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     Parallel processing is essential in machine learning to meet the computational requirements 
resulting from the complexity of algorithms and the size of the dataset, by taking advantage 
of the computational resources of parallel processing that can distribute computational 
operations across multiple processors. Which contributes to significant improvements in 
performance and time efficiency. This research demonstrated the impact of parallel 
processing on the performance and time efficiency of machine learning for pixel-based image 
classification techniques. The methodology includes pre-processing the Oxford IIIT Pet 
dataset, from which 4 cat images were selected. The performance of two supervised machine 
learning classifiers, decision tree, and random forest (10, 100, 500, and 1000 trees) were 
compared and implemented in two ways with and without parallel processing. The data is 
split in two ways: the first is by splitting the data by 70% for training data and 30% for testing 
data and the second is by cross-validation by splitting the data into four folds. The research 
aims to compare the accuracy and timely scales of machine learning models with and without 
parallel processing. The results showed a strong predictive power of the algorithms with an 
accuracy of 97.5%, while the training times were significantly reduced in parallel from 88.83 
to 15.88 seconds for the RF100 model. This reflects the effectiveness of parallel processing 
in improving the performance of machine-learning models for pixel-based image 
classification. The proposed system was programmed using MATLAB 2021 language tools. 
The work was carried out on a computer running Microsoft Windows 11 operating system 
with an Intel(R) Core (TM) i5-1135G7@2.40GHz 2.42GHz processor with 8 GB of RAM. 
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1. Introduction 

Most manufacturers have started producing multi-core 
processors since 2005 using parallel computing methods to 
maintain increased speed and performance [1][2]. The 
parallel processing approach derives from the philosophy of 
solving a problem by dividing complex problems into smaller 
tasks more efficiently, which can be controlled and managed 
[3][4][5]. Executing many parallel iterations of a specific 
algorithm separately is one of the most basic approaches to 
parallelizing algorithm evaluation [6]. Several researchers 
have proposed parallel processing approaches to improve the 
efficiency of machine learning algorithms, including design 

and implementation [7]. In machine learning, parallel 
processing becomes more important as difficult models and 
big datasets need a lot of accounting resources. Sequential 
training can hinder the development and deployment of 
machine learning models in terms of time consumption in 
real-world scenarios. By computational task allocation to 
several processors or even multiple computers, parallel 
processing expedites model training and lowers the overall 
time needed [8][9]. According to primary factors that convert 
user and programmer concerns into practical solutions, 
parallel processing takes less time than sequential processing 
[10]. Multicore processors are becoming more common, 
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although their compact parallel processing capacity cannot 
be well exploit until the software being developed is 
enhanced  [11][12]. To improve the performance of multi-
core computers, a program has to be executed in several 
parallels on a greater number of cores. Many processes 
execute on multicores, and the technological limitations of a 
single core, like issues related to throughput, high efficiency 
of energy, and extended battery life, have made multi-core 
processors more important [13]. For systems that process 
huge amounts of data for analysis, processing time decreases 
are necessary for enhancing efficiency. Big amounts of data 
lead to longer processing times. Therefore, it is important to 
reduce the duration of these processes [7]. 

The objectives of this research are to apply the concept of 
parallel processing to reduce the time of executing machine 
learning algorithms as follows: 

1. Load the original images with their ground truth and data 
pre-processing by drowning the ground truth colours in 
RGB to be closer to the programming concept using the 
three basic colours (red, green, and blue). 

2. Training classification models of machine learning DT 
and RF (10, 100, 500, 1000 trees). Then the 
implementation is done in two different ways, one by 
sequential processing and the other by parallel central 
processing. 

3. The data was divided into 70% for training and 30% for 
testing for learning models with 10 rounds to get rid of 
problems related to random data selection models, which 
may result in differences when retraining. 

4. The cross-validation method was also programmed and 
implemented, where the data was divided into four 
groups for training and testing. 

5. The performance of the models trained on the test data 
was evaluated and compared through the accuracy 
measure and the time taken measure by displaying 
confusion matrices and predicted images for both 
methods followed in this research (sequential processing 
and parallel processing). 

2. Literature Review 
This section discusses the literature related to parallel 

processing and machine learning. The research [14] Presents 
an earthquake prediction model using parallel CPU to 
improve learning performance. Instead of relying on 
traditional CPU, GPU is used by CUDA framework, The 
outstanding hybrid state machine (H-SVM) algorithm is 
implemented on parallel CPU, and the results indicate that 
the use of GPU which speeds up by 3-70 times compared to 
CPU processing.  

 Boukhalfa et al. proposed [15] An approach based on 
storing and analyzing network data using machine learning 
algorithms (KNN, SVM, and DT) in a distributed and parallel 

manner. The research showed high efficiency of the KNN 
algorithm accuracy of up to 99.9%, with a decrease in 
processing time from 1792.8; to 1659.4 seconds for 
classification of 23 classes. 

 The research [16], a GPU coupled with a deep 
convolutional neural network (DCNN) was used to detect 
ultra-short-period planets (USP). It was trained on 2 million 
samples. The results showed an accuracy of up to 99.5%. 
This method is 1000 times faster in processing the optical 
light curve compared to the conventional least squares 
method without compromising accuracy. 

 The research [17] Examined the effect of parallelism in 
tuning hyperparameters on a fake news detection dataset 
using CV from sci-kit-learn to tune a random forest classifier. 
The results showed a slight change in model accuracy from 
99.26% to 99.15%. The CPU times were five times faster 
compared to sequential processing. 

The research [18] Parallel architecture using multi-core 
CPUs to accelerate the performance of machine learning 
models. It focused on RF, XGBoost, AdaBoost, and KNN 
models. The results showed a 1.7x and 3.8x faster 
performance improvement for both small and large datasets 
on quad-core CPUs, without compromising accuracy. 

This research [19] Aims to use parallel processing using 
Python on breast cancer dataset, AdaBoost model and DT 
algorithm were combined to improve performance and 
reduce processing time. The results showed the accuracy was 
not affected by parallel processing, which is 97.37%. While 
the training time was reduced by 7.04% when implementing 
parallel processing compared to sequential processing. 

 The research [20] Parallel processing was used in 
training SVM and RF models to improve classification 
accuracy and reduce training time. The results showed that 
the 100-tree RF model increased classification accuracy from 
58.87% to 63.59%. The training time was also significantly 
reduced using the MPI4Py parallel processing interface from 
1725.8 to 396.5ms. 

 The research [21] Focused on the effect of parallel 
processing on the performance of the Random Forest 
algorithm using the CIFAR-10 dataset. The results showed 
an accuracy of 97.50% for both sequential and parallel 
processing. While the training time was reduced from 0.6187 
to 0.4753 seconds. 

The research [22], the impact of parallel processing on 
the performance of the Extra Tree classifier was evaluated. 
The results showed a slight improvement in accuracy from 
88.23% to 88.43% when parallel processing was applied. 
Also, parallel processing significantly reduced the 
computation time, from 37.463 to 4.837 seconds. 

This research [23] investigated the effect of parallel 
processing on the performance of the LightGBM algorithm 
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using the IRIS dataset. The results showed that the training 
efficiency was significantly improved while maintaining 
100% classification accuracy for both parallel and non-
parallel processing. While the training time was reduced 
from 0.2316 to 0.1921 seconds when using parallel 
processing. 

 The research [24] Investigated the classification of 
newspaper articles using the XGBoost algorithm. The results 
showed an accuracy of 79.83% in both parallel and non-
parallel processing, with parallel processing contributing to a 
significant reduction in training time from 501,319 to 
264,978 seconds. 

The research [25] Presented an analysis of the effect of 
parallel processing on a Random Forest model using the 
Apple M1 chip. The results showed a high accuracy of 100% 
without the effect of parallel processing. The training time 
was significantly reduced from 1.4956 to 0.3758 seconds for 
parallel processing. 

 The research [26] Used parallel processing of the Bison 
algorithm using the PySpark framework to address 
classification problems. The results showed a high accuracy 
of 97%, with a significant improvement in execution time 
efficiency; the processing time was reduced from 25946.03 
seconds to 270.63 seconds. 

3. Methodology 

In this research, the utilization of the parallel processing 
concept to reduce the execution time of machine learning  

algorithms for pixel-based image classification as in the 
methodology of the workflow plan shown in Figure 1.  

1. Start. 

2. Load the original images with their ground truth and data 
pre-processing by drowning the ground truth colours in RGB 
to be closer to the programming concept using the three basic 
colours (red, green, and blue). 

3. Input a single image with its ground truth to the program. 

4. Choose an algorithm: a decision tree or a random forest as 
a (10, 100, 500, and 1000) tree. 

5. Set 10 rounds to reduce the randomness effect. 

6. Data splitting to the training set (70%) and the testing set 
(30%). 

• Training The model using Parallel Processing. 

• Training The model using Sequential Processing. 

7. Cross-validation: split data into four sets for training and 
testing. 

• Training The model using Parallel Processing. 

• Training The model using Sequential Processing. 

 
Figure 1. Process flow of the proposed approach 
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8. Testing data. 

9. End of the classification process. 

3.1 ParFor Function in Matlab 
ParFor is a robust tool that lets users divide loops through 

parallel processes, significantly accelerating code 
performance [27]. ParFor is a parallel variant of the standard 
for function, enabling the loop iterations to be conducted 
more quickly on computers with multiple cores by 
distributing them among several parallel processes rather 
than implementing them sequentially [28].  ParFor can be 
used in the following cases If the loop contains computations 
that take a long time to complete. Also, calculating large 
matrices or repeating computations, ParFor is useful for 
distributing computations across multiple processors or cores 
to speed up the calculation. When the loop operations are 
independent of each other, meaning that the result of one 
iteration does not depend on the result of the previous 
iteration [29]. The ParFor function in MATLAB speeds up 
the execution of loops by dividing the computation into 
smaller, parallel tasks [27]. Imagine that you have a long list 
of tasks. Instead of executing these tasks one by one, ParFor 
divides the list into smaller groups and assigns each group to 
a different "worker". Each worker performs its assigned tasks 
independently and at the same time. After all the workers 
have completed their tasks, the final results from each worker 
are summed to form the overall result of the loop. Figure 2: 
shows Pool of MATLAB Workers. 

 

4. Dataset 
The Oxford-IIIT Pet dataset, a dataset consisting of 

(7349) cat images of (37) different breeds, was used. It was 
obtained from the web and is an open-source data 
[30][31][32]. The original images included various cat 
categories, along with their ground truth images. However, 
one of the objectives of this research is to train and test pixel-
based machine-learning models. Therefore, four cat images 
were carefully selected for quality and accuracy as training 
and testing models in this research. The ground truth images 
consist of three categories: cat, border, and background, 
which are characterized by different colours. To make the 
ground truth images closer to the software concept for this 
research, the primary colours (red, green, and blue) were 
used. Figure 3 shows images used in this research. 

4.1 Data Pre-processing 
The ground truth images consist of three distinct classes: 

cat, border, and background. The background classes, cat 
border classes, and cat body classes were changed to be more 
consistent with the programming concept of using RGB 
colours. The ground truth images consist of three classes 
(red, green, and blue). Figure 4 shows redrawing the colour 
of ground truth, where the left image is before redrawing, and 
right after redrawing. 

 

 

 

 Figure 4. Redrawing the colour of ground truth, where 
the left image is before redrawing, and right after 

redrawing 
There was no need for both the original image and ground 

truth and wisdom because pixel wisdom can come from 
ground truth to image. The images used in this section are 
represented using RGB during processing. To process each 
pixel, whether training or testing, concerning the ground 
truth, labels were predefined for each pixel class where the 

 

Figure 2. Pool of MATLAB Workers [29] 

    

    

Figure 3. Samples of image used in this research 
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background was defined as red, the body as blue, and the 
shape boundaries as green. 

5. Performance Metrics 
A confusion matrix is a tool for evaluating the performance 
of classification models in machine learning, comparing the 
predicted results with the actual results [33][34]. The matrix 
consists of four cells in the case of binary classification 
[35][36]. Figure 5: shows confusion matrix. 

The purpose of using accuracy in research is appropriate 
because it is a comprehensive measure for evaluating the 
performance of models and is a simple and effective 
indicator, especially for problems related to the balanced 
distribution of classes. It also highlights the impact of 
technical improvements on the quality of the results, showing 
that speeding up the processes does not affect the quantitative 
performance the models. 

Performance evaluation metrics using the confusion 
matrix include [37][38][39]: 

1. Accuracy: The ratio of correct predictions to 
total. 

2.  Precision: The ratio of correctly classified 
positives to positives. 

 

3. Recall/Sensitivity: The ratio of correctly 
classified positives to actual positives. 

 

 

 

 

4. F1 Score: A weighted average of precision and 
recall that balances them. 

6. Decision Tree and Random Forest 
       DT and RF algorithms are machine learning algorithms. 
These can be used to solve classification and regression 
problems. DT structure consists of nodes, branches, and 
leaves. Nodes represent decision points that contain tests or 
conditions, branches represent the results of those tests, and 
leaves represent the final results [40][41][42]. Figure 6 
shows the structure of the DT algorithm. 

 
Figure 6. Structure of DT algorithm [43] 

 
Figure 5. Confusion Matrix 

Accuracy =           𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑡𝑡 
                          𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑓𝑓 + 𝑓𝑓𝑓𝑓 + 𝑡𝑡𝑡𝑡 (1) 

Precision =                𝑡𝑡𝑡𝑡  

                          𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑓𝑓  (2) 

Recall=           𝑡𝑡𝑡𝑡  
                          𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑓𝑓 (3) 

                      2* precision * Recall 
 F1-Score=   
                          Precision + Recall 

(4) 

Algorithm 1: Pseudo code for the DT algorithm 
 

1. BuildTree (N): 
2. If N contains instances of only one class then 
3.    return 
4. else 
5.      Randomly select x% of the possible splitting 

features in N 
6.      Select the feature F with the Gini index to split on 
7.      Create f child nodes of N, N1, …., Nf, where F has 

f possible values (F1, …, Ff) 
8.    For i = 1 to f do 
9.      Set the contents of Ni to Di, where Di is all 

instances in N that match 
10.      Fi 
11.      Call BuildTree ( Ni ) 
12.    end for 
13. end if  
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x100 

Random Forest is based on the Ensemble Learning method, 
which improves the performance and accuracy, and controls 
the overfitting of models by merging multiple decision trees 
into a single model and merging their results to achieve more 
stable results. [44][45][46] Figure 7 shows the structure of 
the RF algorithm. 

 

7. Performance Evaluation 
The tree trained on the training data samples is used to 
classify the pixels in the original image during the testing 
phase. Each pixel is classified as belonging to one of three 
classes: background, border, or shape, which are denoted by 
the numbers 1, 2, and 3, respectively. The prediction is based 
on the colour characteristics of each pixel, and the trained tree 
is used to evaluate only the test data pixels. After evaluation, 
the percentage of correctly classified pixels with their ground 

truth is calculated, which is an estimate of the classification 
accuracy. The accuracy percentage and the time taken to 
classify are important performance metrics used to evaluate 
classification models, making them essential criteria in this 
research. 

  Where the (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) is the total number of pixels that 

used in the test (the number of test data pixels), and the 
matching counter (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒) is the number of test 
data pixels that was evaluated correctly. 

7.1 Results and Discussion 
In the results section, we will analyze and present the 
outcomes of testing various models. Additionally, we will 
evaluate the models' performance on unseen data by 
generating confusion matrices, and accuracy scores using the 
testing dataset.  

A standardized evaluation scheme was used in which the 
same test conditions and calculations were applied to 
multiple runs of the Decision Tree (DT) and Random Forest 
(RF) algorithms to compare the effectiveness of different 
classification methods. The results of all runs were averaged 
to reflect the most accurate statistical values, as the results 
can vary slightly with each run due to the random selection 
of pixels for training and testing. In the case of RF, the effect 
of the number of trees on classification performance was 
evaluated using four different forest sizes: 10 trees, 100 trees, 
500 trees, and 1000 trees. The cases were randomly selected 
to represent low and high values of the number of trees. Since 
tree generation and testing are time-consuming and depend 
on the number of features and the size of the test data, the 
processing time for both DT and RF was improved by 
implementing parallel processing using the ParFor function 
in MATLAB. Two processing models were compared: the 
regular model (with a single core) and the parallel model 
(with multiple cores). In both models, the same training and 
testing conditions and image data were used, with only the 
processing mode differing. The results calculated include: 
classification accuracy (percentage of pixels correctly 
classified), average time per run, and confusion matrix 
(which compares the predicted data to the target). 70% of the 
image data was used for training and 30% for testing, with no 
overlap between training and testing data.  

7.2 Performance Measurements 
Table 1 shows a comprehensive comparison of the 

performance of pixel-based classification algorithms using 
two methods, sequential processing, and parallel processing 
using the ParFor function. By dividing the data into 70% for 
training data and 30% for testing data, the results showed the 
highest average accuracy of 96.4 for both sequential and 
parallel processing methods, while the average execution 

 
Figure 7. Structure of RF algorithm [40] 

Algorithm 1: Pseudo code for the RF algorithm 
1. To generate c classifiers: 
2. For i = 1 to c do 
3.        Randomly sample the training data D with 

replacement to produce Di 
4.        Create a root node, Ni containing Di 
5.        Call BuildTree ( Ni ) 
6. end for 

 
7. BuildTree (N): 
8. If N contains instances of only one class then 
9.    return 

10. else 
11.      Randomly select x% of the possible splitting 

features in N 
12.      Select the feature F with the Gini index to split on 
13.      Create f child nodes of N, N1, …., Nf, where F has 

f possible values (F1, …, Ff) 
14.    For i = 1 to f do 
15.      Set the contents of Ni to Di, where Di is all 

instances in N that match 
16.      Fi 
17.      Call BuildTree ( Ni ) 
18.    end for 
19. end if  

                                                  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒 
 P𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 accuracy =   
                                                𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

(6) 
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time of the algorithms was 83.86 seconds and 791.50 seconds 
using sequential parallel processing. The highest accuracy 
achieved among the models is the random forest model with 
100 trees for the images (1, 2, 3, 4) (96.7, 97.5, 97.2, 96.1) 
respectively. The lowest accuracy was for the decision tree 
model (96.2, 95.7, 96.9, 90.5) for images 1, 2, 3, and 4 
respectively. While parallel processing significantly 
outperformed sequential processing in terms of execution 
time, the execution time decreased from (1.85, 1.99, 3.70, 
0.46) to (1.43, 0.82, 2.28, 0.35) for images (1, 2, 3, 4) 
respectively. The results confirm the effectiveness and 
impact of parallel processing on the efficiency of the 
algorithms without compromising accuracy. 

These results confirm that the random forest with 100 
trees is the best choice in terms of balance between accuracy 
and execution time, and highlight the effectiveness of parallel 
processing in improving time efficiency without affecting the 
accuracy of classification, which makes it a practical solution 
for dealing with large data and complex models. 

7.3 Confusion Matrix 
Table 2 shows the confusion matrices of the RF100 

classification model performance for both sequential and 
parallel processing methods. This classification parameter 
value gives the best performance among all settings 
according to Table 1, Confusion Matrices for images 1, 2, 3, 
and 4. Where classes 0, 1, and 2 in the table represent 
background, border, and shape, respectively. 

  For the first confusion matrix, the background class was 
correctly predicted 1,953,690 times and was misclassified as 
a border or shape 55,461 times. The border class was 
correctly predicted 69,274 times and was misclassified as a 
background or shape 12,608 times. The shape class was 
correctly predicted 298,688 times and was misclassified as 
both background and border 8,794 times. The overall 
accuracy of the RF classifier is 100 for both serial and parallel 
processing, similarly for the rest of the matrices. 

 

Table 1. Comparison of accuracy and time taken between models to predict test images 
 

Data set 
 Normal Parallel (par for) function 

classifier Accuracy (%) Avg _time[s] Accuracy (%) Avg_ time[s] 

Image 
1 

DT 96.2 1.859 96.2 1.03 

RF (10) 96.6 6.086 96.6 3.33 

RF (100) 96.7 43.87 96.7 29.28 

RF (500) 96.7 174.72 96.7 111.29 

RF (1000) 96.7 447.43 96.7 231.09 

Image 
2 

DT 95.7 1.99 95.7 0.82 

RF (10) 97.2 5.53 97.2 2.11 

RF (100) 97.5 88.83 97.5 15.88 

RF (500) 97.5 221.39 97.5 74.57 

RF (1000) 97.5 365.56 97.5 174.3 

 
Image 

3 

DT 96.9 3.70 96.9 2.28 

RF (10) 97.1 13.41 97.1 7.79 

RF (100) 97.2 89.66 97.2 54.45 

RF (500) 97.2 422.89 97.2 262.23 

RF (1000) 97.2 13458.7 97.2 550.30 

Image 
4 

DT 90.5 0.46 90.5 0.35 

RF (10) 95.1 2.66 95.1 2.25 

RF (100) 96.1 29.82 96.1 9.73 

RF (500) 96.1 185.63 96.1 52.81 

RF (1000) 96.1 265.84 96.1 91.38 

Mean  96.4 791.50 96.4 83.86 
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Table 2. Percentages of normal and parallel avsa confusion matrix. 

 Image 1 Normal 

 

Image 1 Parallel 
predicted value predicted value 

RF 100  Class0 Classl Class2 Total Class0 Classl Class2 Total 

R
ea

l v
al

ue
 

Class0 
  

1953690 
81.40% 

  

55461 
2.30% 

  

1485 
0.10% 

  

2010636 
97.20% 
2.80% 

1953722 
81.40%  

55582 
2.30%  

1492 
0.10%  

2010796 
97.20% 
2.80% 

Classl 
  

8851 
0.40% 

  

69274 
2.90% 

  

3757 
0.20% 

  

81882 
84.60% 
15.40% 

8813 
0.40%  

69157 
2.90%  

3669 
0.20%  

81639 
84.70% 
15.30% 

Class2 
  

49 
0.00% 

  

8745 
0.40% 

  

298687 
12.40% 

  

307482 
97.10% 
2.90% 

55 
0.00%  

8741 
0.40%  

298768 
12.40%  

307565 
97.10% 
2.90% 

Total 
1962590 
99.50% 
0.50% 

133480 
51.90% 
48.10% 

303930 
98.30% 
1.70% 

1321652 / 
2400000 
96.70% 
3.30% 

1962590 
99.50% 
0.50% 

133480 
51.80% 
48.20% 

303930 
98.30% 
1.70% 

1321648 / 
2400000 
96.70% 
3.30% 

 

RF 100 
Image 2 Normal 

 

Image 2 Parallel 
Class0 Classl Class2 Total Class0 Classl Class2 Total 

R
ea

l v
al

ue
 

Class0 
  1499332 

80.00% 
19005 
1.00% 

2095 
0.10% 

1520432 
98.60% 
1.40% 

1499115 
80.00% 

12385 
0.70% 

2195 
0.10% 

1513695 
99.00% 
1.00% 

Classl 
  7006 

0.40% 
86390 
4.60% 

1170 
0.10% 

94566 
91.40% 
8.60% 

7006 
0.40% 

69479 
3.70% 

1177 
0.10% 

77662 
89.50% 
10.50% 

Class2 
  1090 

0.10% 
16043 
0.90% 

242868 
13.00% 

260002 
93.40% 
6.60% 

1190 
0.10% 

23445 
1.30% 

259008 
13.80% 

283643 
91.30% 
8.70% 

Total 1507428 
99.50% 
0.50% 

121438 
71.10% 
28.90% 

246134 
98.70% 
1.30% 

1828591 / 
1875000 
97.50% 
2.50% 

1507311 
99.50% 
0.50% 

105309 
66.00% 
34.00% 

262380 
98.70% 
1.30% 

1827602 / 
1875001 
97.50% 
2.50% 

 

RF 100 
Image 3 Normal 

 

Image 3 Parallel 
Class0 Classl Class2 Total Class0 Classl Class2 Total 

R
ea

l v
al

ue
 

Class0 
  

4273023 
82.00% 

103243 
2.00% 

12023 
0.20% 

4388289 
97.40% 
2.60% 

4271799 
81.90% 

105043 
2.00% 

11023 
0.20% 

4387865 
97.40% 
2.60% 

Classl 
  

4034 
0.10% 

59987 
1.20% 

10779 
0.20% 

74800 
80.20% 
19.80% 

4030 
0.10% 

59491 
1.10% 

10778 
0.20% 

74299 
80.10% 
19.90% 

Class2 
  

1073 
0.00% 

16710 
0.30% 

733127 
14.10% 

750911 
97.60% 
2.40% 

1033 
0.00% 

16610 
0.30% 

734192 
14.10% 

751836 
97.70% 
2.30% 

Total 
4278130 
99.90% 
0.10% 

179940 
33.30% 
66.70% 

755930 
97.00% 
3.00% 

5066138 / 
5214000 
97.20% 
2.80% 

4276862 
99.90% 
0.10% 

181144 
32.80% 
67.20% 

755994 
97.10% 
2.90% 

5065483 / 
5214000 
97.20% 
2.80% 

 

RF 100 
Image 4 Normal 

 

Image 4 Parallel 
Class0 Classl Class2 Total Class0 Classl Class2 Total 

R
ea

l v
al

ue
 

Class0 
  

569994 
66.00% 

13134 
1.50% 

1021 
0.10% 

584149 
97.60% 
2.40% 

569994 
66.00% 

13134 
1.50% 

1021 
0.10% 

584149 
97.60% 
2.40% 

Classl 
  

1206 
0.10% 

79984 
9.30% 

5332 
0.60% 

86522 
92.40% 
7.60% 

1206 
0.10% 

79984 
9.30% 

5332 
0.60% 

86522 
92.40% 
7.60% 

Class2 
  

1990 
0.20% 

11402 
1.30% 

179937 
20.80% 

193329 
93.10% 
6.90% 

1990 
0.20% 

11402 
1.30% 

179937 
20.80% 

193329 
93.10% 
6.90% 

Total 
573190 
99.40% 
0.60% 

104520 
76.50% 
23.50% 

186290 
96.60% 
3.40% 

829915 / 
864000 
96.10% 
3.90% 

573190 
99.40% 
0.60% 

104520 
76.50% 
23.50% 

186290 
96.60% 
3.40% 

829915 / 
864000 
96.10% 
3.90% 
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7.4 Predicted Images  
In Figure 8 the predicted images on the top row 

represents the sequential processing and the bottom row 
represents the parallel processing of the random forest model 
with 100 trees. The Far left represents image number one. 
The second image from the left represents image number 
two. The third image from the left represents image number 

three. The farthest right represents image number four. The 
classification accuracy values shown in Table 1 for the RF 
100 model produce the predicted image that is most similar 
to the actual real image after classification shown in Figure 
4. The RF 100 model achieves the highest classification 
accuracy of (96.7%, 97.5%, 97.2%, and 96.1%) for the four 
images (1, 2, 3, 4) respectively. 

 

8. Cross Validation  
In this research, 4-fold cross-validation was used as a 

mechanism to evaluate the performance of the classifiers.[47] 
[48] 

In this method, the data is divided into 4 approximately 
equal folds, where each fold is used once as the test data, 
while the remaining three folds are used as the training data. 
In each iteration, the classification model is trained on the 
training data and then tested on the test fold, ensuring that the 
test data is completely unknown to the classifier to ensure an 
objective evaluation. The results of each test run are saved, 
then the next fold is moved and the process is repeated until 
all folds are tested. The results are then saved for four folds 
and summed to calculate the overall performance of the 
model. This method achieves an accurate and reliable 
evaluation of the performance of the models by taking 
advantage of the available data. 

8.1 Performance Measurements of Cross-Validation 
Table 3 compares the performance of the algorithms 

using the cross-validation split for the two methods, 
sequential and parallel processing. The table shows that the 
average accuracy remains constant for both methods, while 
the average time decreases significantly using parallel 
processing by 399.01 seconds compared to 801.05 seconds 
for sequential processing. The highest accuracy achieved in 
the four images (1, 2, 3, 4) is (96.7, 97.4, 97.2, 96.1) 
respectively. The lowest accuracy of the decision tree model 
was (96.3, 95.9, 96.9, 90.5) for images 1, 2, 3, and 4 
respectively. While parallel processing significantly 
outperformed sequential processing in terms of execution 
time, execution time decreased from (10.17, 8.28, 45.18, 
4.02) to (7.92, 4.48, 12.73, 2.56) for images (1, 2, 3, 4) 

respectively. The results confirm the effectiveness and 
impact of parallel processing on the efficiency of algorithms 
without compromising accuracy. 

8.2   Confusion Matrix Cross-Validation 
Table 4 shows the confusion matrices for cross-

validation (CV) of the classification model performance for 
both sequential and parallel processing methods. This 
classification parameter value gives the best performance 
among all settings according to Table 3, Confusion Matrices 
for images 1, 2, 3, and 4. Where classes 0, 1, and 2 in the 
table represent background, border, and shape, respectively. 

For the first confusion matrix, the background class was 
correctly predicted 770510 times and was misclassified as a 
border or shape 10739 times. The border class was correctly 
predicted 39413 times and was misclassified as a background 
or shape 14929 times. The shape class was correctly 
predicted 118225 times and was misclassified as both 
background and border 6184 times. The overall accuracy of 
the RF classifier is 100 for both serial and parallel processing, 
similarly for the rest of the matrices. 

 

 

    

    
Figure 8. Predicted images for Normal and Parallel methods. 
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Table 3. Comparison Of Accuracy And Time Taken Between Models To Predict Test Images Cross-Validation 

 
Data set 

 Normal Parallel (par for) function 
classifier Accuracy (%) Avg _time[s] Accuracy (%) Avg_ time[s] 

Image 
1 

DT 96.3 10.17 96.3 7.92 

RF (10) 96.7 34.56 96.7 26.15 

RF (100) 96.7 177.60 96.7 136.21 

RF (500) 96.7 1258.9 96.7 582.56 

RF (1000) 96.7 1700.0 96.7 1188.7 

Image 
2 

DT 95.9 8.28 95.9 4.48 

RF (10) 97.2 26.02 97.2 9.78 

RF (100) 97.4 129.87 97.4 70.25 

RF (500) 97.4 638.30 97.4 510.09 

RF (1000) 97.4 1633.9 97.4 833.67 

 
Image 

3 

DT 96.9 45.18 96.9 12.73 

RF (10) 97.1 197.73 97.1 71.61 

RF (100) 97.2 749.03 97.2 234.27 

RF (500) 97.2 2581.61 97.2 1160.6 

RF (1000) 97.2 5399.41 97.2 2494.1 

Image 
4 

DT 91.1 4.02 91.1 2.56 

RF (10) 95.2 12.81 95.1 5.17 

RF (100) 96.1 81.89 96.1 35.62 

RF (500) 96.1 501.83 96.1 185.75 

RF (1000) 96.1 829.94 96.1 407.97 

Table 4. Percentages Of Normal And Parallel Avsa Confusion Matrix Cross-Validation 

 Image 1 Normal 

 

Image 1 Parallel 
predicted value predicted value 

RF 10 Class0 Classl Class2 Total Class0 Classl Class2 Total 

R
ea

l v
al

ue
 

Class0 
  

770510 
80.30% 

10181 
1.10% 

558 
0.10% 

781249 
98.60% 
1.40% 

770593 
80.30% 

10181 
1.10% 

558 
0.10% 

781332 
98.60% 
1.40% 

Classl 
  

12140 
1.30% 

39413 
4.10% 

2789 
0.30% 

54342 
72.50% 
27.50% 

12140 
1.30% 

46444 
4.80% 

2703 
0.30% 

61287 
75.80% 
24.20% 

Class2 
  

2386 
0.20% 

3798 
0.40% 

118225 
12.30% 

124409 
95.00% 
5.00% 

2386 
0.20% 

3788 
0.40% 

111207 
11.60% 

117381 
94.70% 
5.30% 

Total 
785036 
98.10% 
1.90% 

53392 
73.80% 
26.20% 

121572 
97.20% 
2.80% 

928148 / 
960000 
96.70% 
3.30% 

785119 
98.10% 
1.90% 

60413 
76.90% 
23.10% 

114468 
97.20% 
2.80% 

928244 / 
960000 
96.70% 
3.30% 

 

RF 100 
Image 2 Normal 

 

Image 2 Parallel 
Class0 Classl Class2 Total Class0 Classl Class2 Total 

R
ea

l v
al

ue
 

Class0 
  

599997 
80.00% 

10022 
1.30% 

1034 
0.10% 

611053 
98.20% 
1.80% 

595271 
79.40% 

10022 
1.30% 

1034 
0.10% 

606327 
98.20% 
1.80% 

Classl 
  

2003 
0.30% 

30209 
4.00% 

3204 
0.40% 

35416 
85.30% 
14.70% 

2003 
0.30% 

39027 
5.20% 

3104 
0.40% 

44134 
88.40% 
11.60% 

Class2 
  

1136 
0.20% 

2400 
0.30% 

99995 
13.30% 

103531 
96.60% 
3.40% 

1133 
0.20% 

2400 
0.30% 

96006 
12.80% 

99539 
96.50% 
3.50% 

Total 
603136 
99.50% 
0.50% 

42631 
70.90% 
29.10% 

104233 
95.90% 
4.10% 

730201 / 
750000 
97.40% 
2.60% 

598407 
99.50% 
0.50% 

51449 
75.90% 
24.10% 

100144 
95.90% 
4.10% 

730304 / 
750000 
97.40% 
2.60% 
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Predicted Images Cross-Validation 
In Figure 9 the predicted images on the top row 

represents the sequential processing and the bottom row 
represents the parallel processing of the random forest model 
with 100 trees. The Far left represents image number one. 
The second image from the left represents image number 
two. The third image from the left represents image number 
three.  

The farthest right represents image number four. The 
classification accuracy values shown in Table 3 for the RF 
100 model produced the predicted images that are most 
similar to the actual/ real image in Fig. 3. The RF 100 model 
achieves the highest classification accuracy of (96.7%, 
97.4%, 97.2%, and 96.1%) for the four images (1, 2, 3, and 
4) respectively. 

 

 

 

 

 

 

 

 

Table 5 confirms the results obtained previously, the 
performance of the proposed method was compared with the 
methods mentioned in [14], [19], [20], [21], [23], and [22] 
before and after applying parallel processing, as shown in 
Table 5. The comparison shows that the proposed model 
(using parallel processing of the ParFor function achieves a 
significant time reduction of 24% while maintaining the same 
accuracy. In [22], [20], and [14], we observe a slight time 
reduction, while in [19], [21], and [23], the time decreased by 
4%, 7%, and 1%, respectively. 

 

 

 

 

 

 

 

 

 

 

    

    
Figure 9. Predicted images of Cross-Validation 

RF 100 
Image 3 Normal 

 

Image 3 Parallel 
Class0 Classl Class2 Total Class0 Classl Class2 Total 

R
ea

l v
al

ue
 

Class0 
  

212189 
61.40% 

3387 
1.00% 

2470 
0.70% 

218046 
97.30% 
2.70% 

222285 
64.30% 

3387 
1.00% 

2470 
0.70% 

228142 
97.40% 
2.60% 

Classl 
  

3351 
1.00% 

24821 
7.20% 

1118 
0.30% 

29290 
84.70% 
15.30% 

3351 
1.00% 

43714 
12.60% 

1118 
0.30% 

48183 
90.70% 
9.30% 

Class2 
  

1312 
0.40% 

1744 
0.50% 

95208 
27.50% 

98264 
96.90% 
3.10% 

1312 
0.40% 

1744 
0.50% 

66219 
19.20% 

69275 
95.60% 
4.40% 

Total 
216852 
97.80% 
2.20% 

29952 
82.90% 
17.10% 

98796 
96.40% 
3.60% 

332218 / 
345600 
96.10% 
3.90% 

226948 
97.90% 
2.10% 

48845 
89.50% 
10.50% 

69807 
94.90% 
5.10% 

332218 / 
345600 
96.10% 
3.90% 

 

RF 100 
Image 4 Normal 

 

Image 4 Parallel 
Class0 Classl Class2 Total Class0 Classl Class2 Total 

R
ea

l v
al

ue
 

Class0 
  

569994 
66.00% 

13134 
1.50% 

1021 
0.10% 

584149 
97.60% 
2.40% 

569994 
66.00% 

13134 
1.50% 

1021 
0.10% 

584149 
97.60% 
2.40% 

Classl 
  

1206 
0.10% 

79984 
9.30% 

5332 
0.60% 

86522 
92.40% 
7.60% 

1206 
0.10% 

79984 
9.30% 

5332 
0.60% 

86522 
92.40% 
7.60% 

Class2 
  

1990 
0.20% 

11402 
1.30% 

179937 
20.80% 

193329 
93.10% 
6.90% 

1990 
0.20% 

11402 
1.30% 

179937 
20.80% 

193329 
93.10% 
6.90% 

Total 
573190 
99.40% 
0.60% 

104520 
76.50% 
23.50% 

186290 
96.60% 
3.40% 

829915 / 
864000 
96.10% 
3.90% 

573190 
99.40% 
0.60% 

104520 
76.50% 
23.50% 

186290 
96.60% 
3.40% 

829915 / 
864000 
96.10% 
3.90% 
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Conclusion 
This research analyzed the effect of parallel processing 

using the Parfor function on the performance of machine 
learning algorithms for pixel-based image classification, 
focusing on decision trees and random forest algorithms 
(10, 100, 500, and 1000 trees). The models were tested in 
two ways: 70% data split for training and 30% for testing, 
and using four-fold cross-validation. The results showed 
that parallel processing outperformed in reducing execution 
time while maintaining accuracy. Parallel processing 
proved effective in improving performance with large data 
and complex models without compromising accuracy, 
while cross-validation provided a comprehensive 
assessment of the models. Parallel processing using the 
Parfor function is an effective option for improving the 
efficiency of machine learning-based classification 
applications. In future work, experiments could be on larger 
and more diverse datasets to evaluate the effectiveness of 
parallel processing. Additionally, parallel processing could 
be applied to other machine learning algorithms, such as 
deep neural networks or unsupervised learning algorithms, 
to measure the effectiveness of this approach with more 
complex algorithms and high computational requirements. 
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