الحقيقية كـ 24bit وتصنيفها الى عدد كبير من الاصناف تتجاوز الخمسون صنفا وكما نعلم فان خوارزمية k-means تصنف الصور الى عدد كبير من الأصناف او الخصائص مستقلة وحسب مقدار استقلالية كل صنف وبما اننا استطعنا زيادة عدد الاصناف مما مكننا من الغاء الاصناف او الخصائص الاقل عددا من الوحدات الصورية للصورة والتي تعتبر اقل اهمية بالنسبة للصورة واعادة تركيب الصور.

تم قياس تنفيذ العمل باستخدام عامل الارتباط ونسبة الاشاره الى الضوضاء واظهرت النتائج انه كلما ازدادت دقة الصورة (ابعادها) كلما قل تأثير حذف الأصناف غير المهمة منها.

تم تطبيق خوارزميات البحث باستخدام لغة (CSharp (Visual Studio 2008) البرمجية والتي توفر إمكانيات عالية لحجز المصفوفات وكذلك سرعة عالية في التنفيذ. الكلمات المفتاحية: صور حقيقة الألوان، التصحيح، تقنية التقطيع.

1. معالجة الصور

تهدف معالجة الصور إلى بناء تطبيقات قادرة على فهم محتوى الصور كما يفهمها الإنسان. حيث من الممكن أن تأخذ بيانات الصور عدة أشكال كالصور المتعاقبة (فيديو)، المشاهد من عدة كاميرات، بيانات ذات عدة أبعاد مأخوذة من جهاز تصوير طبى. بعض الأمثلة على تطبيقات معالجة الصور [5]:

- تطبيق قادر على التعرف على الأغراض أو الأشخاص ضمن صورة
 - تطبيقات التحكم الآلي (الروبوت والمركبات الآلية).
- بناء نماذج للأشياء أو للمحيط (الفحص الصناعي، تحليل الصورة الطبية).
 - تطبیق قادر علی متابعة جسم متحرك ضمن صورة
- تطبیق قادر علی معرفة البعد الثالث من صورة أو أكثر ثنائیة البعد (أو من صورة وضوء لیزري متحرك)

.

2. مفهوم الالوان في الصور الرقمية

ا لنموذج اللوني أحمر أخضر أزرق RGB أي (Red Green Blue). وهو نموذج لوني تجمع فيه الأضواء الحمراء والخضراء والزرقاء مع بعضها البعض بطرق مختلفة لتوليد مجموعة كبيرة من الألوان. الهدف الأساسي من النموذج اللوني RGB هو الإحساس وتوليد وعرض الصور في الأجهزة الإلكترونية، مثل شاشات الحواسيب، كان للنظام اللوني RGB نظرية قوية خلفه تعتمد على الإدارك البشري للألوان[11]. وتقسم الصور الرقمية بالاعتماد على الألوان إلى ثلاثة أنواع:

2.1 الصور الثنائية (Binary Images):

تمثل الصور الثنائية أبسط أنواع الصور الرقمية، وكل عنصر من عناصر الصورة يمثل قيمة واحدة من قيمتين فقط وتعرض كأبيض وأسود وعدديا فإن القيمتين تمثلان "1" للأبيض و "0" للأسود وتخزن الصور الثنائية كمصفوفة ثنائية الأبعاد من الأصفار والآحاد والصور الثنائية يطلق عليها عدة تسميات Monochrome) كمصفوفة ثنائية الأبعاد من الأصفار والآحاد والصور الثنائية يطلق عليها وذلك لأنها تأخذ رقماً ثنائياً واحداً (Black And White Image) وذلك لأنها تأخذ رقماً ثنائياً واحداً لتمثيل كل نقطة[11].

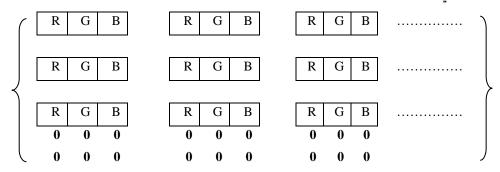
2.2 الصور ذوات التدرج الرمادي (Gray Level Images):

تحتوي الصور ذوات التدرج الرمادي على معلومات إضاءة فقط، ولا توجد فيها معلومات لون، وهذا النوع سيتم استخداماً كبيراً في معالجة الصور الرقمية. والألوان في هذا النوع من الصور هي ظلال من التدرج الرمادي، إذ إن اللون الرمادي ينتج عندما تكون قيم الشدة للألوان الأحمر والأخضر والأزرق متساوية في فضاء RGB، إن عدد الد Bits المستخدمة لكل نقطة ضوئية يحدد عدد مستويات الإضاءة، وتحتوي الصور المثالية على بيانات (BBit /Pixel) وتسمح لنا بامتلاك 255-0 من التدرجات الرمادية المختلفة [11]. إن الصور ذوات

التدرج الرمادي شائعة الاستخدام وذلك بسبب كون الكثير من أجهزة العرض واكتساب الصور تستطيع تجهيز صور برائل Bit) فضلاً عن ذلك فإن الصور ذات التدرج الرمادي سهلة للعديد من المهام، فلا توجد حاجة إلى استخدام عمليات أصعب وأعقد للمعالجة كما هي الحال بالنسبة للصور الملونة [5].

2.3 الصور الملونة (Color Images):

إن تمثيل الصور الرقمية الملونة يكون بتخصيص قيم شدة منفصلة للألوان الرئيسة الثلاثة، إذ إن اللون لكل نقطة ضوئية يحدد من خلال تجمع شدات تلك الألوان. وفي حالة خزن الصور الملونة (RGB) بـ(RBits) فإن محتويات كل لون من هذه الألوان الثلاثة هي (Bits) وينتج 16 مليون احتمال تقريباً.


إن النقطة التي محتويات لونها (0, 0, 0) تعرض بلون أسود والنقطة التي محتويات لونها (255, 255, 255) تعرض بلون أبيض، لذلك فإن هذا النوع من الصور يعرف بـ(24-Bit Color Image)، ويعد هذا النوع من الصور كفوء لتغطية مدى كامل من الألوان التي تدركها العين البشرية إلا أن هناك بعض المساوئ في استخدام هذا النوع من الصور، حيث أنه يحتاج إلى ذاكرة أكبر ويستغرق وقتاً أطول للخزن [11]. وتقسم الصور الملونة حسب عدد الوانها الى عدة انواع ندرج منها:

- 1. الصور الملونة ذات المؤشر (256 لون)
 - 2. الصور الملونة ذات 16 بت لون
 - 3. الصور الملونة ذات 24 بت لون
 - 4. الصور الملونة ذات 32 بت لون

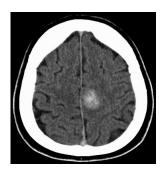
وفي هذا البحث تم التطرق الى الصور الملونة ذات 24 بت ودراسة خصائصها ومعالجتها

2.3.2 الصور ذات 24 بت لون

وتسمى ايضا الصور الحقيقية الألوان لان قيم الألوان فيها تعرض بصورة صحيحة على الشاشة وبعدد بت حقيقي (8 بت) لكل لون من الألوان الأساسية الثلاثة (الاحمر الأزرق والاخضر). وتمثل هذه الصور بالمصفوفة كما يلي:

اي ان كل وحدة صورية هي عبارة عن رقم من 24 بت (0-16,777,215) ومن اهم خصائص هذه الصور انها عالية الدقة وتجانس الالوان فيها يكون كبير جدا مما يجعلها واضحة الرؤبا.

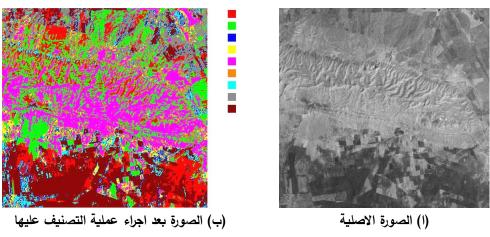
ولكن في نفس الوقت فان هذه الصور تحتوي على معلومات غير مهمة (خصائص غير مهمة) من الممكن ايجادها وحذفها بدون التاثير على الصورة نفسها.


3. خوارزميات التقطيع

تقطيع الصور هي مرحلة هامة من مراحل معالجة الصور الرقمية ، وهي عبارة عن عملية تجزئة للصورة إلى مناطق مترابطة ومتجانسة وفقا لمعيار محدد كاللون مثلا، اتحاد هذه المناطق يجب أن ينتج عنه إعادة تكوين الصورة الأصلية.

التقطيع مرحلة مهمة تسمح باستخراج معلومات نوعية عن الصورة إذ توفر وصفا عالي المستوى حيث أن كل منطقة مرتبطة بالمناطق المجاورة لها ضمن شبكة من العقد تمثل فيها كل عقدة منطقة في الصورة و تحمل هذه العقدة بطاقة تحوي معلومات نوعية عن المنطقة كحجمها و لونها و شكلها و توجهها [3].

♦ التقطيع المنتظم


وهي عملية تقطيع الصورة الى عدة اجزاء منتظمة وتطبق عادة في الصور الطبية وصور المقاييس الحيوية حيث يتم قطع الاجزاء غير المهمة حسب احداثيات معينة، وفي هذه العملية تُعتمَد احداثيات وابعاد الصور لتحديد عدد القطع وابعادها. والشكل (1) يوضح احد أمثلة التقطيع المنتظم.

الشكل (1): مثال لصورة بتقطيع منتظم (4×4)

♦ التقطيع غير المنتظم

وتسمى ايضا عملية تصنيف الصور وتتم فيها تقطيع الصورة حسب خواصها الى مجاميع غير منتظمة وحسب قيمها اللونية ويعاد عرض الصورة بالوان متميزة بعد عملية التصنيف لتوضيح عملية التقطيع المنتظم وكما مبين في الشكل (2) والذي يمثل عملية تصنيف صورة خاصة بتطبيقات التحسس النائي الى تسعة اصناف[1].

الشكل (2) صورة مصنفة الى تسعة اصناف (تقطيع غير منتظم)

وكذلك من انواع التقطيع غير المنتظم هو تقطيع الصورة باستخدام انواع من المرشحات Filters ولكل نوع منها تطبيقاته في نطاق معالجة الصور الرقمية. من انواع مرشحات هو مرشح تحديد الحواف Edge detection والذي يمثل المرشح الاكثر شيوعا واستخداما في معالجة الصور الرقمية والشكل (3) يوضح مثالا على عملية التقطيع غير المنتظم باستخدام احد مرشحات تحديد الحواف.

(ب) الصورة بعد تطبيق احد مرشحات تحديد الحواف

(۱) الصورة الاصلية

الشكل (3) مثال لصورة بعد تطبيق احد مرشحات تحديد الحواف (تقطيع غير منتظم)

4. الاعمال السابقة

قام عدد كبير من الباحثين بالتطرق الى خوارزميات التصنيف بجميع انواعها وكل منهم قام بتصنيف الصور على اعتبار قيمها تقع بين (225-0) حيث قام الكحلة [1] عام (2004) ببناء نظام للتكامل بين الأسلوب التقليدي والشبكات العصبية في التصنيف غير الموجه لمعطيات التحسس النائي، وجاء بعده خروفة [3] في عام (2009) وقام باستخدام الخوارزمية الجينية المهجنة لتصنيف صور الأقمار الصناعية. وفي عام (2009) قام Liang واخرون [7] ببناء خوارزمية لتقطيع الصور تبعا لخصائصها اللونية وتالاه Mumtaz وصمم خوارزمية جديدة لتطوير خوارزمية K-means لتصنيف الصور .

5. تصنيف الصور

يشمل تصنيف الصور بشكل رئيسي نوعين من التصنيف وهما التصنيف الموجه المعتمد على الخصائص الاحصائية للمعطيات والتصنيف غير الموجه المعتمد بشكل رئيسي على درجة التشابه بين الأنماط. ففي التصنيف الموجه يتم استنباط بعض الخصائص الاحصائية عن طبيعة النماذج الأولية التي تمثل الاصناف ومن اكثر خوارزميات التصنيف الموجه استخداما هي خوارزميات الأرجحية القصوى Maximum (Maximum Distance Algorithm) [1] [6]. ففي خوارزمية الأرجحية القصوى يتم حساب مصفوفة التباين والتباين المشترك لكل نموذج في النماذج الداخلة في التصنيف حيث تستخدم مصفوفات هذه النماذج في اشتقاق دوال القرار (Decision Function) للأصناف المتوفرة ثم يتم إدخال متجهات النمطية (Pattern Vectors) التي تمثل الخلايا الصورية المراد تصنيفها على دوال القرار ويتم حساب كل دالة ثم مقارنة القيم الناتجة من هذه الدوال وتصنيف المتجه النمطي الداخل تبعا للقيمة القصوى بين قيم الدوال [8].

أما في خوارزمية الأقصر مسافة فيتم حساب معدل النماذج الأولية لكل صنف ويتم اشتقاق دوال القرار بالاعتماد على تبسيط الصديغة الرياضية لحساب المسافة الاقليدية (Euclidean Distance) وبعدها كما هو الحال في نظرية الأرجحية القصوى يتم تصنيف المعطيات من المرحلة الثانية وذلك بإدخالها بشكل متجهات نمطية على هذه الدوال وتصنيفها حسب القيم الناتجة من هذه الدوال إذ يتم اختبار الصنف الذي ينتمي اليه المتجه النمطي وفقا لقيم الدالة، أما في التصنيف غير الموجه يتم حساب درجة التشابه بين المتجهات النمطية الداخلة للتصنيف وتعتبر المسافة الاقليدية هي المقياس المستخدم لحساب هذا التشابه وهذا النوع من التصنيف لا يحتاج إلى معلومات أولية إلا أنها تحتاج إلى تحديد عدد الأصناف مسبقا وأكثر هذه الخوارزميات استخداما هي خوارزمية العنقدة البسيطة (Maxmin Clustring Algorithm) وخوارزمية أقصى الأدنى (K-means) [1].

6. خوارزمية K-means

احدى اهم المعالجات التي تجري على الصور هي عملية تقطيع الصور Segmentation او ما يسمى بتصنيف الصور Classification ومن اكثر الخوارزميات دقة في تصنيف الصور هي خوارزمية k-means والتي تعطي دقة عالية كونها تبنى على تصحيح المراكز في كل دورة تنفيذ .

تعتبر عملية التصنيف واحدة من اهم العلميات الخاصة في المعالجة والتحليل والتي تتطلب عملية تقسيم الصورة الى مناطق معزولة بحيث كل منطقة تشترك بخصائص معينة وتمثل عناصر مختلفة [1] ويشترك جميع اعضاء الصنف الواحد الناتج عن التصنيف في خاصية واحدة على الاقل لايملكها اعضاء الاصناف الاخرى حيث ان التشابة بين نقطتين ضمن صنف معين اكبر من التشابة بين نقطتين ضمن صنفين مختلفتين [6].

وسوف نتطرق الى خوارزمية معدل-ك (K_Means) فقط باعتبارها الاكثردقة من خوارزميات العنقدة الاخرى حيث تعد تقنية الد (K_Means) من احدى تقنيات العنقدة التي تستخدم لتصنيف المميزات وذلك باعطاء مجموعة من القيم ومحاولة تجزئتها الى K من العناقيد استناداً الى بعض مقاييس التشابة [7]. و تحتاج إلى إدخال عدد الأصناف المتوقعة في البداية وهذه الخوارزمية مبنية على اساس جعل المسافة الضمنية (Distance وجعل المسافة الداخلية (interset distance) أكبر ما يمكن و جعل المسافة الداخلية (interset distance هي ان المسافة الضمنية تمثل بالمسافة الضمنية تمثل في التباعد بين انماط الصنف الواحد وتعتمد دقة التصنيف على اقل مسافة ضمنية فكلما كانت اقل كان التصنيف ادق اما المسافة الداخلية interset distance فهي مدى التباعد بين كل صنف عن الاخر وفي هذة التصنيف الادق يعتمد على المسافة الابعد . والخطوات الرباضية لهذه الخوارزمية كما يأتي [2][10][11]

k الخطوة الأولى : تحديد عدد الأصناف والمتمثلة بقيمة

الخطوة الثانية : اختيار مراكز لهذة الاصناف ويتم اختيار هذة المراكز اما بانتقاء نقاط معينة من الصورة بصورة عشوائية او استناداً الى بعض الاعتبارات .

الخطوة الثالثة: حساب المسافة الاقليدية Euclidean distance (Ed) بين نقاط الصورة ومراكز الاصناف وفقا للمعادلة التالية

$$Ed = \left\| Z_j(n) - X \right\|$$

j = 1, 2, 3, ..., k و عدد الاصناف عدد الاصناف

و x تمثل نقطة الصورة المراد تصنيفها.

و z تمثل مركز الصنف، n تمثل رقم الدورة

الخطوة الرابعة : : تنسيب x الى مجموعة الصنف الفائز $S_j(n)$ اذا كانت $\|z_j(n)-x\|$ أقل ما يمكن.

<u>الخطوة الخامسة</u>: حساب مراكز جديدة لكل صنف و ذلك بحساب معدل النقاط داخل كل مجموعة صنف وفقا للمعادلة التالية

 $Z_j(n) = 1/N_j \sum X_i$

 S_j تمثل عدد النقاط في المجموعة N_j

الخطوة السادسة : قارن بين المراكز القديمة للأصناف $(Z_i(n))$ المحسوبة في الدورة السابقة مع المراكز الجديدة $(Z_i(n))$ المحسوبة في الدورة الحالية فاذا اختلفت هذه المراكز لصنف واحد على الاقل يعاد حساب الخوارزمية البتداء من الخطوة الثالثة والا فان هذه الخوارزمية تتوقف .

ان خوارزمية ال K_Means تستخدم على نطاق واسع في الكثير من التطبيقات ليس فقط لتصنيف وتنظيم البيانات وانما هي مفيده في تمييز الانماط و استرجاع المعلومات وتحديد الصوت وكلام المتكلم وفي تنقيب البيانات [6].

إن من مساوئ هذه الخوارزمية أنها تحتاج إلى وقت طويل وذلك لوجود مرحلة التكرار لتصحيح مراكز الاصناف أما من حيث الدقة فهي تعدّ الأفضل من بين الخوارزميات، وذلك تبعاً للآلية التي تتم فيها تحديد مراكز الأصناف إذ إن عملية تحديث مركز الصنف لا تتم إلا بعد اختبار جميع الأنماط الموجودة. [4][10].

7. الخوارزمية المقترحة

الخطوة الاولى :

قراءة الصورة الملونة ذات 24 بت كمصفوفة ثلاثية الابعاد يمثل بعدها الاول الالوان الاساسية الثلاثة والبعد الثاني والثالث طول الصورة وعرضها مقاسا بالوحدة الصورية على التوالي

الخطوة الثانية:

```
تحويل الصورة الثلاثية الابعاد الى ثنائية الابعاد مع الاحتفاظ بالقيمة (24 بت) كما هي وحسب المعادلة التالية السرية الابعاد الى ثنائية الابعاد مع الاحتفاظ بالقيمة (24 بت) كما هي وحسب المعادلة التالية السرية (24 بت) + img [2, i, j] + img [1, i, j] * 256 + img [2, i, j] * 65536; i=0,..., width j=0..., height;
```

الخطوة الثالثة:

اختيار عدد الاصناف وتطبيق خوارزمية K-means على الصورة مع الاحتفاظ باحداثيات كل نقطة مصنفة الخطوة الرابعة:

ترتيب عدد الاصناف تصاعديا والغاء الاصناف الاقل عدد من الوحدات الصورية والتي تمثل خواص قليلة الاهمية في تطبيقات التصنيف

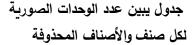
الخطوة الخامسة:

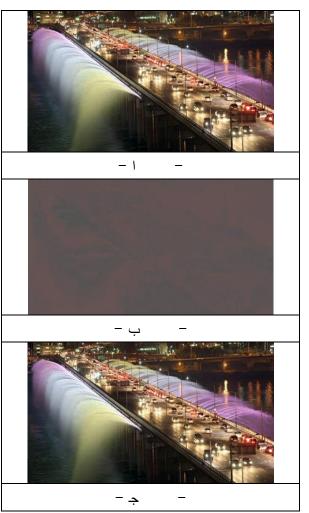
اعادة تكوين الصورة الناتجة بعد الغاء الخواص غير المهمة

الخطوة السادسة:

تحويل القيم 24بت الى قيم الالوان الاساسية وحسب المعادلة التالية

```
Img_out[0,i,j] = img_24bit[i, j] & 256;
Img_out[1, i, j]=Img_24bit[i, j] & 65280) / 256;
Img[2, i, j]= Img_24bit[i, j] & 16711680) / 65536;
```

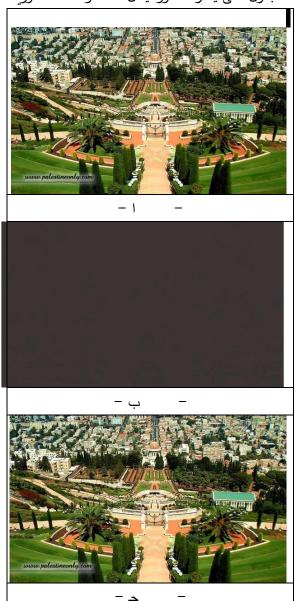

حيث تمثل الارقام [2,1,2] الالوان الاساسية الثلاثة (RGB) على التوالي


8. النتائج والاستنتاجات

بعد تطبيق الخوارزمية المقترحة على عدد من الصور الملونة ومع زيادة عدد الاصناف قمنا بحساب عامل الارتباط (Correlation factor) ونسبة الاشارة الى الضوضاء (Signal to Noise Ratio) بين الصور المدخلة والصور الناتجة وكما مبين في النتائج المدرجة ادناه:

1- الصورة رقم (1-i) الصورة الأصلية، الصورة رقم (1-p) الأصناف المحذوفة، الصورة رقم (1-p) الصورة الناتجة، الجدول على يسار الصورة يمثل عدد الوحدات الصورية لكل صنف مع تحديد الأصناف المحذوفة

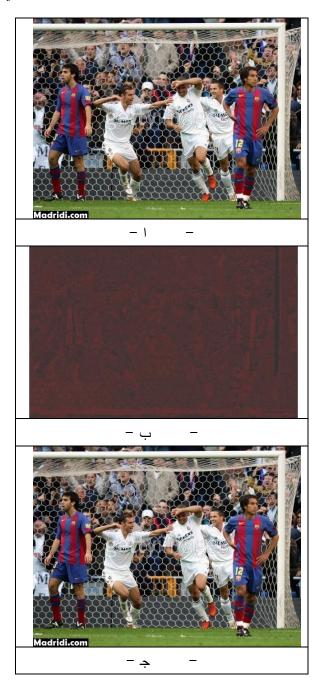
	عد الوحدات	الاصناف
	الصورية	المحذوفة
صنف1	2536	yes
صنف2	2811	yes
صنف3	3996	yes
صنف4	5328	yes
صنف5	5935	Ио
صنف6	6420	Νο
صنف7	6434	Νο
صنف8	6507	Ио
صنف9	7235	Νο
صنف10	7412	Ио
صنف11	7522	Νο
صنف12	8027	Νο
صنف13	8304	Νο
صنف14	9678	No
صنف15	11192	Νο
صنف16	13257	Ио
صنف7 1	13336	Ио



2- الصورة رقم (2-أ) الصورة الاصلية، الصورة رقم (2-ب) الاصناف المحذوفة، الصورة رقم (2-جـ) الصورة الناتجة، الجدول على يسار الصورة يمثل عدد الوحدات الصورية لكل صنف مع تحديد الاصناف المحذوفة

	عد الوحدات	الاصناف
	الصورية	المحذوفة
صنف1	7013	yes
صنف2	10743	yes
صنف3	10863	yes
صنف4	10907	yes
صنف5	11146	No
صنف6	11541	No
صنف7	12583	No
صنف8	13011	No
صنف9	13277	No
صنف10	13617	No
صنف11	14641	No
صنف12	14778	No
صنف13	15257	No
صنف14	15603	No
صنف15	15855	No
صنف16	16529	No
صنف17	19446	No

جدول يبين عدد الوحدات الصورية لكل صنف والأصناف المحذوفة



- 1 الصورة رقم (3-أ) الصورة الاصلية، الصورة رقم (3-ب) الاصناف المحذوفة، الصورة رقم (3-جـ) الصورة الناتجة، الجدول على يسار الصورة يمثل عدد الوحدات الصورية لكل صنف مع تحديد الاصناف المحذوفة

	عد الوحدات	الاصناف
	الصورية	المحذوفة
صنف1	9192	yes
صنف2	9664	yes
صنف3	10886	yes
صنف4	11916	yes
صنف5	12008	No
صنف6	12526	No
صنف7	12829	Νο
صنف8	13019	No
صنف9	13803	No
صنف10	14341	No
صنف11	14475	Νο
صنف12	17235	No
صنف13	20368	No
صنف14	20998	No
صنف15	21063	No
صنف16	23336	No
صنف7 1	26077	No

جدول يبين عدد الوحدات الصورية لكل صنف والأصناف المحذوفة

الجدول رقم (1) مقاييس حذف الاجزاء غير المهمة (الاصناف) باختلاف عددها وابعاد الصور (انظر الملحق A).

عامل الارتباط	نسبة الإشارة الى الضوضياء	عدد الأصناف المحذوفة	عدد الأصبناف	أبعاد الصورة
0.86	70.1021	4	17	×490
				257
0.89	68.7805	4	25	×490
	60.6061	_	4.0	257
0.88	69.6961	8	40	×490
0.91	68.7562	10	55	257 ×490
0.51	00.7502	10		257
0.936	70.8142	4	17	×613
				370
0.911	70.9725	4	25	×613
				370
0.92	71.4232	8	40	×613
0.05	71.6548	10	55	370
0.95	/1.6546	10	, ,,,	×613 370
0.899	71.0585	4	17	×594
0.023	. 1.05 05			444
0.921	71.9712	4	25	×594
				444
0.943	71.6377	8	40	×594
				444
0.968	71.9314	10	55	×594
				444

كما هو مبين في الجدول رقم (1) فانه بزيادة أبعاد الصورة يقل تأثير حذف بعض الأصناف على الصور بالرغم من زيادة عدد الأصناف المحذوفة والتي تمثل خصائص غير مهمة في الصور وتفيد هذه الميزة في استغلال هذه الأصناف في تطبيقات معينة كتطبيقات امنية البيانات وارسالها عبر الشبكات.

المصادر

- [1]. الكحلة، لبنى ذنون أحميدي، (2004)، "التكامل بين الأسلوب التقليدي والشبكات العصبية في التصنيف غير الموجه لمعطيات التحسس النائي"، بحث ماجستير، جامعة الموصل، كلية علوم الحاسبات والرباضيات، مركز التحسس النائي.
- [2]. العمري، هدى عبدالله باشعالم، (2004)، "كروموسومات جينية لتجزئة الصور"، بحث ماجستير، جامعة الموصل، كلية علوم الحاسبات والرياضيات، قسم علوم الحاسبات.
- [3]. خروفة ، شهلة حازم احمد محمد ، (2005)، " استخدام الخوارزمية الجينية المهجنة لتصنيف صور الأقمار الصناعية "، بحث ماجستير، جامعة الموصل، كلية علوم الحاسبات والرياضيات، قسم علوم الحاسبات.
- [4]. Chintan A. Shah, Manoj K. Arora and Pramod K. Varshney, (2004), "Unsupervised Classification of Hyperspectral Data: an ICA Mixture Model Based Approach", International journal of Remote Sensing, Vol. 25, No. 2, 481–487.
- [5]. Gonzalez, R. C. And Woods, R. E., (2008), "Digital Image Processing", Prentice Hall, Inc., 4th edition.
- [6]. Ilea Dana Elena and Whelan Paul F.(2006), "Color image segmentation using a spatial k-means clustering algorithm",.
- [7]. Liang Qu, Xinghui Dong and Fadong Guo, (2009), "Automatic K-Means For Color Enteromorpha Image Segmentation", Third International Symposium On Intelligent Information Technology Application, IEEE computer Sociaty, 224 227.
- [8]. Mikhled Alfaouri, Khaled Daqrouq, Jamal al-Nabulsi, (2010), "K-Mean Clustering and Arabic Vowels Formants Based Speaker Identification System" European Journal of Scientific Research, vol.42 no.3, pp.406-417.
- [9]. Mumtaz K. and K. Duraiswamy , (2010), "A Novel Density Based Improved K-Means Clustering Algorithm", International Journal on Computer Science and Engineering, India, Vol. 02, No. 02, 213-218.
- [10]. Ravichandran K.S. And Ananthi B., (2009), "Color skin segmentation using k-means cluster", International Journal of Computational and Applied Mathematics, india volume 4 number 2 pp. 153–157.
- [11]. Umbaugh, Scott E., (1998), "Computer Vision And Image Processing", Prentice Hall PTR, USA.

10. الملحق (A)

(3	سورة رقَم (3	ᆀ		صورة رفّم (2)	7)		سورة رقم (تسلسل
	عدد الاصناف			عدد الاصناف			عدد الاصناف		الصنف
55	40	25	55	40	25	55	40	25	
1164 1218	2432 2522	4153 4624	1122 1736	2225 2388	2105 4317	371 820	850 1002	1254 2181	1 2
1288	2733	4967	1779	2430	4658	832	1453	3486	3
2211 2437	3375 3793	5415 5964	2017 2101	2610 2665	5424 5825	841 1187	1454 1480	3703 4004	4 5
2528	3900	6205	2101	2739	7824	1253	1534	4016	6
2563	3905	6948	2216	2775	7912	1286	1572	4480	7
2582 2733	3913 4178	7749 8541	2271 2302	3440 3463	8121 8265	1306 1313	1763 1790	4932 5050	8 9
2897	4506	8994	2346	3709	9119	1403	18 43	5066	10
3153 3206	4710 5069	11442 12031	2 5 5 3 2 6 8 4	3722 4197	9368 9374	1529 1555	18 48 1905	5069 5148	11 12
3288	5083	12031	2726	4281	9547	1561	1913	5428	13
3368	5110	12149	2878	4424	9645	1593	1968	5475	14
3485 3518	5349 5966	12460 12674	2896 2994	4658 4703	9867 9926	1774 1851	2150 2248	5496 5605	15 16
3678	6177	12755	3015	4972	10311	1855	2264	5675	17
3788 3878	6189 6338	13183 13320	3051 3152	5085 5169	10313 10661	1884 1953	2331 2516	5776 5856	18 19
3934	6529	13678	3132	5298	11092	1975	2553	5906	20
3998	6583	13932	3192	5346	11289	1989	3007	5920	21
4026 4096	7016 7020	14152 14186	3221 3294	5417 5419	11693 13024	1993 1993	3078 3597	6088 6365	22 23
4189	7133	15407	3341	6142	13099	2020	3679	6521	24
4247 4332	7182 7309	16771	3459 3511	62 40 63 9 5	14031	2065 2094	3786 3810	7430	25 26
4395	7532		3558	6539		2176	3934		27
4470 4710	7571		3708	6555		2197 2281	3936		28 29
48 62	7747 7751		4196 4426	6583 7023		2290	4043 4125		30
4903	7796		4553	7377		2310	4278		31
5038 5161	7969 8124		4658 4694	8174 8216		2355 2366	4417 4426		32 33
5195	8279		4705	82 65		2425	4531		34
5240 5416	8491 10141		4747 4814	8292 9274		2524 2536	4654 4781		35 36
5422	10798		4901	93 15		2560	5083		37
5442	10904		5008	9613		2669	5920		38
5612 5901	12876 13737		5030 5088	10831 10841		2736 2815	6978 7430		39 40
5977			5093			2849			41
5984 5992			5272 5418			2962 2974			42 43
6102			5420			3077			44
6133			5431			3192			45
6411 6780			5479 5498			3288 3292			46 47
6793			5552			3401			48
6940 7327			6292 6454			3561 3618			49 50
8037			7031			3764			51
8105			7106			3785			52
9131 10104			7560 7906			3786 3849			53 54
10348			8068			3996			55