
Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (53-66)

53

Reducing Execution Time of Pixel-Based Machine Learning Classification
Algorithms Using Parallel Processing Concept

Aliaa Shaker Mahmoud1 and Mohammed Chachan Younis2

1 Department of Computer Science, College of Computer Science and Mathematics, University of Mosul, Iraq
2 Department of Artificial Intelligence, College of Computer Science and Mathematics, University of Mosul, Iraq
Email: aliaa.23csp42@student.uomosul.edu.iq1 , mohammed.c.y@uomosul.edu.iq2

Article information Abstract
Article history:
Received 22 December ,2024
Revised 10 January ,2025
Accepted 30 January ,2025
Published 26 June ,2025

 Parallel processing is essential in machine learning to meet the computational requirements
resulting from the complexity of algorithms and the size of the dataset, by taking advantage
of the computational resources of parallel processing that can distribute computational
operations across multiple processors. Which contributes to significant improvements in
performance and time efficiency. This research demonstrated the impact of parallel
processing on the performance and time efficiency of machine learning for pixel-based image
classification techniques. The methodology includes pre-processing the Oxford IIIT Pet
dataset, from which 4 cat images were selected. The performance of two supervised machine
learning classifiers, decision tree, and random forest (10, 100, 500, and 1000 trees) were
compared and implemented in two ways with and without parallel processing. The data is
split in two ways: the first is by splitting the data by 70% for training data and 30% for testing
data and the second is by cross-validation by splitting the data into four folds. The research
aims to compare the accuracy and timely scales of machine learning models with and without
parallel processing. The results showed a strong predictive power of the algorithms with an
accuracy of 97.5%, while the training times were significantly reduced in parallel from 88.83
to 15.88 seconds for the RF100 model. This reflects the effectiveness of parallel processing
in improving the performance of machine-learning models for pixel-based image
classification. The proposed system was programmed using MATLAB 2021 language tools.
The work was carried out on a computer running Microsoft Windows 11 operating system
with an Intel(R) Core (TM) i5-1135G7@2.40GHz 2.42GHz processor with 8 GB of RAM.

Keywords:
Decision Tree, Machine Learning,
Parallel Processing, Random Forest
Correspondence:
Aliaa Shaker Mahmoud
Email:
aliaa.23csp42@student.uomosul.edu.iq

DOI: 10.33899/csmj.2025.156050.115, ©Authors, 2025, College of Computer Science and Mathematics, University of Mosul, Iraq.
This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0).

1. Introduction

Most manufacturers have started producing multi-core
processors since 2005 using parallel computing methods to
maintain increased speed and performance [1][2]. The
parallel processing approach derives from the philosophy of
solving a problem by dividing complex problems into smaller
tasks more efficiently, which can be controlled and managed
[3][4][5]. Executing many parallel iterations of a specific
algorithm separately is one of the most basic approaches to
parallelizing algorithm evaluation [6]. Several researchers
have proposed parallel processing approaches to improve the
efficiency of machine learning algorithms, including design

and implementation [7]. In machine learning, parallel
processing becomes more important as difficult models and
big datasets need a lot of accounting resources. Sequential
training can hinder the development and deployment of
machine learning models in terms of time consumption in
real-world scenarios. By computational task allocation to
several processors or even multiple computers, parallel
processing expedites model training and lowers the overall
time needed [8][9]. According to primary factors that convert
user and programmer concerns into practical solutions,
parallel processing takes less time than sequential processing
[10]. Multicore processors are becoming more common,

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM)

www.csmj.uomosul.edu.iq

mailto:aliaa.23csp42@student.uomosul.edu.iq1
mailto:mohammed.c.y@uomosul.edu.iq2
mailto:aliaa.23csp42@student.uomosul.edu.iq
http://creativecommons.org/licenses/by/4.0
https://orcid.org/0009-0008-7177-7227
https://orcid.org/0000-0002-9035-0738
https://csmj.uomosul.edu.iq/

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (53-66)

54

although their compact parallel processing capacity cannot
be well exploit until the software being developed is
enhanced [11][12]. To improve the performance of multi-
core computers, a program has to be executed in several
parallels on a greater number of cores. Many processes
execute on multicores, and the technological limitations of a
single core, like issues related to throughput, high efficiency
of energy, and extended battery life, have made multi-core
processors more important [13]. For systems that process
huge amounts of data for analysis, processing time decreases
are necessary for enhancing efficiency. Big amounts of data
lead to longer processing times. Therefore, it is important to
reduce the duration of these processes [7].

The objectives of this research are to apply the concept of
parallel processing to reduce the time of executing machine
learning algorithms as follows:

1. Load the original images with their ground truth and data
pre-processing by drowning the ground truth colours in
RGB to be closer to the programming concept using the
three basic colours (red, green, and blue).

2. Training classification models of machine learning DT
and RF (10, 100, 500, 1000 trees). Then the
implementation is done in two different ways, one by
sequential processing and the other by parallel central
processing.

3. The data was divided into 70% for training and 30% for
testing for learning models with 10 rounds to get rid of
problems related to random data selection models, which
may result in differences when retraining.

4. The cross-validation method was also programmed and
implemented, where the data was divided into four
groups for training and testing.

5. The performance of the models trained on the test data
was evaluated and compared through the accuracy
measure and the time taken measure by displaying
confusion matrices and predicted images for both
methods followed in this research (sequential processing
and parallel processing).

2. Literature Review
This section discusses the literature related to parallel

processing and machine learning. The research [14] Presents
an earthquake prediction model using parallel CPU to
improve learning performance. Instead of relying on
traditional CPU, GPU is used by CUDA framework, The
outstanding hybrid state machine (H-SVM) algorithm is
implemented on parallel CPU, and the results indicate that
the use of GPU which speeds up by 3-70 times compared to
CPU processing.

 Boukhalfa et al. proposed [15] An approach based on
storing and analyzing network data using machine learning
algorithms (KNN, SVM, and DT) in a distributed and parallel

manner. The research showed high efficiency of the KNN
algorithm accuracy of up to 99.9%, with a decrease in
processing time from 1792.8; to 1659.4 seconds for
classification of 23 classes.

 The research [16], a GPU coupled with a deep
convolutional neural network (DCNN) was used to detect
ultra-short-period planets (USP). It was trained on 2 million
samples. The results showed an accuracy of up to 99.5%.
This method is 1000 times faster in processing the optical
light curve compared to the conventional least squares
method without compromising accuracy.

 The research [17] Examined the effect of parallelism in
tuning hyperparameters on a fake news detection dataset
using CV from sci-kit-learn to tune a random forest classifier.
The results showed a slight change in model accuracy from
99.26% to 99.15%. The CPU times were five times faster
compared to sequential processing.

The research [18] Parallel architecture using multi-core
CPUs to accelerate the performance of machine learning
models. It focused on RF, XGBoost, AdaBoost, and KNN
models. The results showed a 1.7x and 3.8x faster
performance improvement for both small and large datasets
on quad-core CPUs, without compromising accuracy.

This research [19] Aims to use parallel processing using
Python on breast cancer dataset, AdaBoost model and DT
algorithm were combined to improve performance and
reduce processing time. The results showed the accuracy was
not affected by parallel processing, which is 97.37%. While
the training time was reduced by 7.04% when implementing
parallel processing compared to sequential processing.

 The research [20] Parallel processing was used in
training SVM and RF models to improve classification
accuracy and reduce training time. The results showed that
the 100-tree RF model increased classification accuracy from
58.87% to 63.59%. The training time was also significantly
reduced using the MPI4Py parallel processing interface from
1725.8 to 396.5ms.

 The research [21] Focused on the effect of parallel
processing on the performance of the Random Forest
algorithm using the CIFAR-10 dataset. The results showed
an accuracy of 97.50% for both sequential and parallel
processing. While the training time was reduced from 0.6187
to 0.4753 seconds.

The research [22], the impact of parallel processing on
the performance of the Extra Tree classifier was evaluated.
The results showed a slight improvement in accuracy from
88.23% to 88.43% when parallel processing was applied.
Also, parallel processing significantly reduced the
computation time, from 37.463 to 4.837 seconds.

This research [23] investigated the effect of parallel
processing on the performance of the LightGBM algorithm

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (53-66)

55

using the IRIS dataset. The results showed that the training
efficiency was significantly improved while maintaining
100% classification accuracy for both parallel and non-
parallel processing. While the training time was reduced
from 0.2316 to 0.1921 seconds when using parallel
processing.

 The research [24] Investigated the classification of
newspaper articles using the XGBoost algorithm. The results
showed an accuracy of 79.83% in both parallel and non-
parallel processing, with parallel processing contributing to a
significant reduction in training time from 501,319 to
264,978 seconds.

The research [25] Presented an analysis of the effect of
parallel processing on a Random Forest model using the
Apple M1 chip. The results showed a high accuracy of 100%
without the effect of parallel processing. The training time
was significantly reduced from 1.4956 to 0.3758 seconds for
parallel processing.

 The research [26] Used parallel processing of the Bison
algorithm using the PySpark framework to address
classification problems. The results showed a high accuracy
of 97%, with a significant improvement in execution time
efficiency; the processing time was reduced from 25946.03
seconds to 270.63 seconds.

3. Methodology

In this research, the utilization of the parallel processing
concept to reduce the execution time of machine learning

algorithms for pixel-based image classification as in the
methodology of the workflow plan shown in Figure 1.

1. Start.

2. Load the original images with their ground truth and data
pre-processing by drowning the ground truth colours in RGB
to be closer to the programming concept using the three basic
colours (red, green, and blue).

3. Input a single image with its ground truth to the program.

4. Choose an algorithm: a decision tree or a random forest as
a (10, 100, 500, and 1000) tree.

5. Set 10 rounds to reduce the randomness effect.

6. Data splitting to the training set (70%) and the testing set
(30%).

• Training The model using Parallel Processing.

• Training The model using Sequential Processing.

7. Cross-validation: split data into four sets for training and
testing.

• Training The model using Parallel Processing.

• Training The model using Sequential Processing.

Figure 1. Process flow of the proposed approach

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (53-66)

56

8. Testing data.

9. End of the classification process.

3.1 ParFor Function in Matlab
ParFor is a robust tool that lets users divide loops through

parallel processes, significantly accelerating code
performance [27]. ParFor is a parallel variant of the standard
for function, enabling the loop iterations to be conducted
more quickly on computers with multiple cores by
distributing them among several parallel processes rather
than implementing them sequentially [28]. ParFor can be
used in the following cases If the loop contains computations
that take a long time to complete. Also, calculating large
matrices or repeating computations, ParFor is useful for
distributing computations across multiple processors or cores
to speed up the calculation. When the loop operations are
independent of each other, meaning that the result of one
iteration does not depend on the result of the previous
iteration [29]. The ParFor function in MATLAB speeds up
the execution of loops by dividing the computation into
smaller, parallel tasks [27]. Imagine that you have a long list
of tasks. Instead of executing these tasks one by one, ParFor
divides the list into smaller groups and assigns each group to
a different "worker". Each worker performs its assigned tasks
independently and at the same time. After all the workers
have completed their tasks, the final results from each worker
are summed to form the overall result of the loop. Figure 2:
shows Pool of MATLAB Workers.

4. Dataset
The Oxford-IIIT Pet dataset, a dataset consisting of

(7349) cat images of (37) different breeds, was used. It was
obtained from the web and is an open-source data
[30][31][32]. The original images included various cat
categories, along with their ground truth images. However,
one of the objectives of this research is to train and test pixel-
based machine-learning models. Therefore, four cat images
were carefully selected for quality and accuracy as training
and testing models in this research. The ground truth images
consist of three categories: cat, border, and background,
which are characterized by different colours. To make the
ground truth images closer to the software concept for this
research, the primary colours (red, green, and blue) were
used. Figure 3 shows images used in this research.

4.1 Data Pre-processing
The ground truth images consist of three distinct classes:

cat, border, and background. The background classes, cat
border classes, and cat body classes were changed to be more
consistent with the programming concept of using RGB
colours. The ground truth images consist of three classes
(red, green, and blue). Figure 4 shows redrawing the colour
of ground truth, where the left image is before redrawing, and
right after redrawing.

 Figure 4. Redrawing the colour of ground truth, where
the left image is before redrawing, and right after

redrawing
There was no need for both the original image and ground

truth and wisdom because pixel wisdom can come from
ground truth to image. The images used in this section are
represented using RGB during processing. To process each
pixel, whether training or testing, concerning the ground
truth, labels were predefined for each pixel class where the

Figure 2. Pool of MATLAB Workers [29]

Figure 3. Samples of image used in this research

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (53-66)

57

background was defined as red, the body as blue, and the
shape boundaries as green.

5. Performance Metrics
A confusion matrix is a tool for evaluating the performance
of classification models in machine learning, comparing the
predicted results with the actual results [33][34]. The matrix
consists of four cells in the case of binary classification
[35][36]. Figure 5: shows confusion matrix.

The purpose of using accuracy in research is appropriate
because it is a comprehensive measure for evaluating the
performance of models and is a simple and effective
indicator, especially for problems related to the balanced
distribution of classes. It also highlights the impact of
technical improvements on the quality of the results, showing
that speeding up the processes does not affect the quantitative
performance the models.

Performance evaluation metrics using the confusion
matrix include [37][38][39]:

1. Accuracy: The ratio of correct predictions to
total.

2. Precision: The ratio of correctly classified
positives to positives.

3. Recall/Sensitivity: The ratio of correctly
classified positives to actual positives.

4. F1 Score: A weighted average of precision and
recall that balances them.

6. Decision Tree and Random Forest
 DT and RF algorithms are machine learning algorithms.
These can be used to solve classification and regression
problems. DT structure consists of nodes, branches, and
leaves. Nodes represent decision points that contain tests or
conditions, branches represent the results of those tests, and
leaves represent the final results [40][41][42]. Figure 6
shows the structure of the DT algorithm.

Figure 6. Structure of DT algorithm [43]

Figure 5. Confusion Matrix

Accuracy = 𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑡𝑡
 𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑓𝑓 + 𝑓𝑓𝑓𝑓 + 𝑡𝑡𝑡𝑡 (1)

Precision = 𝑡𝑡𝑡𝑡

 𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑓𝑓 (2)

Recall= 𝑡𝑡𝑡𝑡
 𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑓𝑓 (3)

 2* precision * Recall
 F1-Score=
 Precision + Recall

(4)

Algorithm 1: Pseudo code for the DT algorithm

1. BuildTree (N):
2. If N contains instances of only one class then
3. return
4. else
5. Randomly select x% of the possible splitting

features in N
6. Select the feature F with the Gini index to split on
7. Create f child nodes of N, N1, …., Nf, where F has

f possible values (F1, …, Ff)
8. For i = 1 to f do
9. Set the contents of Ni to Di, where Di is all

instances in N that match
10. Fi
11. Call BuildTree (Ni)
12. end for
13. end if

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (53-66)

58

x100

Random Forest is based on the Ensemble Learning method,
which improves the performance and accuracy, and controls
the overfitting of models by merging multiple decision trees
into a single model and merging their results to achieve more
stable results. [44][45][46] Figure 7 shows the structure of
the RF algorithm.

7. Performance Evaluation
The tree trained on the training data samples is used to
classify the pixels in the original image during the testing
phase. Each pixel is classified as belonging to one of three
classes: background, border, or shape, which are denoted by
the numbers 1, 2, and 3, respectively. The prediction is based
on the colour characteristics of each pixel, and the trained tree
is used to evaluate only the test data pixels. After evaluation,
the percentage of correctly classified pixels with their ground

truth is calculated, which is an estimate of the classification
accuracy. The accuracy percentage and the time taken to
classify are important performance metrics used to evaluate
classification models, making them essential criteria in this
research.

 Where the (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) is the total number of pixels that

used in the test (the number of test data pixels), and the
matching counter (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒) is the number of test
data pixels that was evaluated correctly.

7.1 Results and Discussion
In the results section, we will analyze and present the
outcomes of testing various models. Additionally, we will
evaluate the models' performance on unseen data by
generating confusion matrices, and accuracy scores using the
testing dataset.

A standardized evaluation scheme was used in which the
same test conditions and calculations were applied to
multiple runs of the Decision Tree (DT) and Random Forest
(RF) algorithms to compare the effectiveness of different
classification methods. The results of all runs were averaged
to reflect the most accurate statistical values, as the results
can vary slightly with each run due to the random selection
of pixels for training and testing. In the case of RF, the effect
of the number of trees on classification performance was
evaluated using four different forest sizes: 10 trees, 100 trees,
500 trees, and 1000 trees. The cases were randomly selected
to represent low and high values of the number of trees. Since
tree generation and testing are time-consuming and depend
on the number of features and the size of the test data, the
processing time for both DT and RF was improved by
implementing parallel processing using the ParFor function
in MATLAB. Two processing models were compared: the
regular model (with a single core) and the parallel model
(with multiple cores). In both models, the same training and
testing conditions and image data were used, with only the
processing mode differing. The results calculated include:
classification accuracy (percentage of pixels correctly
classified), average time per run, and confusion matrix
(which compares the predicted data to the target). 70% of the
image data was used for training and 30% for testing, with no
overlap between training and testing data.

7.2 Performance Measurements
Table 1 shows a comprehensive comparison of the

performance of pixel-based classification algorithms using
two methods, sequential processing, and parallel processing
using the ParFor function. By dividing the data into 70% for
training data and 30% for testing data, the results showed the
highest average accuracy of 96.4 for both sequential and
parallel processing methods, while the average execution

Figure 7. Structure of RF algorithm [40]

Algorithm 1: Pseudo code for the RF algorithm
1. To generate c classifiers:
2. For i = 1 to c do
3. Randomly sample the training data D with

replacement to produce Di
4. Create a root node, Ni containing Di
5. Call BuildTree (Ni)
6. end for

7. BuildTree (N):
8. If N contains instances of only one class then
9. return

10. else
11. Randomly select x% of the possible splitting

features in N
12. Select the feature F with the Gini index to split on
13. Create f child nodes of N, N1, …., Nf, where F has

f possible values (F1, …, Ff)
14. For i = 1 to f do
15. Set the contents of Ni to Di, where Di is all

instances in N that match
16. Fi
17. Call BuildTree (Ni)
18. end for
19. end if

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒
 P𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 accuracy =
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

(6)

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (53-66)

59

time of the algorithms was 83.86 seconds and 791.50 seconds
using sequential parallel processing. The highest accuracy
achieved among the models is the random forest model with
100 trees for the images (1, 2, 3, 4) (96.7, 97.5, 97.2, 96.1)
respectively. The lowest accuracy was for the decision tree
model (96.2, 95.7, 96.9, 90.5) for images 1, 2, 3, and 4
respectively. While parallel processing significantly
outperformed sequential processing in terms of execution
time, the execution time decreased from (1.85, 1.99, 3.70,
0.46) to (1.43, 0.82, 2.28, 0.35) for images (1, 2, 3, 4)
respectively. The results confirm the effectiveness and
impact of parallel processing on the efficiency of the
algorithms without compromising accuracy.

These results confirm that the random forest with 100
trees is the best choice in terms of balance between accuracy
and execution time, and highlight the effectiveness of parallel
processing in improving time efficiency without affecting the
accuracy of classification, which makes it a practical solution
for dealing with large data and complex models.

7.3 Confusion Matrix
Table 2 shows the confusion matrices of the RF100

classification model performance for both sequential and
parallel processing methods. This classification parameter
value gives the best performance among all settings
according to Table 1, Confusion Matrices for images 1, 2, 3,
and 4. Where classes 0, 1, and 2 in the table represent
background, border, and shape, respectively.

 For the first confusion matrix, the background class was
correctly predicted 1,953,690 times and was misclassified as
a border or shape 55,461 times. The border class was
correctly predicted 69,274 times and was misclassified as a
background or shape 12,608 times. The shape class was
correctly predicted 298,688 times and was misclassified as
both background and border 8,794 times. The overall
accuracy of the RF classifier is 100 for both serial and parallel
processing, similarly for the rest of the matrices.

Table 1. Comparison of accuracy and time taken between models to predict test images

Data set
 Normal Parallel (par for) function

classifier Accuracy (%) Avg _time[s] Accuracy (%) Avg_ time[s]

Image
1

DT 96.2 1.859 96.2 1.03

RF (10) 96.6 6.086 96.6 3.33

RF (100) 96.7 43.87 96.7 29.28

RF (500) 96.7 174.72 96.7 111.29

RF (1000) 96.7 447.43 96.7 231.09

Image
2

DT 95.7 1.99 95.7 0.82

RF (10) 97.2 5.53 97.2 2.11

RF (100) 97.5 88.83 97.5 15.88

RF (500) 97.5 221.39 97.5 74.57

RF (1000) 97.5 365.56 97.5 174.3

Image

3

DT 96.9 3.70 96.9 2.28

RF (10) 97.1 13.41 97.1 7.79

RF (100) 97.2 89.66 97.2 54.45

RF (500) 97.2 422.89 97.2 262.23

RF (1000) 97.2 13458.7 97.2 550.30

Image
4

DT 90.5 0.46 90.5 0.35

RF (10) 95.1 2.66 95.1 2.25

RF (100) 96.1 29.82 96.1 9.73

RF (500) 96.1 185.63 96.1 52.81

RF (1000) 96.1 265.84 96.1 91.38

Mean 96.4 791.50 96.4 83.86

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (53-66)

60

Table 2. Percentages of normal and parallel avsa confusion matrix.

 Image 1 Normal

Image 1 Parallel
predicted value predicted value

RF 100 Class0 Classl Class2 Total Class0 Classl Class2 Total

R
ea

l v
al

ue

Class0

1953690
81.40%

55461
2.30%

1485
0.10%

2010636
97.20%
2.80%

1953722
81.40%

55582
2.30%

1492
0.10%

2010796
97.20%
2.80%

Classl

8851
0.40%

69274
2.90%

3757
0.20%

81882
84.60%
15.40%

8813
0.40%

69157
2.90%

3669
0.20%

81639
84.70%
15.30%

Class2

49
0.00%

8745
0.40%

298687
12.40%

307482
97.10%
2.90%

55
0.00%

8741
0.40%

298768
12.40%

307565
97.10%
2.90%

Total
1962590
99.50%
0.50%

133480
51.90%
48.10%

303930
98.30%
1.70%

1321652 /
2400000
96.70%
3.30%

1962590
99.50%
0.50%

133480
51.80%
48.20%

303930
98.30%
1.70%

1321648 /
2400000
96.70%
3.30%

RF 100
Image 2 Normal

Image 2 Parallel
Class0 Classl Class2 Total Class0 Classl Class2 Total

R
ea

l v
al

ue

Class0
 1499332

80.00%
19005
1.00%

2095
0.10%

1520432
98.60%
1.40%

1499115
80.00%

12385
0.70%

2195
0.10%

1513695
99.00%
1.00%

Classl
 7006

0.40%
86390
4.60%

1170
0.10%

94566
91.40%
8.60%

7006
0.40%

69479
3.70%

1177
0.10%

77662
89.50%
10.50%

Class2
 1090

0.10%
16043
0.90%

242868
13.00%

260002
93.40%
6.60%

1190
0.10%

23445
1.30%

259008
13.80%

283643
91.30%
8.70%

Total 1507428
99.50%
0.50%

121438
71.10%
28.90%

246134
98.70%
1.30%

1828591 /
1875000
97.50%
2.50%

1507311
99.50%
0.50%

105309
66.00%
34.00%

262380
98.70%
1.30%

1827602 /
1875001
97.50%
2.50%

RF 100
Image 3 Normal

Image 3 Parallel
Class0 Classl Class2 Total Class0 Classl Class2 Total

R
ea

l v
al

ue

Class0

4273023
82.00%

103243
2.00%

12023
0.20%

4388289
97.40%
2.60%

4271799
81.90%

105043
2.00%

11023
0.20%

4387865
97.40%
2.60%

Classl

4034
0.10%

59987
1.20%

10779
0.20%

74800
80.20%
19.80%

4030
0.10%

59491
1.10%

10778
0.20%

74299
80.10%
19.90%

Class2

1073
0.00%

16710
0.30%

733127
14.10%

750911
97.60%
2.40%

1033
0.00%

16610
0.30%

734192
14.10%

751836
97.70%
2.30%

Total
4278130
99.90%
0.10%

179940
33.30%
66.70%

755930
97.00%
3.00%

5066138 /
5214000
97.20%
2.80%

4276862
99.90%
0.10%

181144
32.80%
67.20%

755994
97.10%
2.90%

5065483 /
5214000
97.20%
2.80%

RF 100
Image 4 Normal

Image 4 Parallel
Class0 Classl Class2 Total Class0 Classl Class2 Total

R
ea

l v
al

ue

Class0

569994
66.00%

13134
1.50%

1021
0.10%

584149
97.60%
2.40%

569994
66.00%

13134
1.50%

1021
0.10%

584149
97.60%
2.40%

Classl

1206
0.10%

79984
9.30%

5332
0.60%

86522
92.40%
7.60%

1206
0.10%

79984
9.30%

5332
0.60%

86522
92.40%
7.60%

Class2

1990
0.20%

11402
1.30%

179937
20.80%

193329
93.10%
6.90%

1990
0.20%

11402
1.30%

179937
20.80%

193329
93.10%
6.90%

Total
573190
99.40%
0.60%

104520
76.50%
23.50%

186290
96.60%
3.40%

829915 /
864000
96.10%
3.90%

573190
99.40%
0.60%

104520
76.50%
23.50%

186290
96.60%
3.40%

829915 /
864000
96.10%
3.90%

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (53-66)

61

7.4 Predicted Images
In Figure 8 the predicted images on the top row

represents the sequential processing and the bottom row
represents the parallel processing of the random forest model
with 100 trees. The Far left represents image number one.
The second image from the left represents image number
two. The third image from the left represents image number

three. The farthest right represents image number four. The
classification accuracy values shown in Table 1 for the RF
100 model produce the predicted image that is most similar
to the actual real image after classification shown in Figure
4. The RF 100 model achieves the highest classification
accuracy of (96.7%, 97.5%, 97.2%, and 96.1%) for the four
images (1, 2, 3, 4) respectively.

8. Cross Validation
In this research, 4-fold cross-validation was used as a

mechanism to evaluate the performance of the classifiers.[47]
[48]

In this method, the data is divided into 4 approximately
equal folds, where each fold is used once as the test data,
while the remaining three folds are used as the training data.
In each iteration, the classification model is trained on the
training data and then tested on the test fold, ensuring that the
test data is completely unknown to the classifier to ensure an
objective evaluation. The results of each test run are saved,
then the next fold is moved and the process is repeated until
all folds are tested. The results are then saved for four folds
and summed to calculate the overall performance of the
model. This method achieves an accurate and reliable
evaluation of the performance of the models by taking
advantage of the available data.

8.1 Performance Measurements of Cross-Validation
Table 3 compares the performance of the algorithms

using the cross-validation split for the two methods,
sequential and parallel processing. The table shows that the
average accuracy remains constant for both methods, while
the average time decreases significantly using parallel
processing by 399.01 seconds compared to 801.05 seconds
for sequential processing. The highest accuracy achieved in
the four images (1, 2, 3, 4) is (96.7, 97.4, 97.2, 96.1)
respectively. The lowest accuracy of the decision tree model
was (96.3, 95.9, 96.9, 90.5) for images 1, 2, 3, and 4
respectively. While parallel processing significantly
outperformed sequential processing in terms of execution
time, execution time decreased from (10.17, 8.28, 45.18,
4.02) to (7.92, 4.48, 12.73, 2.56) for images (1, 2, 3, 4)

respectively. The results confirm the effectiveness and
impact of parallel processing on the efficiency of algorithms
without compromising accuracy.

8.2 Confusion Matrix Cross-Validation
Table 4 shows the confusion matrices for cross-

validation (CV) of the classification model performance for
both sequential and parallel processing methods. This
classification parameter value gives the best performance
among all settings according to Table 3, Confusion Matrices
for images 1, 2, 3, and 4. Where classes 0, 1, and 2 in the
table represent background, border, and shape, respectively.

For the first confusion matrix, the background class was
correctly predicted 770510 times and was misclassified as a
border or shape 10739 times. The border class was correctly
predicted 39413 times and was misclassified as a background
or shape 14929 times. The shape class was correctly
predicted 118225 times and was misclassified as both
background and border 6184 times. The overall accuracy of
the RF classifier is 100 for both serial and parallel processing,
similarly for the rest of the matrices.

Figure 8. Predicted images for Normal and Parallel methods.

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (53-66)

62

Table 3. Comparison Of Accuracy And Time Taken Between Models To Predict Test Images Cross-Validation

Data set

 Normal Parallel (par for) function
classifier Accuracy (%) Avg _time[s] Accuracy (%) Avg_ time[s]

Image
1

DT 96.3 10.17 96.3 7.92

RF (10) 96.7 34.56 96.7 26.15

RF (100) 96.7 177.60 96.7 136.21

RF (500) 96.7 1258.9 96.7 582.56

RF (1000) 96.7 1700.0 96.7 1188.7

Image
2

DT 95.9 8.28 95.9 4.48

RF (10) 97.2 26.02 97.2 9.78

RF (100) 97.4 129.87 97.4 70.25

RF (500) 97.4 638.30 97.4 510.09

RF (1000) 97.4 1633.9 97.4 833.67

Image

3

DT 96.9 45.18 96.9 12.73

RF (10) 97.1 197.73 97.1 71.61

RF (100) 97.2 749.03 97.2 234.27

RF (500) 97.2 2581.61 97.2 1160.6

RF (1000) 97.2 5399.41 97.2 2494.1

Image
4

DT 91.1 4.02 91.1 2.56

RF (10) 95.2 12.81 95.1 5.17

RF (100) 96.1 81.89 96.1 35.62

RF (500) 96.1 501.83 96.1 185.75

RF (1000) 96.1 829.94 96.1 407.97

Table 4. Percentages Of Normal And Parallel Avsa Confusion Matrix Cross-Validation

 Image 1 Normal

Image 1 Parallel
predicted value predicted value

RF 10 Class0 Classl Class2 Total Class0 Classl Class2 Total

R
ea

l v
al

ue

Class0

770510
80.30%

10181
1.10%

558
0.10%

781249
98.60%
1.40%

770593
80.30%

10181
1.10%

558
0.10%

781332
98.60%
1.40%

Classl

12140
1.30%

39413
4.10%

2789
0.30%

54342
72.50%
27.50%

12140
1.30%

46444
4.80%

2703
0.30%

61287
75.80%
24.20%

Class2

2386
0.20%

3798
0.40%

118225
12.30%

124409
95.00%
5.00%

2386
0.20%

3788
0.40%

111207
11.60%

117381
94.70%
5.30%

Total
785036
98.10%
1.90%

53392
73.80%
26.20%

121572
97.20%
2.80%

928148 /
960000
96.70%
3.30%

785119
98.10%
1.90%

60413
76.90%
23.10%

114468
97.20%
2.80%

928244 /
960000
96.70%
3.30%

RF 100
Image 2 Normal

Image 2 Parallel
Class0 Classl Class2 Total Class0 Classl Class2 Total

R
ea

l v
al

ue

Class0

599997
80.00%

10022
1.30%

1034
0.10%

611053
98.20%
1.80%

595271
79.40%

10022
1.30%

1034
0.10%

606327
98.20%
1.80%

Classl

2003
0.30%

30209
4.00%

3204
0.40%

35416
85.30%
14.70%

2003
0.30%

39027
5.20%

3104
0.40%

44134
88.40%
11.60%

Class2

1136
0.20%

2400
0.30%

99995
13.30%

103531
96.60%
3.40%

1133
0.20%

2400
0.30%

96006
12.80%

99539
96.50%
3.50%

Total
603136
99.50%
0.50%

42631
70.90%
29.10%

104233
95.90%
4.10%

730201 /
750000
97.40%
2.60%

598407
99.50%
0.50%

51449
75.90%
24.10%

100144
95.90%
4.10%

730304 /
750000
97.40%
2.60%

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (53-66)

63

Predicted Images Cross-Validation
In Figure 9 the predicted images on the top row

represents the sequential processing and the bottom row
represents the parallel processing of the random forest model
with 100 trees. The Far left represents image number one.
The second image from the left represents image number
two. The third image from the left represents image number
three.

The farthest right represents image number four. The
classification accuracy values shown in Table 3 for the RF
100 model produced the predicted images that are most
similar to the actual/ real image in Fig. 3. The RF 100 model
achieves the highest classification accuracy of (96.7%,
97.4%, 97.2%, and 96.1%) for the four images (1, 2, 3, and
4) respectively.

Table 5 confirms the results obtained previously, the
performance of the proposed method was compared with the
methods mentioned in [14], [19], [20], [21], [23], and [22]
before and after applying parallel processing, as shown in
Table 5. The comparison shows that the proposed model
(using parallel processing of the ParFor function achieves a
significant time reduction of 24% while maintaining the same
accuracy. In [22], [20], and [14], we observe a slight time
reduction, while in [19], [21], and [23], the time decreased by
4%, 7%, and 1%, respectively.

Figure 9. Predicted images of Cross-Validation

RF 100
Image 3 Normal

Image 3 Parallel
Class0 Classl Class2 Total Class0 Classl Class2 Total

R
ea

l v
al

ue

Class0

212189
61.40%

3387
1.00%

2470
0.70%

218046
97.30%
2.70%

222285
64.30%

3387
1.00%

2470
0.70%

228142
97.40%
2.60%

Classl

3351
1.00%

24821
7.20%

1118
0.30%

29290
84.70%
15.30%

3351
1.00%

43714
12.60%

1118
0.30%

48183
90.70%
9.30%

Class2

1312
0.40%

1744
0.50%

95208
27.50%

98264
96.90%
3.10%

1312
0.40%

1744
0.50%

66219
19.20%

69275
95.60%
4.40%

Total
216852
97.80%
2.20%

29952
82.90%
17.10%

98796
96.40%
3.60%

332218 /
345600
96.10%
3.90%

226948
97.90%
2.10%

48845
89.50%
10.50%

69807
94.90%
5.10%

332218 /
345600
96.10%
3.90%

RF 100
Image 4 Normal

Image 4 Parallel
Class0 Classl Class2 Total Class0 Classl Class2 Total

R
ea

l v
al

ue

Class0

569994
66.00%

13134
1.50%

1021
0.10%

584149
97.60%
2.40%

569994
66.00%

13134
1.50%

1021
0.10%

584149
97.60%
2.40%

Classl

1206
0.10%

79984
9.30%

5332
0.60%

86522
92.40%
7.60%

1206
0.10%

79984
9.30%

5332
0.60%

86522
92.40%
7.60%

Class2

1990
0.20%

11402
1.30%

179937
20.80%

193329
93.10%
6.90%

1990
0.20%

11402
1.30%

179937
20.80%

193329
93.10%
6.90%

Total
573190
99.40%
0.60%

104520
76.50%
23.50%

186290
96.60%
3.40%

829915 /
864000
96.10%
3.90%

573190
99.40%
0.60%

104520
76.50%
23.50%

186290
96.60%
3.40%

829915 /
864000
96.10%
3.90%

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (53-66)

64

Conclusion
This research analyzed the effect of parallel processing

using the Parfor function on the performance of machine
learning algorithms for pixel-based image classification,
focusing on decision trees and random forest algorithms
(10, 100, 500, and 1000 trees). The models were tested in
two ways: 70% data split for training and 30% for testing,
and using four-fold cross-validation. The results showed
that parallel processing outperformed in reducing execution
time while maintaining accuracy. Parallel processing
proved effective in improving performance with large data
and complex models without compromising accuracy,
while cross-validation provided a comprehensive
assessment of the models. Parallel processing using the
Parfor function is an effective option for improving the
efficiency of machine learning-based classification
applications. In future work, experiments could be on larger
and more diverse datasets to evaluate the effectiveness of
parallel processing. Additionally, parallel processing could
be applied to other machine learning algorithms, such as
deep neural networks or unsupervised learning algorithms,
to measure the effectiveness of this approach with more
complex algorithms and high computational requirements.

Acknowledgement
The authors would express they’re thanks to the College

of Computer Sciences and Math. - University of Mosul.

Conflict of interest

None.

References
[1] A. Alseqyani and A. Almutairi, “History and Future Trends of

Multicore Computer Architecture,” International Journal of Computer
Graphics & Animation, vol. 13, no. 2, pp. 01–08, Apr. 2023.
https://doi: 10.5121/ijcga.2023.13201

[2] Mingjun Li., “A Parallel Algorithm and Implementation to Compute
Spatial Autocorrelation (Hotspot) Using MATLAB Autocorrelation
(Hotspot) Using MATLAB,” 2020.
https://epublications.marquette.edu/theses_open/584

[3] K. Jacksi, “A SURVEY OF EXPLORATORY SEARCH SYSTEMS
BASED ON LOD RESOURCES,” 2015. www.w3.org/TR/rdf-sparql-
query

[4] D. A. Zebari, H. Haron, S. R. M. Zeebaree, and D. Qader Zeebaree,
“Multi-Level of DNA Encryption Technique Based on DNA
Arithmetic and Biological Operations,” ICOASE 2018 - International
Conference on Advanced Science and Engineering, pp. 312–317, Nov.
2018. https://doi: 10.1109/ICOASE.2018.8548824

[5] A. N. Younis and F. M. Ramo, “A new parallel bat algorithm for
musical note recognition,” International Journal of Electrical and
Computer Engineering, vol. 11, no. 1, pp. 558–566, Feb. 2021.
https://doi: 10.11591/IJECE.V11I1.PP558-566.

[6] D. A. Zebari, H. Haron, S. R. M. Zeebaree, and D. Q. Zeebaree,
“Enhance the Mammogram Images for Both Segmentation and Feature
Extraction Using Wavelet Transform,” 2019 International Conference
on Advanced Science and Engineering, ICOASE 2019, pp. 100–105,
Apr. 2019. https://doi: 10.1109/ICOASE.2019.8723779

[7] J. Saeed and S. Zeebaree, “Skin Lesion Classification Based on Deep
Convolutional Neural Networks Architectures,” Journal of Applied
Science and Technology Trends, vol. 2, no. 01, pp. 41–51, Mar. 2021.
https://doi: 10.38094/jastt20189

[8] H. Shukur et al., “Characteristics and Analysis of Hadoop Distributed
Systems.” https://www.researchgate.net/publication/341775003

[9] P. Y. Abdullah, S. R. M. Zeebaree, K. Jacksi, and R. R. Zeabri, “AN
HRM SYSTEM FOR SMALL AND MEDIUM ENTERPRISES
(SME)S BASED ON CLOUD COMPUTING TECHNOLOGY,”
International Journal of Research -GRANTHAALAYAH, vol. 8, no.
8, pp. 56–64, Aug. 2020. https://doi:
10.29121/granthaalayah.v8.i8.2020.926

[10] Dathar A. Hasan, Bzar Kh. Hassan, Subhi R. M. Zeebaree, Dindar M.
Ahmed, Omar S. Kareem &, and Mohammed A. M. Sadeeq, “The
impact of test case generation methods on the software,” International
Journal of Science and Business, 2021.

[11] D. Abas Hasan, R. R. Zebari, S. R. M Zeebaree, and K. Jacksi,
“Security Approaches For Integrated Enterprise Systems Performance:

Table 5. Comparison With Previous Research

NO. Model Year Dataset Accuracy Time before applying parallel Time after applying parallel

1 [14] KNN,
SVM, Tree 2023 NSL KDD 99.90%

from (1826, 1856.5, and 1792.8)
for 2, 5, and 23-class

classifications, respectively.

To (1667.6, 1611.9, and 1659.4) s for 2, 5,
and 23-class classifications, respectively .

2 [19] SVM
and RF 2024 imSitu 63.59% from 1725.86ms to 396.54ms

3 [20] RF 2024 CIFAR-10 97.50% from 0.6187 seconds To 0.4753 seconds

4
[21] Extra

Trees
Classifier

2024 Fashion
MNIST 88.43% from 37.463 seconds to 4.837 seconds

5 [22]
LightGBM 2024 IRIS plant 100% From 0.2316 seconds to 0.1921 seconds

6 [23]
XGBoost 2024 Keras 79.83% from 501.319 seconds to about 264.978 seconds

7 Proposed
system 2024 Oxford-IIIT

Pet 97.2% from 13458.7 seconds to 550.30 seconds

https://epublications.marquette.edu/theses_open/584
http://www.w3.org/TR/rdf-sparql-query
http://www.w3.org/TR/rdf-sparql-query
https://www.researchgate.net/publication/341775003

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (53-66)

65

A Review,” Article in International Journal of Scientific & Technology
Research, vol. 8, 2019. www.ijstr.org

[12] P. Abdullah, H. Shukur, P. Y. Abdullah, S. R. M. Zeebaree, H. M.
Shukur, and K. Jacksi, “HRM System using Cloud Computing for
Small and Medium Enterprises (SMEs),” 2020.
https://www.researchgate.net/publication/341883552

[13] M. A. Omer et al., “Efficiency of Malware Detection in Android
System: A Survey,” Asian Journal of Research in Computer Science,
pp. 59–69, Apr. 2021. https://doi: 10.9734/ajrcos/2021/v7i430189

[14] M. Kollam and A. Joshi, “A MACHINE LEARNING MODEL FOR
AN EARTHQUAKE FORECASTING USING PARALLEL
PROCESSING,” Faculty of Engineering, The University of The West
Indies, 2020, pp. 512–518. https://doi: 10.47412/dhhv5862

[15] A. Boukhalfa, N. Hmina, and H. Chaoui, “Parallel processing using big
data and machine learning techniques for intrusion detection,” IAES
International Journal of Artificial Intelligence, vol. 9, no. 3, 2020.
https://doi: 10.11591/ijai.v9.i3.pp553-560

[16] Z. Haider, J. Ge, K. Willis, Y. Zhao, and K. Wang, “A Novel Method
of Transit Detection Using Parallel Processing and Machine
Learning.” www.JSR.org

[17] S. Al Bayyat, A. Alomran, M. Alshatti, A. Almousa, R. Almousa, and
Y. Alguwaifli, “Parallel Inference for Real-Time Machine Learning
Applications,” Journal of Computer and Communications, vol. 12, no.
01, pp. 139–146, 2024. https://doi: 10.4236/jcc.2024.121010

[18] A. Ghimire and F. Amsaad, “A Parallel Approach to Enhance the
Performance of Supervised Machine Learning Realized in a Multicore
Environment,” Mach Learn Knowl Extr, vol. 6, no. 3, pp. 1840–1856,
Aug. 2024, https://doi: 10.3390/make6030090

[19] V. Ashqi Saeed and S. R. M. Zeebaree, “Enhancing AdaBoost
Performance: Comparative Analysis of CPU Parallel Processing on
Breast Cancer Classification,” The Indonesian Journal of Computer
Science, vol. 13, no. 2, Apr. 2024. https://doi:
10.33022/ijcs.v13i2.3793

[20] Suprapto, Wahyono, N. Rokhman, and F. D. Adhinata, “A Parallel
Approach of Cascade Modelling Using MPI4Py on Imbalanced
Dataset,” International Journal of Computing and Digital Systems, vol.
15, no. 1, pp. 1289–1302, Mar. 2024. https://doi: 10.12785/ ijcds
/150191

[21] B. Haval and S. Zeebaree, “Parallel Processing Impact on Random
Forest Classifier Performance: A CIFAR-10 Dataset Study,” Apr.
2024. https://www.researchgate.net/publication/380576940

[22] N. M. Salih and S. R. Zeebaree, “Performance Evaluation of Extra
Trees Classifier by using CPU Parallel and Non-Parallel Processing,”
Indonesian Journal of Computer Science Attribution, vol. 13, no. 2, pp.
2024–1859, Apr. 2024.

[23] S. Muhammed Sulaiman and S. R. M Zeebaree, “Impact of Parallel
Processing on LightGBM Implementation a Comparative Analysis
CPU on Iris Plants Dataset,” Indonesian Journal of Computer Science
Attribution, vol. 13, no. 2, p. 2270, 2024.

[24] O. M. Ahmed, S. R. Zeebaree, and S. Askar, “Comparative Analysis
of XGBoost Performance for Text Classification with CPU Parallel
and Non-Parallel Processing,” Indonesian Journal of Computer
Science Attribution, vol. 13, no. 2, pp. 2024–1781, 2024.

[25] S. Aleissa, M. Alakkas, Z. Albugeaey, H. Alshelaly, S. Alotaibi, and
T. Alzubaidi, “Leveraging Parallel Computing for Enhanced Stock
Movement Forecasting Using Machine Learning,” in Proceedings -
2024 7th International Women in Data Science Conference at Prince
Sultan University, WiDS-PSU 2024, Institute of Electrical and
Electronics Engineers Inc., 2024. pp. 67–72. https://doi:
10.1109/WiDS-PSU61003.2024.00028

[26] S. A. Ludwig, J. Al-Sawwa, and A. M. Misquith, “Parallelization of
the Bison Algorithm Applied to Data Classification,” Algorithms, vol.
17, no. 11, Nov. 2024. https://doi: 10.3390/a17110501

[27] “Parfor.”Accessed: Dec. 19, 2024.
https://www.mathworks.com/help/parallel-computing/parfor.html

[28] “Nested Parfor and for-Loops and Other Parfor Requirements.”
Accessed: Dec. 19, 2024. https://www.mathworks.com/help/parallel-
computing/nested-parfor-loops-and-for-loops.html

[29] “Decide When to Use Parfor.” Accessed: Dec. 19, 2024.
https://www.mathworks.com/help/parallel-computing/decide-when-
to-use-parfor.html

[30] E. B. Hamdi, J. A. Sunaryo, and S. Y. Prasetyo, “Fusion of pre-trained
CNN models for cat breed classification: A comparative study,” in E3S
Web of Conferences, EDP Sciences, Sep. 2023. https://doi:
10.1051/e3sconf/202342601014

[31] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. V. Jawahar, “Cats and
dogs,” Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 3498–3505, 2012.
https://doi: 10.1109/CVPR.2012.6248092

[32] R. Hamdy and M. Younis, “Performance Evaluation of Artificial
Neural Network Methods Based on Block Machine Learning
Classification,” AL-Rafidain Journal of Computer Sciences and
Mathematics, vol. 17, no. 2, pp. 111–123, Dec. 2023. https://doi:
10.33899/csmj.2023.142250.1079

[33] P. Y. Rohan et al., “Real-time numerical prediction of strain
localization using dictionary-based ROM-nets for sitting-acquired
deep tissue injury prevention,” Reduced Order Models for the
Biomechanics of Living Organs, pp. 385–402, Jan. 2023. https://doi:
10.1016/B978-0-32-389967-3.00027-5

[34] F. M. Ramo and M. N. Kannah, “Detect Multi Spoken Languages
Using Bidirectional Long Short-Term Memory Article information
Abstract,” Journal of Computer Sciences and Mathematics (RJCM),
vol. 17, no. 1, pp. 2023–2024, 2023. www.csmj.mosuljournals.com

[35] A. A. Lawan, N. Cavus, R. Yunusa, U. I. Abdulrazak, and S. Tahir,
“Fundamentals of machine-learning modeling for behavioral screening
and diagnosis of autism spectrum disorder,” Neural Engineering
Techniques for Autism Spectrum Disorder: Volume 2: Diagnosis and
Clinical Analysis, vol. 2, pp. 253–268, Jan. 2022. https://doi:
10.1016/B978-0-12-824421-0.00020-5

[36] O. J. Awujoola, F. N. Ogwueleka, P. O. Odion, A. E. Awujoola, and
O. R. Adelegan, “Genomic data science systems of Prediction and
prevention of pneumonia from chest X-ray images using a two-channel
dual-stream convolutional neural network,” Data Science for
Genomics, pp. 217–228, Jan. 2022. https://doi: 10.1016/B978-0-323-
98352-5.00013-6

[37] M. S. Sandeep, K. Tiprak, S. Kaewunruen, P. Pheinsusom, and W.
Pansuk, “Shear strength prediction of reinforced concrete beams using
machine learning,” Structures, vol. 47, pp. 1196–1211, Jan. 2023.
https://doi: 10.1016/j.istruc.2022.11.140

[38] A. Kulkarni, D. Chong, and F. A. Batarseh, “Foundations of data
imbalance and solutions for a data democracy,” Data Democracy: At
the Nexus of Artificial Intelligence, Software Development, and
Knowledge Engineering, pp. 83–106, Jan. 2020. https://doi:
10.1016/B978-0-12-818366-3.00005-8

[39] P. Singh, N. Singh, K. K. Singh, and A. Singh, “Diagnosing of disease
using machine learning,” Machine Learning and the Internet of
Medical Things in Healthcare, pp. 89–111, Jan. 2021. https://doi:
10.1016/B978-0-12-821229-5.00003-3

[40] I. D. Mienye and N. Jere, “A Survey of Decision Trees: Concepts,
Algorithms, and Applications,” IEEE Access, vol. 12, pp. 86716–
86727, 2024. https://doi: 10.1109/ACCESS.2024.3416838

[41] A. Abdulwahhab Yehya, F. M. Ramo, and A. A. Yehya, “The
Intelligent Recognition of Speech Emotions: Survey Study,” Journal
of Computer Sciences and Mathematics (RJCM), vol. 17, no. 2, pp.
2023–2024, 2023. www.csmj.mosuljournals.com

[42] C. Y. Mohammed, K. Edward, S. Dragan, and R. Anthony, “Evaluating
Classification Algorithms for Improved Wastewater System
Calibration,” Computing and Control for the Water Industry, Sep.
2017, Accessed: Jan. 23, 2025.
https://web.archive.org/web/20200217175305/https://s3-eu-west-
1.amazonaws.com/pstorage-sheffield-5641355/9218269/F78.pdf

[43] R. Fiagbe, “Classification of Adult Income Using Decision Tree,”
University of Central Florida. 2023.
https://www.researchgate.net/publication/370770672_Classification_
of_Adult_Income_Using_Decision_Tree

[44] J. Ali, R. Khan, N. Ahmad, and I. Maqsood, “Random Forests and
Decision Trees,” 2012. www.IJCSI.org

http://www.ijstr.org/
https://www.researchgate.net/publication/341883552
http://www.jsr.org/
https://www.researchgate.net/publication/380576940
https://www.mathworks.com/help/parallel-computing/parfor.html
https://www.mathworks.com/help/parallel-computing/nested-parfor-loops-and-for-loops.html
https://www.mathworks.com/help/parallel-computing/nested-parfor-loops-and-for-loops.html
https://www.mathworks.com/help/parallel-computing/decide-when-to-use-parfor.html
https://www.mathworks.com/help/parallel-computing/decide-when-to-use-parfor.html
http://www.csmj.mosuljournals.com/
http://www.csmj.mosuljournals.com/
https://web.archive.org/web/20200217175305/https:/s3-eu-west-1.amazonaws.com/pstorage-sheffield-5641355/9218269/F78.pdf
https://web.archive.org/web/20200217175305/https:/s3-eu-west-1.amazonaws.com/pstorage-sheffield-5641355/9218269/F78.pdf
https://www.researchgate.net/publication/370770672_Classification_of_Adult_Income_Using_Decision_Tree
https://www.researchgate.net/publication/370770672_Classification_of_Adult_Income_Using_Decision_Tree
http://www.ijcsi.org/

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (53-66)

66

[45] H. Deng, Y. Diao, W. Wu, J. Zhang, M. Ma, and X. Zhong, “A high-
speed D-CART online fault diagnosis algorithm for rotor systems,”
Applied Intelligence, vol. 50, no. 1, pp. 29–41, Jan. 2020. https://doi:
10.1007/S10489-019-01516-2.

[46] L. Fawaz Jarallah, “Medical decision support systems for diagnosing
diseases based on ensemble learning algorithms,” Journal of Computer
Sciences and Mathematics (RJCM), vol. 18, no. 2, pp. 115–120, 2024.
www.csmj.mosuljournals.com

[47] J. Allgaier and R. Pryss, “Cross-Validation Visualized: A Narrative
Guide to Advanced Methods,” Machine Learning and Knowledge
Extraction 2024, Vol. 6, Pages 1378-1388, vol. 6, no. 2, pp. 1378–
1388, Jun. 2024, doi: 10.3390/MAKE6020065.

[48] M. Y. Chachan, E. Keedwell, and D. Savic, “An Investigation of Pixel-
Based and Object-Based Image Classification in Remote Sensing,”
Kurdistan Region, Iraq: IEEE, Oct. 2018.

http://www.csmj.mosuljournals.com/

	2. Literature Review
	3. Methodology
	3.1 ParFor Function in Matlab

	4. Dataset
	4.1 Data Pre-processing

	5. Performance Metrics
	6. Decision Tree and Random Forest
	7. Performance Evaluation
	7.1 Results and Discussion
	7.2 Performance Measurements
	7.3 Confusion Matrix
	7.4 Predicted Images

	8. Cross Validation
	8.1 Performance Measurements of Cross-Validation
	8.2 Confusion Matrix Cross-Validation
	Predicted Images Cross-Validation

