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The Robust Partial Least Square Regression method is used to handle outliers and increase the
explanation proportion, but it does not reduce the average of the mean square error. In this article, three
methods are proposed to handle the problem of outliers, reduce the average of the mean square error,
and increase the explanation proportion of the predictor and dependent variables. The first proposed
method (Iteration) depends on identifying outliers by estimating the initial Partial Least Square
Regression and then estimating outliers based on the residuals of those values to obtain the lowest mean
square error, while the second and third proposed methods depend on a hybrid process between
iteration and robust Partial Least Square Regression. The proposed and conventional methods were
applied to estimate PLSR models on data Datasets for various ordinary patients in Iraq. The Dataset
provides the patients’ Cell Blood Count test information that can be used to create a Hematology
diagnosis/prediction system. Also, this Data was collected in 2022 from Al-Zahraa Al-Ahly Hospital.
The proposed iterative method with higher efficiency provided 5 variables (importance in the
projection score that explain changes in HGB levels. The proposed methods gave better results than
the robust Partial Least Square Regression method.
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1. Introduction

Partial Least Squares Regression (PLSR) is a statistical
method used for the analysis of data that has the same
advantage as principal component regression in terms of
reducing the number of explanatory variables before
conducting a regression on the response variables in a
multivariate dataset. PLSR will extract a set of underlying
factors, or principal components, from the data that contains
the basic information about the relationship between the
response variables and the explanatory variables. PLSR also
has another advantage over principal component regression,
in that it can take the relationship between the response and
explanatory variables into account when fitting or
estimating those factors. This basic approach often makes
PLSR an excellent choice for the analysis of datasets that
comprise many explanatory variables, are 'wide' and have a
limited number of observations, or are 'short'. The appeal of
PLSR in analyzing a wide dataset is that it can model
complex relationships between response and explanatory
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variables without including all the corresponding
operational effects needed in, for example, analysis of
variance or covariance applied to each explanatory variable
separately. However, employing PLSR requires an
awareness of the theoretical properties of the model and the
necessity to test model assumptions (Zeng et al. 2021;
Burnett et al. 2021; Hair & Alamer, 2022). This paper will
present robust models of Partial Least Squares regression to
analyze Haemoglobin data in the presence of outliers. The
data we consider contains Haemoglobin levels for n = 100
patients taken from the hospital in Baghdad. Clinical
measurements in medicine, Haemoglobin, help in the
diagnosis of blood diseases such as anemia. This is a heme
protein contained in red blood cells; its major function in
the body is molecular oxygen. Its absence weakens other
cells, which reduces the ability of capillaries to effectively
supply oxygen, leading to problems and can lead to death.
The dataset considered is of interest as it contains several
outliers, which make almost every statistical model
considered here fail. The robust PLS models proposed here


mailto:taha.ali@su.edu.krd1
mailto:mahammad.bazid@su.edu.krd2
mailto:taha.ali@su.edu.krd1
http://creativecommons.org/licenses/by/4.0
https://orcid.org/0009-0005-3288-4976
https://orcid.org/0000-0001-7909-4422
https://csmj.uomosul.edu.iq/

Al-Rafidain Journal of Computer Sciences and Mathematics (CSMJ), Vol. 19, No. 1, 2025 (84-95)

can handle these problems and, in addition, reveal useful
structure in the data (Prager et al. 2023). This paper is
organized into sections where the Methodology in section
2, the outline of Partial Least Squares and robust PLS are
given in sections 3, 4, and 5. include outliers, results for real
data analysis are discussed in section 6. with the proposed
method, and finally section 7. concludes the paper.

2. Methodology
2.1. Multiple Linear Regression (MLR):

The problem of multiple linear regression, or MLR, can be
expressed as follows (Ali and Saleh, 2022). The objective is
to determine a linear connection between the variables, x; =
(j = 1 — m), and a variable, y, by feature measurement. This
has a mathematical representation of

y = b1x1 + bzXz + b3X3 + -+ bmxm +e (1)
y=xb+e (2)

In equation (1), the x,, are referred to as independent
variables, while the dependent variable is y. the b, are the
sensitivities, while e is the residual or error. In equation (2),
x' is a row vector, b is a column vector, and y is a scalar.
Multilinear dependencies are described for a single sample in
Equation 1. When n samples are obtained, the column vector
v;(i = 1 —n) may be expressed as follows: b stays constant,
and the rows of a matrix X are formed by the vectors x';.

y=Xb+e 3

The "least squares method" is the most often used technique
for this. The solution using the least squares is:

b=(XX)"X'y 4)

The most common issue with MLR is hinted at in Equation
(4): the inverse of X'X could not exist. The same problem
goes by the titles of singularity, zero determinant, and
collinearity.

Although it would seem obvious at this point that there must
always be an equal number of samples and variables, there
are many ways to formulate this problem. Eliminating a few
variables (m) in the scenario when m > n (n is the number
of observations) is one of them. There are several techniques
for selecting which variables to remove, one of these
techniques is PLS.
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2.2. Model construction

The NIPALS algorithm's characteristics provide the
foundation of the PLS model (Ali et al. 2023). The data
matrix may be represented by the score matrix. A regression
between the scores for the X and Y blocks would make up a
basic model. The outside relations (X and Y blocks
separately) and the inside relation (connecting both blocks)
make up the PLS model, the X block's outer relation is:

X=TP +E )
Y=UQ +F (6)
Where:

e Xisan X m predictor matrix.

e Yisan X presponse matrix.

e T and U are n X 1 matrices that are, as well,
projectors of X (the X score, component or factor
matrix) and projectors of Y (Ali et al. 2023).

e P and Q are, accordingly, m X 1 and p X 1
loading matrices.

e Matrices E and F are the error terms, supposed to be
independent and symmetrically distributed random
normal variables.

The breakdown of Y are done to optimize the covariance
between T and U (Shahla et al. 2023).

The covariance of column i of T (length n) with the column
i of U (length n) is maximized. Take note that this covariance
is determined pair by pair. Furthermore, there is zero
covariance between column i of T and column j of U (with i

#J)-

For PLSR, the scores constitute an orthogonal basis, so the
loadings are selected accordingly. When orthogonality is
applied upon loadings (and not the scores) in PCA, there is a
significant difference.

The sums range from 1 to a. It is possible to define every
component and determine whether E = F =0. We go into how
and why this is done below. The goal is to achieve as helpful
a relationship between X and Y as feasible while also
describing Y as well as practical and minimizing ||F||. A
graph of the Y block score, u, versus the X block score, t, for
each component may be used to determine the inner relation.
A linear model is the most basic for this relation:

Uy = bk, ™
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Where bh = u,’, t, / t;lth . In the MLR and PCR models, the

bh function as the regression coefficients b. This model is

not optimal. The principal components are estimated for each
block independently, resulting in a weak relationship
between them, which explains the rationale. It would be
preferable if they knew more about one another, resulting in
components that are slightly rotated and closer to the
regression line. To produce slightly rotated components that
are closer to the regression line in Figure 3, it would be
preferable to provide them with information about one
another. Model oversimplification: 2 X PCA The NIPALS
section is an example of an algorithmic representation of an
oversimplified model.

For the X block:

1- take tspare = sOme x;

2- p'=t'X/t't (=u'X/u'v)

p’ id
3_ ! — (e}
Prnew = o7l

X
4 t=-F
p'p

5- Iftin steps 2 and 4 are equal, stop; if not, go on to
step 2.
For the Y block:

1-  take Uggare = SOMeE y;
2- g =u'X/u'u(=t'X/t't)

q id
3_ ! e o]
Tnew = o7l

4- u= Y,—q
q'q
5- Ifuin steps 2 and 4 are equal, quit; if not, carry on
stepping 2.

Exchanging scores improves the internal relationship. The
relationships are expressed as entirely distinct algorithms. By
allowing t and u to switch positions in step 2, one may learn
more about the other. In this stage, take note of the sections
included in parenthesis. As a result, the two algorithms may
be expressed sequentially:

1-  Take Ugare = SOMeE y;

2- p'=uX/uuw =uX/u'u)

P o1 w14
3- ’ — o w' — o
p new "plold” ( new ”W,Dld”)
_ X_p _ Xw
4- t_p’p(t_w’w)

5- g =t'Y/t't (= t'X/t't)
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6- q/ — qlold
new g’ o4l
S ()
a'q

8- Compare the t in step 4 with the 1 in the prior
iteration step. If they're equal (within a given

rounding error), stop; otherwise move to 2 (In the scenario
for which the Y block contains just one variable, steps 5-8
may be avoided by writing Q = 1).
This algorithm generally converges extremely rapidly to
yield rotated components for X and Y blocks. acquiring
scores for orthogonal X blocks. The algorithm's failure to
provide orthogonal t values remains an issue. The reason for
this is that the PCA's computation sequence was changed. As
a result, weights w' are used instead of the p' (refer to the
formulae in parenthesis in the preceding paragraph). After
convergence, an additional loop may be added to get
orthogonal t values:

p = UX/t't (8)
!
With p’. = 2old_ Tt is now feasible to compute the new
new |lp’ oyl

X . . .
t:t= ﬁ However, this ultimately constitutes only scalar

multiplication with the norm of p’ in Eqn.8: tg, =
tOId”p,old”' While orthogonal t values are not strictly
required, their use facilitates a more straightforward
comparison with PCR. To ensure accurate predictions
without error, it is essential to apply the same resealing to the
weights w': w'p,,, = w’o,d”p’ol d||. Subsequently, t may be
used for the inner relation as delineated in Equation 19, and
the residuals

may be computed from: E;=X-—

t,p;and F; =Y — u,q;. In general,
Ep=Ep 1 —typp X=E, 9)

Fp=Fp1—upq,; Y=F (10)

However, u;, is substituted with its estimator, u;, = bty , in
the outer relation for the Y block, yielding a mixed relation:

(11)

(Remember that the goal is to reduce ||F||.) The ability to
utilize the model parameters for prediction from a test set is
ensured by this mixed connection. Moreover, one may
continue until the rank of the X block is depleted since the
rank of Y is not reduced by 1 for every component. The
Appendix contains the whole procedure as well as a matrix
and vector illustration (Geladi and Kowalski, 1986).

Fy = Fp_q — bytypqy,
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2.3. Partial Least Squares Regression

Partial least squares regression is a popular multivariate
method. It is used when creating a regression model for data
that is multicollinear or in which there are more explanatory
variables than samples. SIMPLS is one of the primary
methods used in PLSR, which aims to repeatedly extract
uncorrelated latent variables (Alin and Agostinelli). Partial
least squares methods are useful as exploration tools for the
analysis of large data blocks of high dimension, especially
for data involving a great number of highly collinear and low-
level intensity predictors. The central theme of robust partial
least squares regression concerns the high sensitivity of
robust methods to the leverage values of the predictors.
Collinearity and predictor contamination in the form of low-
level intensity measurements are common challenges in
analyzing biomedical spectral data with PLS regression
methods. Traditional PLS methods are highly sensitive to the
leverage of the input variables, and this high leverage may
result in overfitting. Outliers, if present, will distort the
results, and thus the use of traditional PLS regression in the
presence of outlying observations is not advisable. In
particular, the inclusion of outlying observations in PLS
regression models developed for the analysis of microarray
data is highly suspect (Chen et al.2021). The ability of
different data analysis approaches to supply the user with
statistical and cognitive tools differs. The soft multivariate
bilinear modelling approach of PLS Regression enables
cognitive access to important and trustworthy information in
data when linked with suitable interactive computer graphics.
Additionally, cross-validation enables a statistical
assessment of the results' reliability. As far as I'm aware, no
other statistical approach has comparable versatility. The
PLS Regression appears to regularly rank among the top
regression procedures in terms of statistical prediction ability
when compared to competing approaches that have all been
adequately calibrated. Therefore, it is particularly well-suited
for non-statisticians, or researchers who are unable to commit
the required time to learning complex, abstract statistical
approaches and who wish to apply their vital contextual
knowledge when evaluating data. The PLS Regression was
created in response to traditional statistics' inadequacies and
unmet data analysis objectives. It developed from the close
collaboration of chemist Svante Wold and his father,
statistician Herman Wold. Two very different but
occasionally equally oppressive scientific cultures the
parameter estimation of traditional statistical modelling,
which focused on distribution theory and hypothesis testing,
and the mathematical modelling in traditional chemistry and
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physics, which focused on hard causal models developed the
PLS Regression at the start of the 1980s (Martens, 2001).

2.4. Robust Partial Least Squares Regression

The traditional Partial Least Squares Regression methods are
sensitive to various problems such as outliers, and noise,
which prevail in real datasets. Such problems deteriorate
their modelling performance, and in turn, practitioners may
fail to obtain useful information from the constructed models
after further drawing decisions or making predictions. Robust
regression that mitigates such problems becomes an
important research line (robust versus the outliers and
proving accurate coefficient estimators). By investigating
some cases, we discuss the pivotal role of error detection and
the incompleteness of its list. Different iterations of when to
use robust PLSR can have different levels of robustness. We
provide case studies considering practical operations (Chan
et al., 2022). Robustness improves the generalization of
PLSR, as sufficiently small errors for iterations can
occasionally provide less robust results with the traditional
methods. The improved robustness of modelling can reveal a
very strong ideal to unrealistic relation between the
predictors and regressors. With different robust techniques,
these cases can be separated and returned to let alone. Robust
PLSR can require shorter dimensions to be used.
Subsequently, the number of increments can be longer, but
also the fitting and standard simplicity values can lead to
clearer and more usable results than those for the traditional
PLSR. The practical application of robust PLSR brings some
advantages. From a theoretical perspective, it can be semi-
automatically quantified, i.e., employed while the splits work
under the general mathematical background and are
implemented carefully (Hair and Alamer, 2022). Robust PLS
has specialized in using criteria for the robustification of
PLSR against both outliers and leverage points.

Three well-known methods for down-weighting leverage
points and large residuals have been proposed. Furthermore,
robust PLS estimation known as robust Iterative Robust PLS
estimation has been implemented to the power weighting
coefficient of the method to detect highly influential
observations. These and other studies have addressed the
robustness of PLS to leverage points in multivariate and
high-dimensional settings with some similarity to the well-
known algorithm of PLSR, but they involve significantly
different estimation procedures due to their choice of robust
criteria and respective characteristics (Ali et al. 2025). The
effectiveness of these methods under different conditions or
with diverse applications shows that the criterion of
robustness plays a crucial role in the performance of the
introduced methods. Also, Meetings and variations of the
related literature demonstrate that the justifications of the
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PLS method have a promising performance by modelling the
influence of both leverage and low-leverage points (Kili¢ et
al., 2021).

2.5. Iterative Methods in Robust PLSR

Iterative methods refine statistical models sequentially. They
first establish a tentative solution and then adjust the model
to efficiently approximate some targets. Such methods act as
chains of feedback loops. For PLSR, iterative methods enable
obtaining optimal (or locally optimal) models according to a
chosen criterion. Iteration is essential in predictive modelling
when we build a final model based on available data that can
be leveraged continuously. Such methods apply to any
problem given only the ability to calculate volatility,
gradient, or a function adjoint. The iterative strategy in
predictive modelling involves defining an initial linear
combination, improving the fitness of the obtained latent
variables, reducing their cross-correlation, or concentrating
on a high-leverage subgroup of data to enhance
interpretability. Non-linearity concerning the directions of
maximal covariance can be efficiently approached by
alternating between space construction and label estimation
(Ali, 2018).

Iterative methods provide robust solutions when non-
normality is considered. Step-by-step improvement can
result in models resistant to the presence of strong outliers.
However, a major drawback of such an approach can be slow
convergence, even close to the optimum of a stopping
criterion. Thus, this iterative strategy is widely used when
seeking robust solutions in PLS2. Iterative methods can also
simply improve a model to yield greater interpretability.
These methods permit performing feature engineering to
extract information that may be important for understanding
the observations. Because they do not yield the most optimal
predictive models, decreasing the model complexity may be
related to a decrease in their predictive power. Overall, it
seems there is a trade-off between convergence and model
accuracy (Knief and Forstmeier, 2021).

2.6. Outliers

Outliers are a common occurrence for any applied statistician
who has examined real data sets. An observation is
considered an outlier if it differs significantly from other
observations, raising questions about whether it was caused
by a different factor. When analyzing a sample that contains
outliers, the notable differences between outlying and inlying
observations, as well as the extent of deviation between the
outliers and the inlier group, are evaluated using an
appropriately standardized scale (Omar et al. 2020). Outliers
are the extreme values of variables in each dataset. Outliers
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are the values that diverge from the overall pattern of data.
The presence of outliers in the data often results in
misleading interpretations, which could lead to incorrect
decisions. Outliers can skew predictions and misrepresent
results, resulting in wrong conclusions. Additionally, as most
multivariate techniques assume normally distributed data in
consecutive steps, the inclusion of outliers can seriously
distort results and conduct tests of significance. If adequate
procedures are not considered, outliers can negatively affect
external validity and generalizability. However, not all the
points that appear extreme are necessarily 'bad.' Some
extreme values might have interesting information. A
thorough investigation of the outlying points is necessary. It
is important to remember that they have tails, but they are
few. However, they do have an impact and should not be
ignored (Sullivan et al., 2021). Based on the nature of
outliers, they can be classified into various categories:
univariate, multivariate, and contextual outliers. It is of
utmost importance to understand the cause, i.e., why the
outlying value exists before choosing a methodology to
manage the outliers in the data. Outliers can occur for various
reasons, and those reasons are divided into three main
categories: data entry errors, measurement errors, and natural
variations (Omar and Ali, 2025). Data entry errors occur due
to human intervention or technological malfunction, or due
to poor procedures. Measurement errors due to technological
problems and data collection variability are made while
measuring each value. Finally, natural variations occur due to
differences in measurements because many samples are
being taken. We have a broad phase variation in the
measurements. Occasionally, these extreme values could be
actual data, but humans are so biased and unconvinced that
these outliers could be removed to achieve them. Even
unusual cases lead users to remove these outliers and not
draw an appropriate end from them. It is also important to
remember that people have a specific idea about the
significance of data. The higher or lower values of some
variables deviate from these beliefs and are marked as
outliers. Therefore, we can assume that they are of particular
interest in our study. There is a risk of making mistakes if we
omit outliers just because they appear to be different. We,
therefore, need to understand the reason why outliers arise or
exist before considering an adequate procedure for managing
the outliers in our data (Smiti, 2020).

2.7. Proposed Methods

The three proposed methods for treating outliers are
summarized in the following:
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First Proposed:

- Estimate a partial least squares regression model that
maximizes the covariance matrix between the Predictor
and dependent variables after choosing many suitable
components to obtain predictions of the initial values of
the dependent variable and the residual.

- Identifying outliers y(o) from the standard residuals of a
partial least squares regression model that are outside an
interval (¥2.5) or the largest residual value.

- Calculate the initial average of mean Squares Error
(AMSE) of the model from the following formula:

2 +1
AMSE = Z Zp (MSE(k,j)/2(p + 1) (12)
k=14-j=1

The number of principal components is p. MSE includes
two parts, the mean square error of X (MSEx) which
measures how the model explained the variation in the
Predictor variables, and the mean square error of Y (MSEy)
which measures the accuracy of the model:

1 n p 2
MSEx=—Z Z ;i — Rip 13
np i=1 j=1( Y U) a3

MSEx quantifies the error between the original x and
the reconstructed x from the model.

1 n p 2
MSEy = — E E I
Y= 2 jzl(yl, 9ij)

MSEy quantifies the error between the actual value y and
the predicted by the PLSR model.

(14)

- Estimate outliers using the following equation:

Y(0) = y(0) — Residual(o) (15)

Residual (0) is the outlier residual, using Y (o) instead of $(0)
with Y to estimate a PLS model and compute AMSE.

- Ifthe AMSE value is greater than (0.001), then the outlier
in equation (14) will be re-estimated and get AMSE for a
new PLS model and so on until the AMSE is less than
(0.001).

- Finally, the estimated values of the outliers with the least
AMSE are used to create the PLS model.

Second Proposed:

The second proposed method is based on the hybrid method
(Robust-Iteration) which uses a robust estimator (Savitzky-
Golay filter using iterative reweighting in combination) to
handle outliers and noise in data based on maximizing the
explanation ratio of the Predictor and dependent variables as
inputs to the iterative method that minimizes the AMSE as in
the first proposal.
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Third Proposed:

The third proposed method is based on the hybrid method
(Iteration-Robust) which uses the iterative process that
minimizes the AMSE as in the first proposal as inputs a
robust estimator to handle outliers and noise in data based on
maximizing the explanation ratio of the Predictor and
dependent variables.

3. Application Aspect

The proposed and conventional methods were applied to
estimate PLSR models on data Datasets for various ordinary
patients in Iraq. The Dataset provides the patients’ Cell Blood
Count test information that can be used to create a
Hematology diagnosis/prediction system. Also, this Data
was collected in 2022 from Al-Zahraa Al-Ahly Hospital. The
dependent variable represents Hemoglobin (HGB), Normal
Ranges: 11.0 to 16.0, Unit: g/DIl, while the Predictor
variables represent 19 tests, in Table 1:

Table 1. Cell Blood Count test

No. | Symbol Predictor Variable
White Blood Cell, Normal Ranges: 4.0 to 10.0, Unit:
! WBC 10"9/L.
2 LYM Lymphocyte percentage, which is a type of white blood
P cell, Normal Ranges: 20.0 to 40.0, Unit: %
Indicates the percentage combined value of the other
3 MIDp types of white blood cells not classified as lymphocytes
or granulocytes, Normal Ranges: 1.0 to 15.0, Unit: %
Neutrophils are a type of white blood cell (leukocytes);
4 NEUTp | neutrophils percentage, Normal Ranges: 50.0 to 70.0,
Unit: %
5 LYMn Lymphocyte numbers are a type of white blood cell,
Normal Ranges: 0.6 to 4.1, Unit: 10"9/L.
Indicates the combined number of other white blood
6 MIDn cells not classified as lymphocytes or granulocytes: 0.1
to 1.8, Unit: 10M9/L.
Neutrophils are a type of white blood cell (leukocytes);
7 NEUTn | neutrophils Number, Normal Ranges: 2.0 to 7.8, Unit:
10"9/L.
Red Blood Cell, Normal Ranges: 3.50 to 5.50, Unit:
8 RBC 10712/L
Hematocrit is the proportion, by volume, of the Blood
9 HCT that consists of red blood cells, Normal Ranges: 36.0 to
48.0, Unit: %
Mean Corpuscular Volume, Normal Ranges: 80.0 to
10 MCevV 99.0, Unit: FL
Mean Corpuscular Hemoglobin is the average amount
11 MCH of Haemoglobin in the average red cell, Normal
Ranges: 26.0 to 32.0, Unit: pg.
Mean Corpuscular Hemoglobin Concentration, Normal
12 MCHC Ranges: 32.0 to 36.0, Unit: g/dL
Red Blood Cell Distribution Width, Normal Ranges:
13 RDWSD 37.0 to 54.0, Unit: fL
Red blood cell distribution width, Normal Ranges: 11.5
14| RDWCV to 14.5, Unit: %
Platelet Count, Normal Ranges: 100 to 400, Unit:
15 PLT 10°9/L
16 MPV Me_an Platelet Volume, Normal Ranges: 7.4 to 10.4,
Unit: fL
Red Cell Distribution Width, Normal Ranges: 10.0 to
17 PDW 17.0, Unit: %
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13 PCT The level of Procalcitonin in the Blood, Normal
Ranges: 0.10 to 0.28, Unit: %

19 PLCR Pla.telet Large Cell Ratio, Normal Ranges: 13.0 to 43.0,
Unit: %

A random sample of 100 observations was taken from these
examinations, and the statistical description is in Table 2.
The mean level of the dependent variable HGB was
(11.4610), and it is within the normal period (11-16) with a
standard deviation (2.74921). Figure 1 shows that several
observations are outside this normal period and that some
values are much less than the minimum (11). All means of
the Predictor variables for blood tests were within the normal

range.
ob I I I I 4 I I I I
Table 2. Descriptive Statistics 0 0 2 % © oW 0 & % f00
Predictor Variable Mean Normal Range | Std. Deviation Coserton
HGB 11.4610 11-16 2.74921 Figure 1. Scatter plot of the dependent variable (HGB)
WBC 7.0520 4-10 3.59249
I&Zgﬁ 286..62;1700 210__1450 171_ '13;282168 Table 3. Multiple Linear Regression Model
NEUTp 65.6570 50-70 11.02517 Unstandardized Standardize Collinearity
LYMn 1.6900 0.6-4.1 0.85298 Coefficients d . . Statistics
MIDn 0.5970 0.1-1.8 0.40613 Model Coefficients | ¢ Sig.
MEUTn 4.7660 2-7.8 2.90023 B Esrtr‘:)-r Beta TO'eeranc VIF
RBC 4.6032 3.5-5.5 0.66308
HCT 203190 36-48 2840610 (Constant) | -6.19 | 20.920 -.296 768
MCV 21.8640 80-99 7.87709 LYMp -.052 188 =217 -.280 | .780 .003 298.29
MCH 25.4800 26-32 3.39233 MIDp -.008 .019 -.020 -416 | .679 .840 1.190
MCHC 32.0740 32-36 6.72509 NEUTp -.050 202 -.199 -.246 .806 .003 322.70
RDWSD 37.4610 37-54 4.71923 LYMn 11 289 .034 385 | 702 252 3.962
RDWCV 13.1010 11.5-14.5 1.40133 MIDn | 269 | 1.940 040 139 | .890 025 | 40577
PLT 164.7600 100-400 48.85272 MEUTn | -111 | 262 117 424 | 673 | 026 | 37.770
g’g’\x 193'?629200 7'140‘_1107'4 ;:égéég RBC | 2915 | 386 703 7543 000 | 233 | 4293
PCT 0.1548 0.10-0.28 0.04804 HCT -.002 .034 -.019 -.054 957 017 60.551
PLCR 27,0220 1343 726473 MCV [ .092 | 089 263 1039 [ 302 [ 031 [31.779
MCH 378 173 466 2.186 | .032 .044 22.496
PLSR analysis is used to measure the effect of Predictor MCHC | .009 020 021 444 | 658 879 1.138
variables on the dependent variable when the number of RDWSD | -.069 107 -.119 -.650 | 517 -060 16.568
observations minus one is less than the number of Predictor RDWCV | 037 328 019 114 | 910 073 13.792
. . . . . . PLT -.012 .031 -.220 -.403 .688 .007 147.55
variables, which is not available in this data, and when there MY 50 551 354 o1 | 408 ol 29,799
is a multicollinearity problem between the Predictor PDW | -.040 | 109 ~030 2369 | 713 315 3179
variables, so multiple linear regression (MLR) analysis was PCT 14.80 | 30.499 259 A85 | .629 .007 140.36
used to verify it as in Table 3. PLCR | 072 | .083 190 871 | 386 | 043 |23.523
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Dependent Variable: HGB
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Figure 2. Regression Standardized Residuals for MLR

Table 3 shows the existence of the problem of
multicollinearity between most of the Predictor variables
(except for variables MIDp, LYMn, RBC, MCHC, and
PDW) because the values of variance inflation factor (VIF)
were greater than 5 and that the Predictor variables had no
effect on the dependent variable because the values of p-
values were greater than the significance level (0.01) except
for variable RBC. Because of the problem of
multicollinearity, using PLSR is more appropriate for
analyzing this data, and with outliers in the model, As can be
seen from the plot of the residuals of the MLR model (there
are two outliers 4 and 77 were outside the interval +2.5) in
Figure 2 and Table 4 thus robust PLSR will be more
appropriate than traditional PLSR. Table 4 shows that there
were two outliers (4 and 77) with very low HGB levels (3.80
and 1.20) while the predictive values (8.6867 and 10.3460)
and standard residuals (-3.971 and -7.432), and residuals (-
4.88667 and -9.14598) values were unacceptably large.

Table 4. Outliers Diagnostics

Case Number | Std. Residual | HGB Predicted | p Gdual
Value

4 3971 330 8.6867 488667

77 7432 1.20 103460 | -9.14598

The proposed methods depend on estimating outliers. This is
done first by identifying outliers based on the standard
residuals of the PLS model as in Figure 3. The two values
(y4 and y77) are considered outliers thus they will be
estimated using the robust PLSR and proposed methods.
When the estimation of outliers was repeated (22) times, the
iterative method provided the lowest sum of squared errors.
To demonstrate the efficiency of the proposed methods
(Iteration, Robust-Iteration, and Iteration-Robust) and
compare them with the robust method in handling noise and
outliers in the PLSR model, principal components (1-8) were
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used for five methods, and the comparison criteria were
calculated as in Table 5 which shows the results of the
efficiency criteria for the five methods, where the first
method represents PLSR (without filter), the second method
represents robust PLSR (Robust), the third method is the
proposed (Iteration), the fourth method (Robust-Iteration)
and the fifth method (Iteration-Robust). Eight principal
components were identified that were appropriate for this
data and had an explanation proportion R?X greater than
90%, R?Y greater than 50%, and minimum MSE (366.8932,
152.1978, 0.0942, 0.0039, and 85.9875, respectively) for all
methods used (the residuals are shown in Figures 3-7). The
robust PLSR method was robust against outliers and
provided an increase in the explanation proportions for the
Predictor variable (from 98.3902 to 99.1087) and a decrease
in the explanation proportions for the dependent variable
(from 71.9128 to 51.0907) while decreasing the value of
MSE (from 366.8932 to 152.1978). The result is logical
because the robust PLSR method focuses on increasing the
explanation ratio and reducing the MSE. The first proposed
method (Iteration) is also strong against outliers and
provided an increase in the explanation proportions for the
Predictor variable (from 98.3902 to 98.4067) and dependent
variable (from 71.9128 to 71.9805) while reducing the value
of MSE (from 366.8932 to 0.0942). The increase in the
proportion of explanation of the Predictor variables was
limited. Still, the decrease was large in MSE, and this is
logical in the mechanism of the iterative method in
minimizing MSE and does not focus on maximizing the
proportion of explanation. Also, note the big difference in
reducing the value of MSE compared to the robust method
(from 152.1978 to 0.0942).

Table 5. PLSR Model Results

Number of
Method principal R2X RYY MSE
components
Without Filter 61.7492 | 9.2495 1276.300
Robust 69.6564 | 22.1909 | 481.9676
Iteration 1 61.7614 | 9.3976 0.1779
Robust-Iteration 50.7881 3.2079 0.0382
Iteration-Robust 70.7870 | 21.0093 | 458.8203
Without Filter 85.2478 | 13.9313 | 942.4720
Robust 83.2461 | 43.3924 | 362.2439
Iteration 2 85.2817 | 14.0427 0.1655
Robust-Iteration 83.0960 | 15.3060 0.0240
Iteration-Robust 83.4525 | 39.5373 | 295.9905
Without Filter 90.3799 | 23.0456 | 751.8545
Robust 91.8080 | 39.4192 | 298.9431
Iteration 3 90.3255 | 23.4796 0.1423
Robust-Iteration 87.6032 | 11.5868 0.0151
Iteration-Robust 93.3105 | 40.8180 | 289.5752
Without Filter 94.9597 | 27.3721 | 620.5871
Robust 4 95.2583 | 38.4271 | 252.6010
Iteration 95.0061 | 26.6463 0.1217
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Robust-Iteration 95.2336 | 15.1892 0.0108
Iteration-Robust 95.9177 | 41.8393 | 220.4305
Without Filter 96.3657 | 33.0465 | 528.7259
Robust 93.6559 | 39.7218 | 215.0365
Iteration 5 96.3762 | 32.7080 0.1076
Robust-Tteration 95.9402 | 15.8539 0.0077
Iteration-Robust 97.5739 | 43.3489 171.5248
Without Filter 97.2024 | 39.2208 | 460.8768
Robust 97.5959 | 39.5672 | 199.1697
Iteration 6 97.1986 | 39.4864 0.0976
Robust-Iteration 97.8790 | 25.9688 0.0062
Iteration-Robust 98.4002 | 45.3286 | 135.3833
Without Filter 97.6233 | 61.2320 | 408.9185
Robust 98.4031 | 45.0333 165.6799
Tteration 7 97.6266 | 60.2657 0.0987
Robust-Iteration 98.3945 | 21.5845 0.0047
Iteration-Robust 98.7675 | 48.0387 107.7974
Without Filter 98.3902 | 71.9128 | 366.8932
Robust 99.1087 | 51.0907 | 152.1978
Iteration 8 98.4067 | 71.9805 0.0942
Robust-Iteration 99.0860 | 50.2236 0.0039
Iteration-Robust 99.0623 | 52.7409 85.9875

The second proposed method (Robust-Iteration) is also
robust against outliers and provided an increase in the
explanation proportions for the Predictor variable (from
98.3902 to 99.0860) and a decrease in the explanation
proportions for the dependent variable (from 71.9128 to
50.2236) while decreasing the value of MSE (from 366.8932
to 0.0039), noting the big difference in reducing the value of
MSE compared to the robust method (from 152.1978 to
0.0039). The third proposed method (Iteration-Robust) is
also strong against noise and provided an increase in the
explanation proportions for the Predictor variable (from
98.3902 to 99.0623) and a decrease in the explanation
proportions for the dependent variable (from 71.9128 to
52.7409) while decreasing the value of MSE (from 366.8932
to 85.9875), noting the big difference in reducing the value
of MSE compared to the robust method (from 152.1978 to
85.9875). General the proposed method (Iteration) gave the
best results compared to other proposed methods and PLSR
and robust PLSR method because it has the lowest MSE with
the highest explanation ratio. Figures 3-7 show the plot of
the residuals of the five models and the proposed methods
obtained the lowest standard residual values compared to the
PLSR and robust PLSR models.
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Figure 3. Residuals of the PLSR Model

Figure 3 shows that there were two outliers (4 and 77) for
the PLSR model that were outside the interval (£2.5) Thus
robust PLSR will be more appropriate than traditional PLSR
as in Figure 4.
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Figure 4. Residuals of the robust PLSR Model
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Figure 5. Residuals of the Iteration PLSR Model
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Figure 6. Residuals of the Robust-Iteration PLSR Model
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Figure 7. Residuals of the Iteration-Robust PLSR Model

Figures 4-7 show the small and acceptable residual values (-
1-0.5), compared with the classical method (-38-28). The
four methods with outliers provided results of different
efficiency depending on the number of principal components
used in the analysis. Depending on the8 principal
components, the robust method and the proposed methods
address the problem of outliers and provide highly efficient
estimators sorted by order of least MSE (Iteration PLSR,
Robust-Iteration, Iteration-Robust, and Robust PLSR).
Figure 8 shows the actual and estimated values for the HGB
levels from the five models and shows the large variation in
estimated values depending on the method used to calculate
the PLSR model parameters (using eight principal
components).
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Figure 8. Estimated values for the HGB levels

Calculate variable importance in projection (VIP) scores for
a PLS model. Use VIP to select predictor variables when
multicollinearity exists among variables. Variables with a
VIP score greater than 1 are considered important for the
projection of the PLSR as in Figure 9 which shows that there
are only (6) significant Predictor variables (red points are
VIP) out of a total of (19).
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Figure 9. VIP Score for PLSR Method

The robust PLSR and proposed methods gave different
results for the VIP Score as shown in the figures (10-12):
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Figure 10. VIP Score for Robust PLSR Method
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Figure 11. VIP Score for Iteration PLSR Method
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Figure 12. VIP Score for Robust-Iteration and Iteration-
Robust Method

The robust PLSR method provided 4 VIPs that explain the
changes in HGB levels. The proposed iterative method with
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higher efficiency provided 5 VIPs that explain the changes in
HGB levels. The proposed methods (Robust-Iteration) and
(Iteration-Robust) provided the same number of VIP (three
variables) that explain the changes in HGB levels. Table 6
shows the VIP for the five methods. Finally, the iterative
method and the five tests (HTC, MCV, MCH, MCHC, and
MPV) that affect the HGB levels can be relied upon.

Table 6. VIP Score for Five Methods

Method VIP Predictors

Classical PLSR 6 HCT, MCV, MCH, MCHC,
RDWCYV, and MPV
Robust PLSR 4 NEUTp, MEUTn, MCV, and
RDWSD
Iteration 5 HTC, MCV, MCH, MCHC, and
MPV
Robust-Iteration 3 HCT, MCYV, and MCHC
Iteration-Robust 3 HCT, MCV, and MCHC
Conclusion

1. The three proposed methods address the problem of
outliers in PLSR model data.

2. The proposed methods gave better results than the robust
PLSR method.

3. The proposed methods provide highly efficient estimators
sorted (Iteration PLSR, Robust-Iteration, and Iteration-
Robust).

4. Increasing the number of principal components resulted in
lower values of the MSE and increases for R*X and R?Y
of all methods used for this data.

6. The proposed iterative method with higher efficiency
provided 5 VIPs (HTC, MCV, MCH, MCHC, and MPV)
that explain the changes in HGB levels.
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