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ABSTRACT 

Mostly minimization or maximization of a function is very expensive. Since 

function evaluation of the objective function requires a considerable time. Hence, our 

objective in this work is the development of parallel algorithms for minimization of 

objective functions evaluation takes long computing time. The base of the developed 

parallel algorithms is the evaluation of the objective function at various points in 

same time (i.e. simultaneously). 

We consider in this work the parallelization of the direct search methods, as 

these methods are non-sensitive for noise and globally convergent. We have 

developed two algorithms mainly they are dependent on the Hock & Jeff method in 

unconstrtrained optimization. 

The developed parallel algorithm are suitable for running on MIMD machine 

which are consisting of several processors operating independently, each processor 

has it's own memory and communicating with each other through a suitable network. 
 

Key-Words:  nonlinear optimization, unconstrained optimization, multidirectional search, parallel 
direct search, parallel computing, MIMD Computers. 
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 ملخصال

إيجاد اقل أو اكبر قيمة لدالة يكون على الأغلب مكلفاً جدا، إذ أن حساب قيمة الدالة في نقطة ما  
يأخذ وقتاً طويلًا.هدفنا في هذا العمل هو تطوير خوارزميات متوازية لإيجاد اقل أو أكبر قيمة للدوال التي تحتاج 

 جاد قيمة دالة الهدف في نقاط مختلفة في آن واحد.  حساب قيمها وقت طويل، وأساس هذا التطوير هو إي
درسنا في هذا العمل تطوير خوارزميات متوازية لطرائق البحث المباشر كون هذه الطرائق غير  

ي قمنا بتطوير خوارزميتين مبنيتين بالأساس على طريقة هوك وجيف ف، سة لتشويش ومتقاربة بصورة عامةحسا
 مثلية غير المقيدة. لأا

والتي تتكون من عدة   MIMDارزميات المتوازية المطورة مناسبة للتنفيذ في حاسبات من نوع الخو  
 .تصل المعالجات مع بعضها من خلال شبكة اتصال مناسبةته و لمعالجات مستقلة وكل معالج له ذاكرة خاصة 
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 تجاهات ، البحث المباشر ، البحث متعدد الا ةغير المقيَّد مثلية، الا ة غير الخطي مثليةالاالكلمات المفتاحية: 
 .MIMDحواسيب الموازي ، الحوسبة المتوازية ، 

 

1. Introduction: 
 

Optimization is a mathematical discipline which appears in many fields such 

as engineering, economics, operations research, management science, etc. Such as 

maximizing the production of rice, reducing cost of a car, or getting best 

performance out of a battery. Optimization can be described as a method of getting 

best out of any situation. Formally, optimization is minimization or maximization of 

a function subject to certain constraints. Mathematically we represent an 

optimization problem as:  maximize f(x) subject to x  D, 

or minimize f(x) subject to x  D. 

The function f: Rn → R is called the objective function, and set D  Rn the 

constraint set. x = [x1, x2, ..., xn]
T is the vector representing n independent variables. 

Very often optimization  problem is stated as minimization problem. An optimization 

“problem” is unconstrained if the constraints do not have any effect at optimum.(1) 

Today optimization is well understood discipline with rigorous analysis 

methods. But in early 60’s, the tools and techniques of analysis were yet to be 

developed and proven. In 1961, Robert Hooke and T.A. Jeeves developed a method 

for optimization and coined the phrase “direct search” [5], [13]. They provided the 

following description of direct search methods in the introduction of the paper: 

We use the phrase “direct search” to describe sequential examination of trial 

solutions involving comparison of each trial solution with the “best” obtained up to 

that time together with a strategy for determining (as a function of earlier results) 

what the next trial solution will be. The phrase implies our preference, based on 

experience, for straightforward search strategies which employ no techniques of 

classical analysis except where there is a demonstrable advantage in doing so. 

Hooke and Jeeves’s paper appeared before any of the “techniques of classical 

analysis” that use Taylor series expansion of the objective function became available. 

Objective function can be expanded using Taylor series expansion as: 

 f(x + x) = f(x) + xTx +
2

1
xTHx+… 

where x is a vector of variable increments, x is the gradient vector containing the 

first partial derivatives, and H is the matrix of second partial derivatives, the Hessian 

matrix. 

 Direct search methods neither require nor estimate derivatives. As a 

consequence, while they are usually slower to converge than derivative based 

methods, they are usually much more robust in situations where the function values 

are subject to noise, analytic derivatives are unavailable, or finite difference 

approximations to the gradient are unreliable. Furthermore, the direct search schemes 

given here parallelize very well although they can certainly be used as sequential 

methods.[7, 10]  

 Hence the objective of this research is the development of a parallel Direct 

search methods which is suitable for running on a MIMD (Multiple Instruction 

streams with Multiple Data streams) computer ([6,8,9,11]). 

 
(1) Though the term unconstrained, is standard, is somewhat misleading and does not mean lack of constraints. It 

refers to a situation in which one can move a small distance away from the optimum point in any direction 

without leaving the feasible region [12]. 
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 MIMD Computer Consists of several processors, each processor has its own 

memory and processing unit. These processors communicate through a suitable 

communication network. (for more detail, see [1,2,8,11]). In MIMD computer each 

processor can carry out its own set of instructions, often on its own set of data, 

independently of all the other processors. Such computers usually number their 

(more complex) processors in tens rather than thousands that may be found in SIMD 

(Single Instruction Stream with Multiple Data Stream) computers. MIMD computers 

are well suited to algorithmic parallelism in which problems can be separated into 

concurrent independent processors [4]. 
 

2. Direct Search methods: 

 Direct search method as described by Hooke and Jeeves [13] requires space 

of points P  Rn (henceforth referred to as design space P=[ x1, x2, ..., xn]) which 

represent possible candidates in the optimization problem, together with a means of 

saying that P1 is a “better” candidate than P2 (written P1  P2) for any two points in 

the space. There is presumably a single point P*, the solution, with the property P* 

P for all P ≠ P*. Algorithm 1 explains the direct search method. 
 

Algorithm 1 Direct Search Method [3] 

1. Select a point Bo arbitrarily as the first “base point” 

2. i=1 

3. repeat 

4.      Select a new point Pi 

5.      if Pi  Bi−1 then 

6.         Bi = Pi 

7.     else 

8.         Bi = Bi−1 

9.     end if 

10.     i = i + 1 

11. until No better points are found 

         Ensure: P* = Bi 
 

In the above algorithm one of the key steps is selecting a new point. Based on 

the strategy for choosing a new point, direct search methods can be classified into 

different categories: 

• Random Search 

• Pattern search methods 

• Simplex based methods 

• Methods with adaptive sets of search directions 
 

Each class of methods defines a basic idea or strategy for finding the new 

point in the space. Following methods are discussed with minimization of objective 

function as the optimization problem to be solved. 
 

2.1 Random Search: 

2.1.1 One-at-a-time search: 

One-at-a-time search method is also known as alternating variable method 

from it’s form in two dimensions [15]. This is the simplest strategy which consists of 

minimizing with respect to each independent variable in turn. As shown in figure (1), 
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for two dimensional case, first one variable is varied until no further improvement 

can be obtained, then the next one and this sequence is repeated with ever-decreasing 

steps. 

One of the drawback of this method is that in most practical cases where the 

direction of optimum is not along any coordinate axes, the progress is slow and it 

becomes very inefficient as the number of variables increase [3]. 

 
 

Figure (1): One-at-a-time search method for function of two variables[3] 

2.2 Pattern search methods 

Pattern search methods try to find a “better” search direction than simple 

directions along coordinate axes as in random search methods. This better search 

direction is found using exploration in the design space. The procedure of going from 

one point to the new point in design space is called a move. A move is termed a 

success if the value of f(Pi+1) is less. Than f(Pi) .; otherwise, it is a failure [3]. 
 

2.2.1 Hooke and Jeeves pattern search 

The pattern search method as described by Hooke and Jeeves (referred mostly as 

the pattern search method in literature) makes use sequence of exploratory moves 

and pattern moves. 
 

1. Exploratory move: In exploratory move each coordinate direction is examined in 

turn in the following way. A single step is taken along the direction (i) (by adding an 

increment  to variable xi). If the move is successful, then the new value of the 

variable is retained. If the step fails step is taken in opposite direction (by subtracting 

 from variable xi). If this move is successful then that value of variable is retained 

otherwise the original value of xi is kept. 

When all the (n) coordinate directions have been investigated the exploratory move is 

complete. The point arrived at as a result of this procedure, which may or may not be 

distinct from the point from which the move originated, is called the base point. 
 

2. Pattern move: Initial base point and the base point obtained using the exploratory 

move define the “pattern” or the search direction. Pattern move takes a single step 

from present base point in the direction specified by the pattern. This becomes the 

new starting point for next exploratory move [3]. 

 When a pattern move and successive exploratory move fail, the algorithm 

returns to the previous base point. If the exploratory move around this base point also 

fails the pattern is destroyed and increment  is reduced. The whole algorithm is 

repeated  starting from this point. The search is terminated when the increments fail 

below prescribed limit. 
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 As shown in figure (2) point P1 (marked 1) is the first base point Bo. First 

exploratory move from Bo begins by incrementing x1 and resulting in P2. Since f(P2) 

< f(P1), P2 is retained and exploration is continued by incrementing x2. f(P3) < f(P2) 

so P3 is retained in place of P2. The exploratory move is complete and P3 becomes 

the second base point B1. Pattern move is made in the direction of B1 −Bo from P3 

to P4 (B1 −B0 = P4 −P3). Now f(P4) is not computed, but an exploratory move is 

performed to improve on the pattern direction. The best point found along x1 

coordinate is P5. Since the second move along x2 fails, as the points obtained (P6 

and P7) are not better than P5, exploratory move is complete and P5 is retained. As 

f(P5) < f(B1) = f(P3), it becomes the new base point B2. 

 Similarly the next base point B3 is obtained as P10. Now a pattern move is 

made to point P11. Subsequent exploratory move tries points P12, P13, P14, P15 and 

fails, so we come back to P10. Since f(P11) > f(P10), pattern move itself has failed 

and we come back to the previous base point at P10. Fresh set of exploration to 

points P16, P17, and P18 also fail, causing the pattern to be destroyed and increment 

 to be reduced. The whole procedure is restarted at point P10. 

  

 
 

Figure (2): Hook and Jeeves Pattern Search for two dimensions [3] 
 

2. Parallel direct search methods: 

 The Parallel direct search methods are designed to solve the unconstrained  

minimization problem: )(min xf
nRx

,  where f: Rn → R. 

 What distinguishes the direct methods from other optimization 

methods is that they require only that the function f be continuous.  
 Direct search methods neither require nor estimate derivatives. As a 

consequence, while they are usually slower to converge than derivatives based 

methods, they are usually much more robust in situations where the function value 

are subject to noise, analytic derivatives are unavailable, or finite difference 

approximations to gradient are unreliable. Furthermore the direct search schemes 

given here parallelize very well, although they can certainly be used as sequential 

methods [14].  

3.3.1 The first parallel algorithm: 

 It is clear from the steps of the  of the direct search methods algorithm that 

they are independent processes. Hence each function evaluations process can be 
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carried out in a processor of a MIMD computer. The number of the processors which 

are used is 2n+1 (n represents the number of the variables).  

 We can calculate the speed-up factor (Sp) of the parallel algorithm by:  

 
processors pin  task  theofexecution   theof  timeTotal

processor single ain  task  theof timeexecution  Total
=pS  

It is also clear that we can find f(x1+h,x2,..,xn), f(x1-h,x2,..,xn), f(x1,x2+h,..,xn), 

f(x1,x2-h,..,xn),…, f(x1,x2,..,xn+h), f(x1,x2,..,xn-h) in independent processors, so that 

they can be calculated simultaneously. Comparisons between f(x1+h, x2,..,xn) and 

f(x1,x2,..,xn) , f(x1-h,x2,..,xn) and f(x1,x2,..,xn), (x1,x2+h,..,xn) and f(x1,x2,..,xn), (x1,x2-

h,..,xn) and f(x1,x2,..,xn), …, f(x1,x2,..,xn+h) and f(x1,x2,..,xn), f(x1,x2,..,xn-h) and 

f(x1,x2,..,xn)  are independent so that they can be carried out in parallel. 

For simplicity, we can assume P = {x1, x2,…, xn}, xi = xi+h, xi = xi-h, and 

the first parallel algorithm becomes as follows:  
 

Algorithm 2 Parallel Direct Search Method 

1. Choose an initial point (P0) 

2. Choose an initial step size h 

3. Do in parallel:  

o CPU1: Find f(P1) 

If f(P1)<f(P1)  

x1=x1+h ; send x1 to CPU2n+1  

else 

get new (P1) from CPU2n+1 

o CPU2: Find f(P1) 

If f(P1)<f(P1)  

x1=x1-h ; send x1 to CPU2n+1  

else 

get new (P1) from CPU2n+1 

o CPU3: Find f(P2) 

If f(P2)<f(P2)  

x2=x2+h ; send x2 to CPU2n+1  

else 

get new (P2) from CPU2n+1 

o CPU4: Find f(P2) 

If f(P2)<f(P2)  

x2=x2-h ; send x2 to CPU2n+1  

else 

get new (P2) from CPU2n+1 

. 

. 

. 

o CPU2n-1: Find f(P1) 

If f(Pn)<f(Pn)  
xn=xn+h  ; send xn to CPU2n+1  

else 

get new (Pn) from CPU2n+1 

o CPU2n: Find f(Pn) 

If f(Pn)<f(Pn)  
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xn=xn-h ; send xn to CPU2n+1  

else 

get new (Pn) from CPU2n+1 

4. On CPU2n+1: Check If one of these steps yields to a smaller f(P)  new iterate 

(P*). 

5. Otherwise: try again with a step half as long (h=h/2). 

6. As (P*) approaches the solution, the algorithm reduces the length of the steps. 

7. Stopping criteria: step length falls below a certain tolerance. 
 

Parallel method can be described in the following shape: 
 
CPU1  CPU2  CPU3  CPU4  CPU 2n-1  CPU 2n 

Find f(P1) 

If f(P1)<f(P1)  

x1=x1+h 

    send x1 to  

    CPU2n+1  

else 
    get new (P*) 

    from CPU2n+1 

 Find f(P1) 

If f(P1)<f(P1)  

x1=x1-h 

    send x1 to  

    CPU2n+1  

else 
    get new (P*) 

    from CPU2n+1 

 Find f(P2) 

If f(P2)<f(P2)  

x2=x2+h 

     send x2 to  

     CPU2n+1  

else 
    get new (P*)  

    From 

CPU2n+1 

 Find f(P2) 

If f(P2)<f(P2)  

x2=x2-h 

    send x2 to      

    CPU2n+1  

else 
    get new (P*)  

    from CPU2n+1 

… 

Find f(Pn) 

If 

f(Pn)<f(Pn)  

xn=xn+h 

     send xn to  

     CPU2n+1  
else 

    get new (P*)  

    from 
CPU2n+1 

 Find f(Pn) 

If f(Pn)<f(Pn)  

xn=xn-h 

    send xn to      

    CPU2n+1  

else 
    get new (P*)  

    from CPU2n+1 

     

     

 

CPU2n+1 

1- Receive the new values from CPU1 .. CPU2n  

2- If no reduction on the function values, then h=h/2, send h to CPU1.. CPU2n 
3- Else send new values P* to CPU1 .. CPU2n  

4- Until No better points are found 
 

Figure (3): Tasks distribution on  processors of the first parallel algorithm 

3.3.2 The second parallel algorithm: 

We can decrease the no. of CPUs used in the first method to reduce the cost 

or to use when the no. of the variables (x1, x2,…, xn) is less. In this algorithm each 

function evaluations process can be assigned to one of the processors of a MIMD 

computer, which consists of n+1 processors. 

The first step of CPU1 calculates f(P1) and compares it with  f(P1). If 

f(P1)<f(P1) then considering x1 = x1+h, otherwise  x1 = x1-h, the same procedures 

are applicable on the CPU2 .. CPUn. In the next step, CPUn+1 receives the new 

values from CPU1..CPUn, if there is no new value then we try with a step half as 

long (h=h/2) and send h to CPU1..CPUn, else send the new values to CPU1 .. CPUn, 

till we find no reduction in reduction in the function value.  
 

Parallel method can be described in the following shape: 
 

CPU1  CPU2  CPUn 

Find f(P1) 

If f(P1)<f(P1)  

x1=x1+h 
    send x1 to  

    CPU2n+1  

Else      x1=x1-h 
     send x1 to  

     CPU2n+1  

get new (P1)  
from CPU2n+1 

 Find f(P1) 

If f(P2)<f(P2)  

x2=x2+h 
    send x2 to  

    CPU2n+1  

Else     x2=x2-h 
     send x2 to  

     CPU2n+1  

get new (P2) from 
CPU2n+1 

… 

Find f(Pn) 

If f(Pn)<f(Pn)  

xn=xn+h 
    send xn to  

    CPU2n+1  

Else      xn=xn-h 
     send xn to  

     CPU2n+1  

get new (Pn) from 
CPU2n+1 

     

     

 

CPUn+1 
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1- Receive the new values from CPU1 .. CPUn  

2- If no reduction on the function values, then h=h/2, send h to CPU1.. CPUn 
3- Else send new values to CPU1 .. CPUn  

4- Until No better points are found 

Figure (4): Tasks distribution  on  the processors for the second parallel 

algorithm 

5. Comparison between the suggested parallel methods: 

The results of study showed that there are many differences between the two 

methods. These differences can be summarized in the following table: 
 

Table (3) Differences between the suggested parallel algorithm 

 First Parallel Method Second Parallel Method 

1)  We need 2n+1 processors whatever 

the number of variables  

We need n+1 processors. n is the 

number of variables  

2)  The program takes less time than the 

second algorithm when the variables 

of the function increase.. 

The program takes more time than the 

first algorithm when the variables of 

the function increase. 

3)  It is costly for  solving high dimensional 

problems.  it is preferred to use a such 

method in simple problems   

It is not costly for complex problems 

because all problems need n+1 

processors.  
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