
Raf. J. of Comp. & Math’s. , Vol. 7, No. 3, 2010
Third Scientific Conference Information Technology 2010 Nov. 29-30

51

Parallel Direct Search Methods

 Bashir M. Khalaf Mohammed W. Al-Neama

 College of Education Education College for Girls

 University of Mosul

Received on:19/8/2010 Accepted on:10/11/2010

ABSTRACT

Mostly minimization or maximization of a function is very expensive. Since

function evaluation of the objective function requires a considerable time. Hence, our

objective in this work is the development of parallel algorithms for minimization of

objective functions evaluation takes long computing time. The base of the developed

parallel algorithms is the evaluation of the objective function at various points in

same time (i.e. simultaneously).

We consider in this work the parallelization of the direct search methods, as

these methods are non-sensitive for noise and globally convergent. We have

developed two algorithms mainly they are dependent on the Hock & Jeff method in

unconstrtrained optimization.

The developed parallel algorithm are suitable for running on MIMD machine

which are consisting of several processors operating independently, each processor

has it's own memory and communicating with each other through a suitable network.

Key-Words: nonlinear optimization, unconstrained optimization, multidirectional search, parallel
direct search, parallel computing, MIMD Computers.

 لبحث المباشرالمتوازية لق ائطر ال

 محمد النعمة بشير خلف
 كلية التربية للبنات كلية التربية

 جامعة الموصل

 10/11/2010قبول: تاريخ ال 19/8/2010تاريخ الاستلام:

 ملخصال

إيجاد اقل أو اكبر قيمة لدالة يكون على الأغلب مكلفاً جدا، إذ أن حساب قيمة الدالة في نقطة ما
يأخذ وقتاً طويلًا.هدفنا في هذا العمل هو تطوير خوارزميات متوازية لإيجاد اقل أو أكبر قيمة للدوال التي تحتاج

 جاد قيمة دالة الهدف في نقاط مختلفة في آن واحد. حساب قيمها وقت طويل، وأساس هذا التطوير هو إي
درسنا في هذا العمل تطوير خوارزميات متوازية لطرائق البحث المباشر كون هذه الطرائق غير

ي قمنا بتطوير خوارزميتين مبنيتين بالأساس على طريقة هوك وجيف ف، سة لتشويش ومتقاربة بصورة عامةحسا
 مثلية غير المقيدة. لأا

والتي تتكون من عدة MIMDارزميات المتوازية المطورة مناسبة للتنفيذ في حاسبات من نوع الخو
 .تصل المعالجات مع بعضها من خلال شبكة اتصال مناسبةته و لمعالجات مستقلة وكل معالج له ذاكرة خاصة

Bashir M. Khalaf & Mohammed W. Al-Neama

 52

 تجاهات ، البحث المباشر ، البحث متعدد الا ةغير المقيَّد مثلية، الا ة غير الخطي مثليةالاالكلمات المفتاحية:
 .MIMDحواسيب الموازي ، الحوسبة المتوازية ،

1. Introduction:

Optimization is a mathematical discipline which appears in many fields such

as engineering, economics, operations research, management science, etc. Such as

maximizing the production of rice, reducing cost of a car, or getting best

performance out of a battery. Optimization can be described as a method of getting

best out of any situation. Formally, optimization is minimization or maximization of

a function subject to certain constraints. Mathematically we represent an

optimization problem as: maximize f(x) subject to x  D,

or minimize f(x) subject to x  D.

The function f: Rn → R is called the objective function, and set D  Rn the

constraint set. x = [x1, x2, ..., xn]
T is the vector representing n independent variables.

Very often optimization problem is stated as minimization problem. An optimization

“problem” is unconstrained if the constraints do not have any effect at optimum.(1)

Today optimization is well understood discipline with rigorous analysis

methods. But in early 60’s, the tools and techniques of analysis were yet to be

developed and proven. In 1961, Robert Hooke and T.A. Jeeves developed a method

for optimization and coined the phrase “direct search” [5], [13]. They provided the

following description of direct search methods in the introduction of the paper:

We use the phrase “direct search” to describe sequential examination of trial

solutions involving comparison of each trial solution with the “best” obtained up to

that time together with a strategy for determining (as a function of earlier results)

what the next trial solution will be. The phrase implies our preference, based on

experience, for straightforward search strategies which employ no techniques of

classical analysis except where there is a demonstrable advantage in doing so.

Hooke and Jeeves’s paper appeared before any of the “techniques of classical

analysis” that use Taylor series expansion of the objective function became available.

Objective function can be expanded using Taylor series expansion as:

 f(x + x) = f(x) + xTx +
2

1
xTHx+…

where x is a vector of variable increments, x is the gradient vector containing the

first partial derivatives, and H is the matrix of second partial derivatives, the Hessian

matrix.

 Direct search methods neither require nor estimate derivatives. As a

consequence, while they are usually slower to converge than derivative based

methods, they are usually much more robust in situations where the function values

are subject to noise, analytic derivatives are unavailable, or finite difference

approximations to the gradient are unreliable. Furthermore, the direct search schemes

given here parallelize very well although they can certainly be used as sequential

methods.[7, 10]

 Hence the objective of this research is the development of a parallel Direct

search methods which is suitable for running on a MIMD (Multiple Instruction

streams with Multiple Data streams) computer ([6,8,9,11]).

(1) Though the term unconstrained, is standard, is somewhat misleading and does not mean lack of constraints. It

refers to a situation in which one can move a small distance away from the optimum point in any direction

without leaving the feasible region [12].

Parallel Direct Search Methods

 53

 MIMD Computer Consists of several processors, each processor has its own

memory and processing unit. These processors communicate through a suitable

communication network. (for more detail, see [1,2,8,11]). In MIMD computer each

processor can carry out its own set of instructions, often on its own set of data,

independently of all the other processors. Such computers usually number their

(more complex) processors in tens rather than thousands that may be found in SIMD

(Single Instruction Stream with Multiple Data Stream) computers. MIMD computers

are well suited to algorithmic parallelism in which problems can be separated into

concurrent independent processors [4].

2. Direct Search methods:

 Direct search method as described by Hooke and Jeeves [13] requires space

of points P  Rn (henceforth referred to as design space P=[x1, x2, ..., xn]) which

represent possible candidates in the optimization problem, together with a means of

saying that P1 is a “better” candidate than P2 (written P1  P2) for any two points in

the space. There is presumably a single point P*, the solution, with the property P*

P for all P ≠ P*. Algorithm 1 explains the direct search method.

Algorithm 1 Direct Search Method [3]

1. Select a point Bo arbitrarily as the first “base point”

2. i=1

3. repeat

4. Select a new point Pi

5. if Pi  Bi−1 then

6. Bi = Pi

7. else

8. Bi = Bi−1

9. end if

10. i = i + 1

11. until No better points are found

 Ensure: P* = Bi

In the above algorithm one of the key steps is selecting a new point. Based on

the strategy for choosing a new point, direct search methods can be classified into

different categories:

• Random Search

• Pattern search methods

• Simplex based methods

• Methods with adaptive sets of search directions

Each class of methods defines a basic idea or strategy for finding the new

point in the space. Following methods are discussed with minimization of objective

function as the optimization problem to be solved.

2.1 Random Search:

2.1.1 One-at-a-time search:

One-at-a-time search method is also known as alternating variable method

from it’s form in two dimensions [15]. This is the simplest strategy which consists of

minimizing with respect to each independent variable in turn. As shown in figure (1),

Bashir M. Khalaf & Mohammed W. Al-Neama

 54

for two dimensional case, first one variable is varied until no further improvement

can be obtained, then the next one and this sequence is repeated with ever-decreasing

steps.

One of the drawback of this method is that in most practical cases where the

direction of optimum is not along any coordinate axes, the progress is slow and it

becomes very inefficient as the number of variables increase [3].

Figure (1): One-at-a-time search method for function of two variables[3]

2.2 Pattern search methods

Pattern search methods try to find a “better” search direction than simple

directions along coordinate axes as in random search methods. This better search

direction is found using exploration in the design space. The procedure of going from

one point to the new point in design space is called a move. A move is termed a

success if the value of f(Pi+1) is less. Than f(Pi) .; otherwise, it is a failure [3].

2.2.1 Hooke and Jeeves pattern search

The pattern search method as described by Hooke and Jeeves (referred mostly as

the pattern search method in literature) makes use sequence of exploratory moves

and pattern moves.

1. Exploratory move: In exploratory move each coordinate direction is examined in

turn in the following way. A single step is taken along the direction (i) (by adding an

increment  to variable xi). If the move is successful, then the new value of the

variable is retained. If the step fails step is taken in opposite direction (by subtracting

 from variable xi). If this move is successful then that value of variable is retained

otherwise the original value of xi is kept.

When all the (n) coordinate directions have been investigated the exploratory move is

complete. The point arrived at as a result of this procedure, which may or may not be

distinct from the point from which the move originated, is called the base point.

2. Pattern move: Initial base point and the base point obtained using the exploratory

move define the “pattern” or the search direction. Pattern move takes a single step

from present base point in the direction specified by the pattern. This becomes the

new starting point for next exploratory move [3].

 When a pattern move and successive exploratory move fail, the algorithm

returns to the previous base point. If the exploratory move around this base point also

fails the pattern is destroyed and increment  is reduced. The whole algorithm is

repeated starting from this point. The search is terminated when the increments fail

below prescribed limit.

Parallel Direct Search Methods

 55

 As shown in figure (2) point P1 (marked 1) is the first base point Bo. First

exploratory move from Bo begins by incrementing x1 and resulting in P2. Since f(P2)

< f(P1), P2 is retained and exploration is continued by incrementing x2. f(P3) < f(P2)

so P3 is retained in place of P2. The exploratory move is complete and P3 becomes

the second base point B1. Pattern move is made in the direction of B1 −Bo from P3

to P4 (B1 −B0 = P4 −P3). Now f(P4) is not computed, but an exploratory move is

performed to improve on the pattern direction. The best point found along x1

coordinate is P5. Since the second move along x2 fails, as the points obtained (P6

and P7) are not better than P5, exploratory move is complete and P5 is retained. As

f(P5) < f(B1) = f(P3), it becomes the new base point B2.

 Similarly the next base point B3 is obtained as P10. Now a pattern move is

made to point P11. Subsequent exploratory move tries points P12, P13, P14, P15 and

fails, so we come back to P10. Since f(P11) > f(P10), pattern move itself has failed

and we come back to the previous base point at P10. Fresh set of exploration to

points P16, P17, and P18 also fail, causing the pattern to be destroyed and increment

 to be reduced. The whole procedure is restarted at point P10.

Figure (2): Hook and Jeeves Pattern Search for two dimensions [3]

2. Parallel direct search methods:

 The Parallel direct search methods are designed to solve the unconstrained

minimization problem:)(min xf
nRx

, where f: Rn → R.

 What distinguishes the direct methods from other optimization

methods is that they require only that the function f be continuous.
 Direct search methods neither require nor estimate derivatives. As a

consequence, while they are usually slower to converge than derivatives based

methods, they are usually much more robust in situations where the function value

are subject to noise, analytic derivatives are unavailable, or finite difference

approximations to gradient are unreliable. Furthermore the direct search schemes

given here parallelize very well, although they can certainly be used as sequential

methods [14].

3.3.1 The first parallel algorithm:

 It is clear from the steps of the of the direct search methods algorithm that

they are independent processes. Hence each function evaluations process can be

Bashir M. Khalaf & Mohammed W. Al-Neama

 56

carried out in a processor of a MIMD computer. The number of the processors which

are used is 2n+1 (n represents the number of the variables).

 We can calculate the speed-up factor (Sp) of the parallel algorithm by:

processors pin task theofexecution theof timeTotal

processor single ain task theof timeexecution Total
=pS

It is also clear that we can find f(x1+h,x2,..,xn), f(x1-h,x2,..,xn), f(x1,x2+h,..,xn),

f(x1,x2-h,..,xn),…, f(x1,x2,..,xn+h), f(x1,x2,..,xn-h) in independent processors, so that

they can be calculated simultaneously. Comparisons between f(x1+h, x2,..,xn) and

f(x1,x2,..,xn) , f(x1-h,x2,..,xn) and f(x1,x2,..,xn), (x1,x2+h,..,xn) and f(x1,x2,..,xn), (x1,x2-

h,..,xn) and f(x1,x2,..,xn), …, f(x1,x2,..,xn+h) and f(x1,x2,..,xn), f(x1,x2,..,xn-h) and

f(x1,x2,..,xn) are independent so that they can be carried out in parallel.

For simplicity, we can assume P = {x1, x2,…, xn}, xi = xi+h, xi = xi-h, and

the first parallel algorithm becomes as follows:

Algorithm 2 Parallel Direct Search Method

1. Choose an initial point (P0)

2. Choose an initial step size h

3. Do in parallel:

o CPU1: Find f(P1)

If f(P1)<f(P1)

x1=x1+h ; send x1 to CPU2n+1

else

get new (P1) from CPU2n+1

o CPU2: Find f(P1)

If f(P1)<f(P1)

x1=x1-h ; send x1 to CPU2n+1

else

get new (P1) from CPU2n+1

o CPU3: Find f(P2)

If f(P2)<f(P2)

x2=x2+h ; send x2 to CPU2n+1

else

get new (P2) from CPU2n+1

o CPU4: Find f(P2)

If f(P2)<f(P2)

x2=x2-h ; send x2 to CPU2n+1

else

get new (P2) from CPU2n+1

.

.

.

o CPU2n-1: Find f(P1)

If f(Pn)<f(Pn)
xn=xn+h ; send xn to CPU2n+1

else

get new (Pn) from CPU2n+1

o CPU2n: Find f(Pn)

If f(Pn)<f(Pn)

Parallel Direct Search Methods

 57

xn=xn-h ; send xn to CPU2n+1

else

get new (Pn) from CPU2n+1

4. On CPU2n+1: Check If one of these steps yields to a smaller f(P)  new iterate

(P*).

5. Otherwise: try again with a step half as long (h=h/2).

6. As (P*) approaches the solution, the algorithm reduces the length of the steps.

7. Stopping criteria: step length falls below a certain tolerance.

Parallel method can be described in the following shape:

CPU1 CPU2 CPU3 CPU4 CPU 2n-1 CPU 2n

Find f(P1)

If f(P1)<f(P1)

x1=x1+h

 send x1 to

 CPU2n+1

else
 get new (P*)

 from CPU2n+1

 Find f(P1)

If f(P1)<f(P1)

x1=x1-h

 send x1 to

 CPU2n+1

else
 get new (P*)

 from CPU2n+1

 Find f(P2)

If f(P2)<f(P2)

x2=x2+h

 send x2 to

 CPU2n+1

else
 get new (P*)

 From

CPU2n+1

 Find f(P2)

If f(P2)<f(P2)

x2=x2-h

 send x2 to

 CPU2n+1

else
 get new (P*)

 from CPU2n+1

…

Find f(Pn)

If

f(Pn)<f(Pn)

xn=xn+h

 send xn to

 CPU2n+1
else

 get new (P*)

 from
CPU2n+1

 Find f(Pn)

If f(Pn)<f(Pn)

xn=xn-h

 send xn to

 CPU2n+1

else
 get new (P*)

 from CPU2n+1

  

CPU2n+1

1- Receive the new values from CPU1 .. CPU2n

2- If no reduction on the function values, then h=h/2, send h to CPU1.. CPU2n
3- Else send new values P* to CPU1 .. CPU2n

4- Until No better points are found

Figure (3): Tasks distribution on processors of the first parallel algorithm

3.3.2 The second parallel algorithm:

We can decrease the no. of CPUs used in the first method to reduce the cost

or to use when the no. of the variables (x1, x2,…, xn) is less. In this algorithm each

function evaluations process can be assigned to one of the processors of a MIMD

computer, which consists of n+1 processors.

The first step of CPU1 calculates f(P1) and compares it with f(P1). If

f(P1)<f(P1) then considering x1 = x1+h, otherwise x1 = x1-h, the same procedures

are applicable on the CPU2 .. CPUn. In the next step, CPUn+1 receives the new

values from CPU1..CPUn, if there is no new value then we try with a step half as

long (h=h/2) and send h to CPU1..CPUn, else send the new values to CPU1 .. CPUn,

till we find no reduction in reduction in the function value.

Parallel method can be described in the following shape:

CPU1 CPU2 CPUn

Find f(P1)

If f(P1)<f(P1)

x1=x1+h
 send x1 to

 CPU2n+1

Else x1=x1-h
 send x1 to

 CPU2n+1

get new (P1)
from CPU2n+1

 Find f(P1)

If f(P2)<f(P2)

x2=x2+h
 send x2 to

 CPU2n+1

Else x2=x2-h
 send x2 to

 CPU2n+1

get new (P2) from
CPU2n+1

…

Find f(Pn)

If f(Pn)<f(Pn)

xn=xn+h
 send xn to

 CPU2n+1

Else xn=xn-h
 send xn to

 CPU2n+1

get new (Pn) from
CPU2n+1

  

CPUn+1

Bashir M. Khalaf & Mohammed W. Al-Neama

 58

1- Receive the new values from CPU1 .. CPUn

2- If no reduction on the function values, then h=h/2, send h to CPU1.. CPUn
3- Else send new values to CPU1 .. CPUn

4- Until No better points are found

Figure (4): Tasks distribution on the processors for the second parallel

algorithm

5. Comparison between the suggested parallel methods:

The results of study showed that there are many differences between the two

methods. These differences can be summarized in the following table:

Table (3) Differences between the suggested parallel algorithm

 First Parallel Method Second Parallel Method

1) We need 2n+1 processors whatever

the number of variables

We need n+1 processors. n is the

number of variables

2) The program takes less time than the

second algorithm when the variables

of the function increase..

The program takes more time than the

first algorithm when the variables of

the function increase.

3) It is costly for solving high dimensional

problems. it is preferred to use a such

method in simple problems

It is not costly for complex problems

because all problems need n+1

processors.

Parallel Direct Search Methods

 59

REFERENCE

[1]. AL-Murshid H. (2000) An investigation of parallel numerical algorithms for solving

 stiff ODEs suitable for parallel computers, Ph.D. Thesis, College of Computer

 and mathematical Science Mosul University.

[2]. Al-Wajih K. (1999), Parallel algorithms for solving Unconstraint

 Optimization problems, M.Sc. Thesis , College of Computer and

 mathematical Science, Mosul University.

[3]. Amitay Isaacs (2003) "Direct-Search Methods and DACE", Ph.D. Thesis, Indian

 Institute of Technology, India.

[4]. Brocklehurst E. (1992) Parallel processing, NPL News, No. 372, Pp.24-27.

[5]. Audetand C, Dennis J. E. Jr., (2003), Analysis of generalized

 pattern searches, SIAM J. Opt., (13), Pp: 889-903.

[6]. Flynn M. (1972), Some computer organizations and their effectiveness,

 IEEE Trans. On Computers, Vol.C-21, No.9 pp. 948-960.

[7]. Jacoby S. L. S., Kowalik J. S. and Pizzo J. T., (1972) Iterative Methods for

 Nonlinear Optimization Problems, Prentice-Hall., Englewood Cliffs, New Jersey.

[8]. Khalaf B. (1990) , Parallel numerical algorithm for solving ODEs, Ph.D. Thesis,

 School of Computer Studies, Leeds University.

[9]. Khalaf B. (1995), A classification for computer architectures J.Educ. Sci, Vol. (24),

 pp. 212-222.

[10]. Kolda, T. G., Lewis, M. R., Torczon, V. (2003): Optimization by Direct

 Search: New Perspectives on Some Classical and Modern Methods, SIAM

 Review, Volume 45, Number 3, pp. 385-482.

[11]. Meiko (1989), A programmer introduction to Sun- CSTools, Meiko LTD, England.

[12]. Rangarajan K. Sundaram. (1996), "A First Course in Optimization Theory",

 Cambridge University Press.

[13]. Robert Hooke and T. A. Jeeves. (1961), Direct search solution of numerical

 and statistical problems. Journal of the Association of Computing Machinery,

 pp: 221–224.

[14]. Virginia Torczon (1989), Multi-directional search: A Direct Search Algorithm For

 Paralel Machines, Ph.D Thesis, Department of Mathematical Science,Rice

 University,Houston, USA.

[15]. Murray W., (1972). "Numerical Methods for Unconstrained Optimization".

 Academic Press.

