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[0,1],7 € (0,4]

Xn+1 = SML(r,x,) =
r.xn,. (1 —x,), X, <0.5
rx,. (x,— 1) +7r/4, X, 205
a time index , x; is the initial value , x,, € [0,1] and the
control parameter r € [0,1]. In [6] the authors studied

x(t+1)=>0-8)f(x@®), f(x) = ux(1 —x?),

1. Introduction

logistic map, which has a rich history in dynamical systems where 1 is
and chaos theory. The original logistic equation was first
introduced by Pierre Frangois Verhulst in 1838 to model
population growth. This equation became a cornerstone in
the study of nonlinear dynamics due to its simple form yet )
complex behavior, particularly when applied to chaotic Y (t+D=o(x(t+1),x€ ,(_1’1) whe.re x(t) is the
systems. For further reading, these sources provide deeper internal state O,f the neuron at tlme't, y (t,) is the output of
insights see [2],[3] and [4]. The standard form of the logistic the neuron at time t u and ¢ are b1fu3rcat10n parameter. In
map is f(x) = Ax(1 — x). where 4 is the growth rate, and [7] the authors studied xp4; = a(bx”, = txy),n €

x represents the population at a given time. N,x, €R, whgre paramejter ae {_1'1}'b € (1'19) ?md
t € (1,3). We introduce in [1] a new family of logistic
Ax2(1 — x), namely cubic logistic map. In this work we
study the complex dynamics of our family, i.e. we study

The complex logistic map is an extension of the classic {

In addition, some studies focused on simulating
the logistic map by modifying the map, In [5] the authors

studied the First Modified Logistic (FML) Map and the family of maps L, (z) = 1z%(1 — z), A > 0, z € C. We
(Second Modified Logistic (SML) Map) describe the Fatou (F (L;)) and Julia (J (L;)) sets
Xpe1 = FML(r,x,) = completely V 1 € R. We show thatif A > 0 and L,(2) =
7. x,. (1 —x,), X, < 0.5 Az?(1 — z). Then
, Where x,, €
{1’. (xp, —0.5).(x,—15)+r/4, x, =05 " 1- for0<2A<4,F(L) =B(0)
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2- ForA=4,F(L;) = B(p) VU P(xy), where B(p) is
the basin of attraction of the attracting fixed point
p = 0 and the parabolic domain of the indifferent

fixed point x; = i
3- For 4 < 1< 5.333, F(Ly) = B(0) UB(ay).
4- For1=5333,F(L;) = B0) UP().
5- For 1 >5.333, F(Ly) = B(0), ie. J(L)) =C—

B(0).

So, the Fatou set of our maps cannot be empty and
its always (¥ A > 0) contains the basin of attraction of the
attracting fixed point z = 0. Also, we show that the Fatou
sets cannot contains any Baker domain, Herman ring,

Wandering domain and Siegel disk. Thus, they contain only
Basins of the attraction and parabolic domains.

Basic Definitions and Theorems: In this section we
remember some basic definitions and some theorems which
we need them in our work.

2. PRELIMINARIES
Definition 2.1

Let X be a metric space and let h: X — X be a
function, let z € X . Then the point z is called a fixed point
of the function h if h(z) = z.

Definition (2.2): [9]

Let X be a metric space and let h: X — X be a function,
let x € X. Then the point x is called a "periodic point" of
the function h if there exist n € N such that h™(x) = x. The
smallest number m satisfies that h™(x) = x is called the
period of x. Note that the fixed point x is a periodic point of
the period one.

Definition (2.3): [9]

For a periodic point x with period n, the multiplier
of x is |(f"(x))|.

Definition (2.4): [8]

For f: X — X, Orbit of z € X is defined as the set of
points 0 (2) = {z, f(2), f2(2),...}.

Definition (2.5):[10]

A transcendental function is an analytic
function that does not satisfy a polynomial equation.

Definition (2.6): [9]

Let C be a metric space and let h: C = C be an analytic
function, let z € C. Then the point z is called indifferent
point if |A(z)| = 1.

Definition (2.7): [9]

Let f(z) be an analytic function in C. A point z; is
called an attracting point (repelling point) for the function

f@if1f' (2] < 1(f'(20)] > D).
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Definition (2.8):[11]

Let f be analytic map.

1- A point w € C is a critical point for f if f(w)=0.

2-  The value of f(w) is called a critical value of f.

3- If we denote the extended complex plane, i.e., the
complex plane with the point at infinity, by C, then
the point v is said to be asymptotic value for f if
there is a continuous path y: (0,00) — C,
satisfying tlim y(t) = o and tlim fly(®) =v.

4- A singular value of f is defined to be either critical
or asymptotic value of f.

5- The function which has only finitely many singular
values is called critically finite , otherwise it is
called non critically finite.

Definition (2.9): [4]

Let F = {f;:n € N} be a family of complex maps
defined on an open set U of C. F is said to be normal family
on U if every infinite sequence of F contains a subsequence
which either:

I- Converges uniformly on compact sets of U, or
2- Converges uniformly to oo on U.
Definition (2.10):[12]

The Fatou set of a complex function f, denoted by
F(f), is defined as F(f) = {z € C: the sequence < f, > is
normal in some neighborhood of z}. Julia set, denoted by
J(f), of f is the complement of F(f), that is J(f) =

C/F(f).
Definition (2.11):[13]
An entire function is a function that is analytic at

each point in the plane.

Since the derivative of a polynomial exists everywhere,
it follows that every polynomial is an entire function.

Definition (2.12): [14]

I(f)={z€C:f"(z) > 0asn - o} I(f) is
called the escaping points set of f.

Theorem (2.13): [15]

Let f be a complex function. Let U be a periodic
component, of period p, in the Fatou set of f. Then one of
the following possibilities is true:

1) U contains an attracting periodic point z, of
period p. Then for z € U, f™(z) - z5asn -
oo and U is called the basin of attracting of z,.

2) 09U contains a periodic point z, , f™P(z) - z,
asn — oo for z € U and (fP(z,)) = 1. In this
case U is called parabolic domain.

3) There is an analytic homomorphism @: U — D,
where D is the unit disk, such that @ o fP o
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0~1(z) = e*™%z  for some a € R/Q. In this
case U is called a Siegel disk.

4) There exists an analytic homomorphism
@:U — A, where A={ze€e
Cl<|z|<r},r>1,suchthat@o fPo
0~1(z) = e?™%z for some a € R/Q. In this
case U is called Herman ring.

5) There exists z, € U such that f™P(z) — z, for
z € U asn — oo but f™(z,) is not defined. In
this case, U is called Baker domain.

If U is not periodic then U is called wandering domain,
i.e. if U is wandering domain then U™ # U™ for all m # n.

Theorem (2.14): [11]

Let f be a transcendental meromorphic function and let
D = {U,, Uy, ..., U,_1} be a n-periodic cycle of components
of F(f). Then:

1- If D is a cycle of attracting basins or parabolic
domains then some Uy, , k € {1,2,...,n — 1}, must
intersect the of singular values of f, which is
denoted by S(f).

2- If D is acycle of Siegel disks or Herman rings then
dU, is a proper subset of the closure of the set of
forward orbits of S(f) foreach k € {1,2, ...,n —

1}.
Lemma (2.15): [16]

The Fatou set of an entire function does not have
Herman rings.

Lemma (2.16): [16]

If f is a critically finite function then the Fatou set
of f has no wandering domain.

Lemma (2.17): [16]

If f is a critically finite function then the Fatou set
of f has no Baker domain.

Theorem (2.18): [14]

Let B be the class of meromorphic function having
bounded singular values. for f € B, J(f) =the closure of
the set I(f).

In [1] we proved the following series of theorems for
L= {Ly(x) =Ax?*(1—x):1 €R,x €R}.

Theorem (2.19): Let L; € £ = {L;(x) = Ax?(1 —
x):A > 0,x € R}, For A = 4, then:

1- L3(x) » 0 for x € (—xq,x;).
2- L3(x) = xq forx € (=1, —x1) U (1, 1).
3- L}(x) » oo for x € (—oo,—1) U (1, ).

where x; = % is the indifferent fixed point for F
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Theorem (2.20): Let L; € L = {L;(x) = Ax%(1 —
x):A > 0,x € R}, For 4 < 4 < 5.333, the dynamics of
L, (x) is as follows:

1- Forx € (—o0,—1), L} (x) = 0.
2- Forx € (—my, 1), L"(x) = 0.
3- Forx € (3, 1), L"(x) - a,.

4- Forx € (1,), L"(x) - oo.

Where 1y is the repelling fixed point foL, (x), and a; is
attracting

Theorem (2.21): Let L; € £ = {Ly(x) = Ax?(1 —
x):A > 0,x € R}, For 4 = 5.333, we have two fixed
. .1 3 1. .
points x* = -, x, = —. The point x* = 218 repelling and x =

% is indifferent and the dynamics of L, (x) as follows:

I- Forx € (—=,7), L*(x) > 0.

I35ué n 3

2- Forx e (4,4) U (4,1), L*"(x) = "

3- Forx € (—o0,—7) U (1,00), [*(x) — .

Theorem (2.22): Let L; € L = {Ly(x) = Ax?(1 —
x):A > 0,x € R}, For 4 > 5.333, Then

- L*(x) » 0forx € (—ry, 1) U (1", 1).

2- L3 (x) » casn — oo forx € (—oo,—13) U

(7,1 U (1, ).
Where 1y , 1" are repelling fixed points for L (x).

It is important remember that x = 0 is attracting fixed
point for L (x), V A € R.[1]

3. Main results

In this section we study the complex dynamic of

L={Ly(z) =2z2(1—2):1 €R,z€ C},ie. F(Ly)
and J(Ly), 1> 0.

Firstly, we prove the following simple lemmas we need
them in our work.

Lemma (3.1):

For any A1€R, Ly € L= {L;(z) =1z%(1 -
z):1 > 0,z € C} preservers R.

Proof: L;(z) = 1z?(1 — z) = A(x + yi)?(1 — x — yi)
=A(x? —y%2 + 2xyi)(1 — x — yi)
=A(x?2 —x® —x%yi—y? —yix +
y3i+ 2xyi — 2x%yi + 2xy?)
=A(x? —x3 —y?2 —yZx + 2xy?) +
Ai(—x%y + y3 + 2xy — 2x%y)
ForzeR,iez=xand y=0
Ly(2) = A(x? — x3) = Ax2(1 — x)
Thus L preservers R.
Lemma (3.2):
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For Ly€L= {Ly(z)=1z°(1—2):1 >0,z €
C} is critically finite.
Proof:
L, is a polynomial. So it has no asymptotic value.
On the other hand, the critical points are 0 and 2/3
only.
This means that the singular values of L, are s; =
0,s, = 0.148A. So L, is critically finite.
Lemma (3.3):
Let Ly€L= {L(z)=2z>(1—2):1 >0,z €
C} maps (1, ) into (—oo, 0) and map the negative real line
into positive real line.
Proof:
For 1 >0, x > 1, it is clear that Ax3 > 1x?, so
Ax2(1—x) <0,ie. Ly(1,0) S (—x,0).
And forx < 0,Ax% > Ax3 (A > 0) and L;(0) = 0. So

Ly(x) = Ax? — Ax% > 0 and L;(—o0,0) € (0, ), i.e. the
negative real line mapped by L into positive real line.

Lemma (3.4):

Let Ly€L= {L;(z) =2z*(1—2):1 >0,z €
C} has no complex periodic point.

Proof:

Assume z, is a periodic point and z, not real. By
Theorem (2.14) there exists a singular value ,i.e. either 0 or
0.1482, such that rlli_)rg(L"kA(si)) =2zy,,i=1or2 where,
s; =0 or s, =0.1484 and k is a period of z,. But, by
lemma (3.1) the map L, is preserves R, i.e. L™,(s;) € R
which is a contradiction with z; is a complex number. Thus
L, has no any periodic complex point. O

Now, we start to study the complex dynamics of the
family L= {Ly(z) =Az>(1—2): 1 >
0,z € C}. That is, we describe the Julia and Fatou sets of
L,eL,VA1>0.

Proposition (3.5):

For any A > 0, the Fatou set of L;(z), L;(z) €
L= {Ly(z) =2z%(1—2):12 >0,z € C} has no Baker
domain, wandering domain, and has no Herman ring.

Proof:

Since L, is entire and critically finite (lemma (3.2))
. Then by lemma (2.17) and lemma(2.16) , F(L;) can not
have neither Baker domain nor wandering domain. Also,
F (L) has no Herman ring by lemma(2.15).

Proposition (3.6):

For any 1> 0, Ly(2) € L = {L(z) = 1z?(1 —
z):z € C}. The Fatou set of Ly, F(L;) contains a basin of
attraction of the attracting fixed point z = 0, B;(0).

Proof:
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We proved in [1], VA € R, the point z=0 is a
fixed point for L), and it is attracting. In the sequence of
theorems (2.19) to (2.22) we showed that for certain
intervals are asymptotic to z = 0. Hence these intervals are
contained in the basins of attraction of 0.

The following theorems study the complex dynamic of
our family for A > 0, z € C:

let A>0, L= {L;(2) =1z2(1 —2):1 >0,z € C},
X, = % , Xy = % ,a; , 1,1y and ry™ as given in theorems
(2.19) to (2.22) . The following theorems describe the Fatou

and Julia sets of L;.
Theorems (3.7):

For A =4, the Fatuo set contains the intervals
(—=1,—x1),(—x4,x;) and (x1,1). And the intervals
(—00,—1) and (1, ) are contained in Julia set, of L.

Proof :

1) By theorem (2.19), we proved that L, (x) —
0 Vx€(—xy,x). Thus the sequence
{f™,(x)} is anormal family for x € (—xy,x;)

That is x € F(L;), Vx satisfies the
convergent above. By the same theorem , we
proved that L™ (x) — x; forx € (=1, —x;) U
(x1,1). So {L™(x)} is also a normal sequence
and hence the intervals (—1,—x;) U (x4, 1)
are contained in F(L,).

2) By theorem (2.18), V z € C, f™(z) — o then
z € J(f). Thus, for A =4, and by theorem
(2.19), L*3(x) >0 for x € (—c0,—1)U
(1, ), so the intervals (—oo, —1) and (1, o)
are subsets of Julia set of L, i.e. (—o0,—1) U
(1,00) € J(Lp).
Theorem (3.8):

Let L= {L;(z) =2z%(1—12):1 >0,z€ C}. For
4 < A <5.333, then:

1- The intervals (—oo,—713) and (1, 0) € J(L;)
2- (=1ry,1m) € F(Ly) andsois (1, 1).
Proof :

1) By theorem (2.20) , we proved that L™, (x) —
oo, for x € (—oo,—13). Then x € J(L;) and
by the same theorem , L™;(x) — oo, for x €
(1,0). Hence the intervals (—oo,—71;) and
(1,00) are subset of Julia set of L, i.e.
(=00, 1) U (1,0) € J(Ly) -

2) By theorem (2.20), we proved that L™ (x) —
0 , forx € (—ry,m3). Thus the sequence
{L™,(x)} is a normal family for x € (—1y,13)

That is x € F(L;), Vx satisfies the
convergent above. By the same theorem , we
proved that L™)(x) — a; for x € (1), 1). So
{L™(x)} is also a normal sequence and hence
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the intervals (—7y,13) U (13, 1) are contained
in F(L,l)

Theorem (3.9):
let L= {Ly(z) =Az°(1—2):2 >0,z€C} ,
A =5.333 then:
1) F(Ly) contains (—%,i) , (i,%) and (z, 1).
2) J(L;) contains (—oo, —%) and (1, 00).
Proof :

1) By theorem (2.21) , we proved that L, (x) —

0VvVxe(— %, i) Thus the sequence {L";(x)}

is a normal family for x € (—l l) . That is

4’4
X € F(Ly), Vx satisfies the convergent

above. By the same theorem , we proved that
M) »> for x€(;,)UE,1). So
{L™(x)} is also a normal sequence and hence
the intervals (i,%) u (z, 1) are contained in
F(Ly).

2) By theorem (2.21), we proved that, L, (x) —
o for x € (—e0,—2) U (1,), then x €
J(L3). So the intervals (—oo, —%) and (1, o0)
are subsets of Julia set of L, i.e. (—oo, —i) U
(1,00) € J(Ly).

Theorem (3.10):

LetL = {Ly(z) =Az>(1 —z):1 >0,z € C}.For A >
5.333, then:

1- The
F(Ly).
2- (=, =1 U (r*3 ) U (1,0) S J(Ly).

intervals (=13, 7)) U (", 1) S

1) By theorem (2.22) , we proved that L™, (x) —
0 forx € (—r),77)VU(1;",1). Thus the
sequence {L";(x)} is a normal family for x €
(=r5, Uy, That is x € F(Ly).
Hence the intervals (—r;,73) and (1", 1) are
contained in F(Ly).
2) By theorem (2.22), we proved that, L™;(x) —
o asn — oo for x € (—oo,—1y) U (1,137 ) U
(1, ), then x € J(L;). Hence the intervals
(=00, —17) , (1}, 17™) and (1, ) are subsets
of Julia set of Ly i.e. (—oo0, —17) U (1, 13") U
(1,00) € J(Ly).
The following theorem gives the full structures of Julia
and Fatou set of L, for different values of 4.

Theorem (3.11):
Let A > 0, L;(z) = 1z?(1 — z). Then:
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1- For A =4, F(Ly) = B(p) UP(x,), where p =
0,x; = % are the attracting and indifferent periodic

point for L,.
2- For 4 < 1<5.333,F(L;) = B(0) U B(ay).
3- ForA=5.333,F(L;) = B(0)UP(xy).
4- For A > 5.333, F(L;) = B(0).
Proof:

Let Ly(z) = Az%>(1 —z). First, note that, the
singular values of L, are only the critical values s; = 0 and
s, = 0.1481,V 1 € R associated by the critical points x; =

2 . 2
0 and x, = e Now , the orbits of x; = 0 and x, = 5 are

contained in the Fatou sets of L, (z) as shown the previous
theorems. Thus, by Theorem (2.14), F(L;) has no any
Siegel disks.

If we compain this result with proposition(3.5) we
have:

1- For A =4, Ly(z) has only one attracting fixed
point at z = 0 and only one indifferent fixed point
X1 , 80 B(0) and P(x;) are contained in F(L;). On
the other hand, by Lemma(3.4), any periodic point
must be real and hence contained in a one of Fatou
set components of L;. Thus , F(L;) dose not
contains any components other than basin of z =
0 and parabolic domain of z = x; = 1/2.

2- When 4 < 1<5.333, Ly(z) has two attracting
fixed points , the first at z = 0 and the second at
a, € (0,0.5) and L;(z) has no any indifferent
point so F(L;(z)) = B(0) U B(ay).

3- When A = 5.333, L, (2) has two fixed points , the
first at z=0 and the second at x; which is
indifferent. So F(L,(2)) = B(0) U P(xy).

4- When A > 5.333, L;(z) has one attracting fixed
point at z = 0 and has no any indifferent point so

F(L,l(z)) =B(0) = (—ry, )V (15 1).

Remark (3.12):

Note that Fatou set for cubic logistic family £ =
{Ly(z) = 2z*(1 — 2):1 > 0,z € C} cannot be empty ,
since VAER, z=0 is attracting fixed point so
@ # B(0) € F(Ly), this mean. J(L;) # C, i.e. we have no
the exploding phenomenon in the Julia set of our family, but
the (size) of Fatuo set of our family is “so small” ( it is just
some intervals in R).

We end this work by construsting image of Julia and
Fatou sets of our maps for various values of A,
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Figure 6. Julia and Fatou sets for L,(z)

Note that the Figures (1-8) give the structures of Fatou
and Julia sets

1. the brown space is the basin of zero

2. Green and yellow space are the parabolic
domains.

3. The blue space is the Julia set.

Note that the “area” of Fatou set decreases as value of
A increases.

Conclusion

In this paper, we studied and analyzed the complex
dynamics of a modified family of logistic maps, which we
named the " cubic logistic map". Using a set of
mathematical theories and analyses, we were able to
determine the dynamic behavior of this family in different
ranges of parameter values. We addressed the basic
properties of fixed points and periodic points, and we give
the whole structure of J(L;), F (L,) for various value of 1 >
0 around the bifurcation values of 4, namely A = 4 and A =
5.333.
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