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1. Introduction

Time series include all phenomena that change
depending on the change of time. This change is either
regular at points in time equidistant from each other, such as
annual population growth or irregular change, such as
changes in the volume of production, and any time series is
characterized by the fact that its data are arranged relative to
time and successive observations are usually not
independent,[13][19] i.e. dependent on each other. This lack
of independence will be exploited in reaching reliable
predictions, A time series is defined mathematically as a
semantic relationship between the value of the phenomenon
under study and time, and the time series is usually of two
types, either an intermittent or continuous time series, Time
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series analysis is the process of separating its components
from each other and to determine the impact of each of these
components on the values of the phenomenon under study
[3][11]. Time series are characterized by the presence of
some common models in them, most notably the self-
regression model and moving averages developed by both
Box and Jenkins, [7] where they assumed that part of the
series is self-regression, and the other part is moving
averages and merging these two models with the model of
self-regression and moving averages. One of the most
important problems that time series suffer from is the
instability caused sometimes by the presence of extreme
values or so-called abnormal values, which have a significant
and obvious impact on the process of analyzing the time
series, these abnormal values are often caused by a defect in
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the data collection process or the presence of some
unexpected events that significantly affect the analysis of the
time series and thus the predictive values resulting from the
analysis process,[22] the best way to get rid of the problems
that occur during the analysis and prediction of the presence
of abnormal values is to get rid of these values or and filters
The use of these methods does not affect the data or the
process of analysis and prediction of the phenomenon under
study[15][16]. In this article, wavelet shrinkage is proposed
to handle outliers of ARMA (Autoregressive and Moving
Average) models by using wavelet (Daubechies for order 4,
Symlets for order 1, and Dmey) with a universal threshold
method and applying a soft threshold.

2. ARMA Model

Both Box and Jenkins presented a method in 1976 called
self-regression models and mixed moving averages, and
these models were designed to be used in forecasting and
assuming that the time series is part of self-regression and the
other part is moving averages to get from us the general
model of the time series, which is symbolized by ARMA and
can be calculated from the following equation [4][8][21]:

Yt = Q)lYt—l + ®2Yt—2 + -+ @th_p + ar — Hlat_l
— HZat—Z — e

- gqat_q

ey

Since:p, q: represent the rank of the model, @}, 6;: Model
parameters, a,: Represent random variables that are not
related to each other, called white noise, and have an average
of zero and variance o2 [20].

3. Outliers

Researchers sometimes face a set of statistical problems,
some of which may be obvious and others unclear, so the
researcher finds himself in need of new methods that enable
him to organize the course of the experiment by making the
resulting error as small as possible and at the same time get
an unbiased estimate of the amount he is looking for the idea
of studying Outliers began with simple ideas based on
intuition and guessing [6][23].

Outliers are defined as those observations that seem illogical
and show a significant deviation from the other components
of the sample in which that observation was found [2][14]. It
was stated by Barnett that the Outliers observation in a set of
data is an observation that seems illogical when compared to
the rest of the data set, the Outlier's values have been defined
by many researchers, but all definitions are It boils down to
one concept, which is that an Outliers viewing is a viewing
that is inconsistent with the rest of the views [18].
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The researchers pointed out that it is important to examine
the data to get rid of the influence of Outliers before entering
statistical analysis, as statistical analysis in all practical
respects depends mainly on the selection of a set of data and
the purification of these data from Outliers, which constitute
a clear deviation from the rest of the observations [11].

4. Hampel Filter

The humble filter is considered a statistical tool or means
to detect and get rid of Outliers in the data set, and it is also
a method through which the method of deviation is improved
on the traditional standard because it has a high ability to deal
with data that are not distributed normally, and This filter is
easy to use in various fields such as time series, signal
analysis and others [12]. The Hampel identifier is a robust
statistical filter using median absolute deviation (MAD), for
a given window size k around ¢, compute:

1. Local Median: m; = median(Y¢_x, -, Vi > Yerk)

2. Median Absolute Deviation (MAD):
median(|y,_; —m.|) , i=—k, ..,k

3. Threshold for Outliers: |y, — m;| > 30,44, [f true
replace y, with m, .

Omad =

Since MAD is more robust than standard deviation, this
removes spiky outliers without distorting smooth trends.

5. Wavelets

Wavelet contraction is a method to remove noise and
reduce noise in signals can be reduced using wavelet
shrinkage, a technique that involves thresholding wavelet
coefficients [24].
introduced for generalizing curve estimation problems. There
are multiple compelling reasons to employ wavelet
contraction in the estimation function.

5.1. Daubechies Wavelet

In the year (1992), researcher Ingrid Daubechies (DB),
who is famous for her work with wavelets, named this
wavelet after her. It is generated from a group of wavelets to
improve the properties of a frequency field [17]. One of the
features of this wavelet is the smoothness we have given it
by using the smallest possible number of parameters, it is by
(DN).

5.2. Symlets Wavelet

The wavelet deflation method was

The researcher . Daubechies proposed the samelt wave,
which is an orthogonal wave approaching symmetry, through
which some modifications were made to the Dupuis family ,
as the symmetry is increased while the simplicity of the wave
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remains [9][1]. This symmetry is useful because it reduces
the noise in data reconstruction. Symlets have compact
support and orthogonal.

5.3. Dmey Wavelet

The Dmey wave is a modified version of the Daubechies
wave, but with limited support and defined separately from
the rest of the Daubechies It has similar
characteristics to Daubechies waves in terms of compact
support, but it has a different shape that makes it suitable for

family.

some applications, such as signal processing and image
analysis. [5]. The number of vanishing moments directly
affects its ability to capture polynomial trends within the
data, thereby enhancing its suitability for various tasks such
as noise reduction, compression and feature extraction. The
effectiveness of DME waves is evidenced by case studies in
signal reconstruction and noise reduction.

6. Proposed Method

wavelet analysis used in handling outliers in time series
models and estimating ARMA model parameters depends on
discrete wavelet transform (Daubechies, Symlets, and Dmey)
to obtain approximation and detail coefficients [10]:

L L
i=1 j=1

A; represents the low-pass filter at level i (or the
approximation coefficients).

D; represents the high-pass filter at level j (or the detail
coefficients).

()

The next step is to apply a thresholding operation to the detail
coefficients to suppress the outliers. Outliers typically have
small coefficients in the wavelet domain, so we shrink or
remove coefficients below a certain threshold. The soft
thresholding technique (Threshold rule) is applied to the
detail coefficients:

D; —» Wthresh(Dj', s, /1) 3

wthresh applies soft thresholding and A is the threshold
value, determined using thresholding universal based on
Donoho’s method:

A =o0.2Log(n) 4

Where 7 is the length of the time series (the number of time
points) and o is the estimated standard deviation for the
wavelet coefficients. Specifically, it is computed as the
median of the absolute values of the wavelet coefficients at
the last level, normalized by 0.6745 to make it consistent with
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an unbiased estimate of the normal distribution standard
deviation.

_ Median(|Coeffs[L]|)
7= 0.6745

)

After thresholding the detail coefficients, the time series data
is reconstructed using the inverse discrete wavelet
transformation. This reconstructs the time series data
processed from outliers:

yw, = Waveletrec(Coeffs, L, Wavelet) (6)

Coeffs contains the approximation and threshold detail
coefficients, L is the level of decomposition, and Wavelet is
the same wavelet used in the decomposition (Daubechies,
Symlets, and Dmey). This inverse discrete wavelet
transformation reconstructs the time series data by
combining the approximations, which are kept intact and the
modified details, which have been threshold to handle
outliers.

Using maximum likelihood estimation (MLE) to estimate the
parameters models, based on the input data (yw,). This might
involve using methods like Yule-Walker for the AR
parameters and a simple moving average for the MA
parameters.

The likelihood function L(8) is typically given by:

L(®) Hn L < é )
= exp| ——
t=1V2m6? P\"25?

€t = YWt — YWt

(7
®)

é, is the residual (error term) at the time ¢ and 62 is the
estimated variance of the residuals. The goal is to find the
values of parameters 6 that maximize the likelihood function,
i.e., minimize the negative log-likelihood. This is generally
achieved through iterative optimization techniques like
Newton-Raphson. After optimization, the estimated values of
the AR and MA parameters, the constant (mean) and the

residual variance 62. These estimates are used to define the
final ARMA model.

7. Simulation Study

The time series is simulated by specifying the AR (1 and 2)
and MA (1 and 2) coefficients and using the ARMA function
in MATLAB with different sample generations (200, 300,
and 400), Using the MATLAB program. Table 1 shows the
assumed coefficient values for the simulation models.
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Table 1. The Assumed Coefficient Values for the
Simulation Models

Model AR MA
ARMA (1, 1) 0.7 0.5
ARMA (2, 1) 07 [ -03 0.5
ARMA (1,2) 0.7 0.5 04
ARMA (2,2) 07 | -03 0.5 -0.4

Outliers are typically defined as data points that deviate
significantly from the rest of the dataset. In the time series,
outliers can occur for various reasons such as data entry
errors, sudden changes in the system being measured, or
external disturbances. In this step, artificial outliers are
injected at specific time points to simulate noise or
contamination in the data. Outliers are added by identifying
specific indicators in the time series and replacing their
values with values that are significantly larger or smaller than
the expected range. Applies techniques of Hampel filter (with
a window size of 5 and threshold parameter of 3) and wavelet
shrinkage to remove the outliers. To simulate the first
experiment, the generated time series data with the estimated
models without using a filter, Hampel filter and the proposed
method (Daubechies4, Symlets1, and Dmey) were plotted as
in Figures (1-3). Wavelet decomposition is used for
denoising, using the Daubechies wavelet (DB4), Symletsl,
and Demy wavelet at level 4. A universal threshold is
calculated for soft thresholding of the detail coefficients, and
the time series data for ARMA (2, 1) is reconstructed using
inverse wavelet transform:

ARMA Time Series Comparison (MSE Noisy: 34.5060, Hampel MSE: 16.2700, DB4 Wavelet MSE: 5.0482)
T T T T T T T T T
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Figure 1. ARMA (2, 1) Models for the first simulation
experiment (DB4)
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ARMA Time Series Comparison (MSE Noisy: 34.5060, Hampel MSE: 16.2700, Symlets1 Wavelet MSE: 6.3195)
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Figure 2. ARMA (2, 1) Models for the first simulation
experiment (Symlets1)

ARMA Time Series C (MSE Noisy: 34.5060, Hampel MSE: 16.2700, Dmey Wavelet MSE: 4.0263)
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Figure 3. ARMA (2, 1) Models for the first simulation
experiment (Dmey)

Figures (1-3) show that True ARMA Series (Black Line):
This is the original, clean ARMA (2,1) time series that was
simulated using the specified AR and MA coefficients. It
represents the "true" underlying process without any noise or
outliers. In the plot, it's shown as a black line. This serves as
the baseline for comparing all other time series. Noisy series
with outliers (Red Dashed Line): This line represents the
noisy time series that was generated by injecting outliers at
specific positions in the true ARMA time series. The outliers
are large, with extreme values added to the series at indices
50, 120, and 180, The outliers injected into the noisy series
are highlighted as black dots on the plot. These dots
correspond to the positions where large spikes were added in
the noisy time series (indices 50, 120, and 180). Visually
identify these outliers by looking for the large deviations
from the rest of the series at these points. The red dashed line
in the plot indicates this noisy series. The outliers can be seen
as the spikes in the red line at the mentioned positions.
Hampel filtered series (Blue Line): After applying the
Hampel filter to the noisy series, this line shows the result of
removing the outliers. The Hampel filter smooths the noisy
time series by replacing the outliers with median values
within a moving window. The blue line represents this
filtered series. See that the sharp spikes from the outliers are
reduced or removed, providing a cleaner series, closer to the
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true ARMA process. Wavelet filtered Series (Green Line for
DB4, Symlets,1 and Dmey): This line represents the wavelet
denoised time series. The wavelet denoising method uses the
Daubechies wavelet to decompose the series into different
frequency components, then apply thresholding to remove
noise in the high-frequency components. The green line
shows the wavelet-filtered series, which should also smooth
out the outliers while preserving the underlying structure of
the time series. The Hampel and wavelet filtering methods
aim to reduce the impact of the outliers. The Hampel filter
typically replaces outliers with the median, leading to a
smooth series where the outliers are no longer visible. The
wavelet filter achieves a similar goal but through a different
approach by manipulating the wavelet coefficients. The title
of the plot includes the MSE for the three models: The MSE
for the ARMA model is estimated from the noisy data (with
outliers) equal to (34.506). The MSE for the ARMA model
was estimated from the Hampel-filtered data equal to (16.27).
The MSE for the ARMA model was estimated from wavelet-
filtered data (DB4, Symletsl, and Dmey) equal to (5.0482,
6.3195, and 4.0263) respectively. These values help quantify
how well the different filtering techniques (Hampel and
wavelet) performed in removing the outliers and improving
the model's prediction accuracy. These results suggest that
wavelet denoising is a more robust method for handling noisy
data and outliers in time series modelling, particularly when
the goal is to estimate ARMA parameters accurately.
Subsequently, ARMA (1, 1), ARMA (2, 1), ARMA (1, 2),
and ARMA (2,2) models are fitted to the noisy, Hampel-
filtered, and wavelet-filtered data. The model performance is
evaluated based on the AIC, BIC, and MSE average for
repeated experiments (1000) times in Tables 2-5.

Table 2. ARMA (1, 1) Model Performance Comparison

Method n AIC BIC MSE
Outliers 818.5659 831.7592 31.2903
Hampel 611.9258 625.1191 17.6929
DB4 Wavelet | 5512921 564.4854 9.6881
Symlets 571.7301 584.9234 8.2813
Wavelet
Dmey 377.5651 390.7583 7.5245
Wavelet
Outliers 1159.900 1174.700 26.5747
Hampel 903.9810 918.7961 177113
DB4 Wavelet 200 747.9420 762.7571 8.9144
Symlets 769.8217 784.6368 7.4290
Wavelet
Dmey 600.4529 615.2680 73415
Wavelet
Outliers 1489.000 1505.000 24.4836
Hampel 400 1201.900 1217.800 17.8232
DB4 Wavelet 920.6017 936.5676 8.5394
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Symlets
Wavelet

Dmey
Wavelet

951.7056

967.6714

7.0717

777.5241

793.4899

7.3916

Table 3. ARMA (2, 1) Model Performance Comparison

Method n AIC BIC MSE
Outliers 818.9055 835.3971 20.8607
Hampel 629.1936 645.6852 9.7609
DB4 Wavelet | 498.7126 515.2042 4.0387
sga‘?/gft 491.2683 507.7599 3.7017
V\]?;:/l:l}; . 274.0129 290.5044 3.2383
Outliers 1163.500 1182.100 16.9520
Hampel 934.5751 953.0941 9.7401
DB4 Wavelet | 676.9350 695.4539 3.7244
\SK}/;?/};:; 639.0566 | 657.5755 3.3775
V\?{EZI}; . 470.3434 488.8623 3.2227
Outliers 1496.300 1516.200 15.1671
Hampel 1240.100 1260.000 9.7325
DB4 Wavelet | 0o 831.1457 851.1031 3.5665
\Svy:/zt:t 764.2793 784.2366 3.2492
\x]/);vtlyet 613.8565 633.8138 32071

Table 4. ARMA (1, 2) Model Performance Comparison

Method n AIC BIC MSE
Outliers 818.7992 835.2908 21.1054
Hampel 620.1938 636.6854 9.9009
DB4 Wavelet | o 461.8118 4783034 4.6615
s‘g;‘:lflt:t 504.8405 521.3321 44504
“I/);V’Zlye . 187.6904 204.1820 6.1634
Outliers 1164.800 1183.300 17.2154
Hampel 924.6426 943.1615 10.0036
DB4 Wavelet | 608.9759 627.4948 42792
3@’;‘::13 659.3379 677.8568 4.0041
vlv);s;ye . 345.8474 364.3663 4.8564
Outliers 1500.500 1520.400 15.4805
Hampel 1228.500 1248.500 10.0435
DB4 Wavelet | 00 729.2719 749.2293 4.1067
\SK}/;?/};:; 792.9371 812.8944 3.8313
V\?{EZI}; . 446.8885 466.8458 4.2054

Table 5. ARMA (2, 2) Model Performance Comparison

Method n AIC BIC MSE
Outliers 823.9167 843.7066 19.2616
Hampel 648.8131 668.6030 8.4786
DB4 Wavelet | 220 402.0685 421.8584 3.0710
\SK}/;?/};:; 424.1386 443.9285 3.0273
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Dmey
W 123.4819 143.2718 3.0023
Outliers 1174.400 1196.700 15.5211
Hampel 970.5687 992.7914 8.5225
DB4 Wavelet - 530.1244 552.3471 29119
Symlets 530.7518 552.9745 2.8452
Wavelet
Dmey 261.8567 284.0793 2.7992
Wavelet
Outliers 1515.000 1538.900 13.7899
Hampel 1284.900 1308.800 8.4618
DB4 Wavelet | 0 634.0158 657.9646 2.8360
Symlets 611.2408 635.1896 2.7771
Wavelet
Dmey 325.1483 349.0970 2.7402
Wavelet

Tables 2-5 show that the performance of ARMA models
under different data filtering methods (Outliers, Hampel,
DB4 Wavelet, Symlets] Wavelet, and Dmey Wavelet) has
been systematically evaluated across a range of
configurations (ARMA (1, 1), ARMA (2, 1), ARMA (1, 2),
and ARMA (2, 2)) and varying sample sizes (200, 300, 400).
AIC, BIC, and MSE are criteria used in time series modelling
to assess the goodness of fit, model complexity, and
prediction error, respectively.

1. Wavelet Analysis versus Outliers and Hampel method
The results across all configurations consistently demonstrate
the superiority of wavelet-based filtering methods,
particularly Dmey Wavelet, over both Outliers and Hampel
methods in terms of predictive performance (MSE), as well
as model complexity (AIC and BIC). This finding is
particularly notable in high-dimensional time series data,
where traditional filtering techniques like Hampel are often
less effective at removing outliers while preserving relevant
time series data characteristics.

2. Impact of Sample Size
Increased sample size (n = 400) consistently leads to a

reduction in MSE for all methods, which is typical in
statistical modelling. As more data is available, the model
can better capture the underlying time series dynamics,
improving generalizability. This effect is particularly evident
with the wavelet analysis, where the decrease in MSE is
sharper, further highlighting their effectiveness in handling
larger datasets. This trend is not as pronounced with the
traditional methods, where performance stagnates at higher
sample sizes, likely due to their less adaptive nature than
wavelet analysis techniques.

3. Model Configuration (ARMA (1, 1), ARMA (2, 1),
ARMA (1, 2), ARMA (2, 2))

The performance of wavelet methods is notably consistent
across different ARMA configurations, although slight
differences emerge depending on the complexity of the
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model. ARMA (1, 1), this simplest configuration benefits
from the filtering methods, especially Dmey Wavelet, which
achieves the lowest MSE across all sample sizes. This
suggests that even basic ARMA models can benefit from
dealing with outliers provided by wavelet shrinkage. The
ARMA (2, 1) model, which introduces an additional
autoregressive term, further emphasizes the importance of
wavelet filtering. The results indicate that wavelet methods
(Dmey, Symlets, and DB4) excel in capturing the additional
autoregressive structure compared to the traditional methods.
With an additional moving average component, the ARMA
(1, 2) model still shows strong results with wavelet methods.
However, there is a slight dip in performance for Dmey
Wavelet compared to simpler ARMA configurations,
possibly due to the increased complexity of the model, which
may require additional tuning or a more nuanced
decomposition of the data. The most complex model in the
study, ARMA (2, 2), benefits most from the wavelet
methods, with Dmey Wavelet showing the best results. This
is particularly striking given the relatively large MSE for
traditional methods like Outliers and Hampel. As the
complexity of the model increases, the need for precise
outlier reduction becomes more pronounced, explaining the
higher efficacy of wavelet methods in this case.

4. Model Selection Criteria (AIC and BIC)

AIC and BIC serve as crucial model selection tools in time
series analysis. Both criteria balance goodness of fit with
model complexity, penalizing overly complex models that do
not provide sufficient improvement in fit.

In this study, Dmey Wavelet again shows the lowest values
for both AIC and BIC across most sample sizes, particularly
in the more complex models (ARMA (2, 1) and ARMA (2,
2)). This suggests that wavelet methods not only improve
predictive accuracy (as seen in the MSE values) but also
result in more parsimonious models, which is essential in
avoiding overfitting. The superiority of Dmey Wavelet in
AIC and BIC implies that it provides a better balance
between fitness and complexity compared to the traditional
methods.

8. Real Data

Climatic data were obtained from the Ministry of
Agriculture, the agricultural meteorological center of
Nineveh Governorate, and the Mosul station located at
Longitude E 43.16 and latitude 36.33. These data were
collected with the help of the Remote Sensing Center at the
University of Mosul, which contributed significantly to the
provision of data for the period between 2013-2022. The data
were real and monitored by the meteorological station and
represented average wind speed; the average wind speed is
measured in m/s, meaning meter/second.
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The wind speed time series data were tested for stationarity
and were not stationary on the mean, so the second difference
was taken. To balance overfitting and underfitting (By testing
the significance of the estimated parameters of the different
models) and to minimize AIC and BIC, the ARIMA (1, 2, 2)
model(Autoregressive Integrated Moving Average) was
chosen as the best fit for the data.

Figures (4-6) show that True ARIMA Series (Black Line):
This is the original, ARIMA (1, 2, 2) time series. It represents
the "true" underlying process with outliers. In the plot, it's
shown as a black line. This serves as the baseline for
comparing all other time series. Visually identify these
outliers by looking for the large deviations from the rest of
the series at these points. Hampel filtered series (Blue Line):
After applying the Hampel filter to the noisy series, this line
shows the result of removing the outliers. The Hampel filter
smooths the noisy time series by replacing the outliers with
median values within a moving window. The blue line
represents this filtered series. See that the sharp spikes from
the outliers are reduced or removed, providing a cleaner
series, closer to the true ARIMA process. Wavelet filtered
Series (Green Line for DB4, Symlets,1 and Dmey): This line
represents the wavelet denoised time series. The green line
shows the wavelet-filtered series, which should also smooth
out the outliers while preserving the underlying structure of
the time series.

ARMA Time Series C i (MSE Noisy: 68.9515, Hampel MSE: 12.0946, DB4 Wavelet MSE: 2.2232)
T T T T T T

:‘V“VMV'\JM\,—VJ‘/\/\‘J\ MMWM/ JJV A \fNJ\\WV\A
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Figure 4. ARMA (1, 2, 2) Models for Wind Speed Time
Series Data (DB4)

ARMA Time Series Comparison (MSE Noisy: 68.9515, Hampel MSE: 12.0946, Symlets1 Wavelet MSE: 3.1368)
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ARMA Time Series Comparison (MSE Noisy: 68.9515, Hampel MSE: 12.0946, Dmey Wavelet MSE: 3.2639)
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Figure 6. ARMA (1, 2) Models for Wind Speed Time
Series Data (Dmey)

The title of the plot includes the MSE for the three models:
The MSE for the ARIMA model is estimated from the noisy
data (with outliers) equal to (68.9515). The MSE for the
ARIMA model was estimated from the Hampel-filtered data
equal to (12.0946). The MSE for the ARIMA model was
estimated from wavelet-filtered data (DB4, Symletsl, and
Dmey) equal to (2.2232, 3.1368, and 3.2639) respectively.
These results suggest that wavelet denoising is a more robust
method for handling noisy data and outliers in time series
modelling, particularly when the goal is to estimate ARIMA
parameters accurately and DB4 Wavelet was the best.

Table 6 presents the results of an estimation process for the
parameters of two-time series models. The methods
employed are Hampel (classical method) and DB4 Wavelet
(best-proposed method), which are used to estimate
coefficients in an ARIMA Model. The coefficients estimated
include the constant, AR {1}, MA {1} and MA {2}. The
statistical significance of these coefficients is assessed using
the t-statistics and p-values, which offer insights into the
model’s fitness and the relevance of individual terms.

Hampel Method: The constant term has an estimated value
of 0.1256, with a t-statistic of 1.2064 and a p-value of 0.228.
This p-value exceeds the conventional significance threshold
of 0.05, indicating that the constant term is not statistically
significant at the (0.05) level. This suggests that, for the
Hampel method, the constant term does not provide a
significant contribution to the model’s predictive power.
DB4 Wavelet Method: The constant term in the DB4
Wavelet method is 0.6913, with a t-statistic of 5.5610 and a
p-value of 0.000. The extremely low p-value indicates that
the constant term is highly statistically significant, meaning
it plays an essential role in the model’s formulation.

Hampel Method: The AR {1} term has a value of 0.9386,
with a t-statistic of 18.524 and a p-value of 0.000. The low p-
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value suggests that the AR {1} term is statistically
significant. The coefficient indicates that the previous point
has a strong positive relationship with the current value of the
series, with a high degree of persistence. DB4 Wavelet
Method: The AR {1} coefficient is 0.6683, with a t-statistic
of 13.495 and a p-value of 0.000, also suggesting that the AR
{1} term is highly significant.

Hampel Method: The MA {1} term is estimated as -0.7562,
with a t-statistic of -6.7006 and a p-value of 0.000. The
negative coefficient, combined with the very low p-value,
suggests that there is a significant negative correlation
between the residuals at lag 1. This means that shocks or
errors in the previous time step tend to have an inverse effect
on the current value. DB4 Wavelet Method: The MA {1}
coefficient is 0.8138, with a t-statistic of 16.647 and a p-value
of 0.000, indicating a statistically significant positive
correlation between residuals at lag 1. The positive sign
implies that the residual error from the previous period has a
reinforcing effect on the current value, as opposed to the
negative relationship in the Hampel method.

Hampel Method: The MA {2} term has an estimated value
of -0.0238, with a t-statistic of -0.2764 and a p-value of
0.782. The p-value being well above 0.05 indicates that the
MA {2} term is not statistically significant. This suggests that
the second lag of residuals does not meaningfully contribute
to explaining the time series data when using the Hampel
method. DB4 Wavelet Method: The MA {2} term is 0.5740,
with a t-statistic of 14.100 and a p-value of 0.000. In contrast
to the Hampel method, the DB4 Wavelet method finds the
MA {2} term to be statistically significant. The positive
coefficient indicates that there is a significant effect from the
second lag of residual errors, implying that the model
benefits from capturing additional error structure at this lag.

Table 6. Testing the significance of the estimated

parameters
Coefficient | Method | Value StEa:f::d sta t:; ties | v :l;.le
Constant 0.1256 | 0.1041 12064 | 0.228
AR {1} 0.9386 0.0507 18.524 | 0.000
MaA (1} | Hampel o7sea | 01129 67006 | 0.000
MA {2) 00238 | 00860 02764 | 0.782
Constant 0.6913 0.1243 55610 | 0.000
AR {1} pBa | 06083 | 0.0495 13.495 | 0.000
MA {1} | Wavelet | 0.8138 | (0489 16.647 | 0.000
MA {2) 0.5740 0.0407 14.100 | 0.000

120

ACF of Residuals for Hampel and Wavelet Models

Sample Autocorrelation
°
T
I
fo
o
e
.
le
o
o

Sample Autocorrelation
te
»
»
lo

3

4 6 8 10 12 14 16 18
Lag

Figure 7. ACF of Residuals for Hampel and DB4
Wavelet Models

The ACF plot in Figure 7, all values close to zero, with most
of the bars falling within confidence intervals. This would
indicate that the model has successfully captured the
underlying time series structure.

Conclusion

This analysis underscores the importance of advanced
filtering techniques like wavelets in time series modelling.
Across various ARMA model configurations, Dmey
Wavelet consistently emerges as the most effective method
to remove outliers, leading to lower MSE, AIC, and BIC
values. The results suggest that wavelet methods,
particularly Dmey Wavelet, should be strongly considered
for future time series forecasting tasks, especially those
involving outliers. For wind speed time series data, both
methods (Hampel and proposed method) exhibit strong
parameter significance, the DB4 Wavelet method appears
to be the better-performing model in terms of both statistical
significance and prediction accuracy, making it a more
reliable choice for forecasting time series data.
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