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which each member is the sum of an idempotent and a
nilpotent. T. Kozan first proposed the idea of a strongly nil
Every ring in this study is associated with identity. clean ring in 2016 [9].

1. Introduction

The Jacobson radical, the set of units of R,
idempotents, tripotents, and nilpotents are represented by
the symbols J(R),U(R),Id(R),Tr(R), and N(R),
respectively.

2. Preliminaries
We provide well-known findings and definitions in this

o ) ) section that might be required in the subsequent.
We also identify Z,, as a ring of integers modulo n. A

ring R is referred to as a stronglyTri-nil clean ring if each Definition 2.1 [10] :
member can be expressed as the sum of a tripotent and a
nilpotent that commute[1], [2], [3]The sum of a nilpotent
and two tripotents that commute with one another is known
as a Zhou ring [4].

If p = p3, then p is a tripotent element. If all of the
elements of a ring R are tripotents, then the ring R is said to
be tripotent.

When each member of R is the sum of a unit an Definition 2.2 [11]:
idempotent, the ring is said to be a clean. As defined by W.
K. Nicholson in 1997 [5]. Nicholson [6] defined the If there is a positive integer § such that ¢® = 0, then a
strongly clean ring of the unit and the idempotent commute member o of aring R is referred to as nilpotent.
later in 1999. Many authors worked in this kind of ring, for
example [6], [7] Lemma 2.3 [12] :

Disel[8] presented the idea of a nil-clean ring, A ring in
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(1 +n) and u + n is a unit when n is a nilpotent, u is a
unit, and un = nu.

Lemma 2.4 :

If p is a tripotent element ,then :

1. p?and 1 — p?are idempotents.
2. p% + p — 1is aunit of order 2.
Definition 2.5 [13] :

If r(o0) is the right annihilator of g, the right singular ideal
of R is represented.

byY(R) = {o € R : r(o) is essential right ideal}.

Definition 2.6 [10] :

A ring R is called a Zhou, if for every 6 E R,0 = p; +
p, + n ,where p;,p, € T(R), n € N(R), that commute, with
one another.

Example 2.6.1 :

In Z,, ring, we note that :

N(R) = {0,10} and Tr(Z,,) = {0,1,4,5,9,11,15,16,19}

>

clearly Z,, is a Zhou

Theorem 2.7 [14], [15] :

The following issues are equivalent for any ring R:

(1) R is strongly 2nil-clean.

(2) 0 — o € N(R) for each o € R;

(3) each member in R is the sum of a commuting

tripotent and a nilpotent.

Theorem 2.8 [16] :

Let R be a ring, the following are equivalent:

1. Zhou nil-clean is R.

2. R/J(R) has the identity 6> = o, and J(R)
is nil.

3. Forallo € R,o% — gis nilpotent.

3. The strongly Tri-nil clean rings

Definition 3.1 [3] :

A tri-nil clean ring, or TNC for short, is a ring R. if 0 =
p +n, where p3 =p, and n € N(R), for each ¢ € R.Is
referred to as a strongly TNC ring if pn = np, or STNC for
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short.

Example 3.1.1 :

Take the ring Z,,.Then N(Z;,) = {0,6} and

Tr(Z,,) = {0,1,3,4,5,7,8,9,11}. Clearly the ring Z,, is a
STNC ring.

Proposition 3.2 :

Every a STNC ring is a strongly Clean ring.

Proof :

Let 0 = p + n, where p € Tr(R), n € N ( R ) and
pn = np, then o may be writtenas 0 =1 — p2 + p?2 + p —
1+n , Note that p> +p — 1 is a unit, say uand 1 — p? is
idempotent, by Lemma2.5.2 say 4, 6 = 1 + u, Observe that
ud = Au , therefore R is a strongly clean ring.

Proposition 3.3 :

A homomorphic image of a STNC ring is a STNC ring.

Proof :

LetF: R — R’ be a homomorphism from R to R’, for any
h € R’ existingo € R, sothath = F(0). Sincec € R ,
c=p+n,where p3 =p,n€ N (R),and pn =np .

So,h = F(0) =(p +n)=F(p)+F(n),

Know we prove F(p) is trepotent F(p)3=F(p3) = F(p)
then F(p) E T(R") , and F(n) € N(R"), Thus F(R) is a
STNC ring is a homomorphic.

Proposition 3.4 :

If 6 is a STNC element, then ¢ ? is a strongly nil-clean.

Proof :

Letoc €R,0 = p + n,where p € Tr(R), n € N (R), and
pn = np,c? = (p +n)? = p? + 2pn + n?

Since p? € Id(R),and 2pn + n’€ N (R). Thus o2 is a
strongly nil-clean ring.

Proposition 3.5 :

If 62 is a STNC element, then ¢ and —g are strongly
clean.

Proof :

Letc € R, 6% = p + n, where p € Tr(R), n € N (R),
and pn =np, we may write as :
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02 =1-p?+p%?+p—1+n,wenotice that
u=p?+p—1€U(R)and 1 =1—p? € Id(R) by
Lemma 2.5.2 , we have 6> — 1 = u, Then (6 — 1)(o +
A =u,

(60 —A) (o + 1) u~t =1, then ¢ and —o are strongly
clean ring.

Theorem 3.6 :
Let R be a STNC ring, then Y(R) is a nil ideal

Proof :

Letc€eY(R),c=p+n,suchthat peTr(R) ,n €N
(R), and pn = np.

since o € Y(R), then r (o) is essential right ideal. Consider
r(o) N pR.

Take x € r(c) N pR, we have x € r(g)and x € pR,

we have ox = 0 and x = pr. So opr = 0 then(p + n)pr =
0,

p%r + npr = 0,hence p?r + np3r = 0, then p?r(1 + np) =
0, p?ru = 0, gives p3r = 0, thus pr = x =0

As r(o) is a nontrivial essential ideal, then pR = 0,
gives p = 0.
Theorem 3.7 :

If R is aring with every ¢ € R, 02 is a STNC ring, then
R is zhou ring.

Proof :

Let 62 € R,02 = p + n, where p € Tr(R), n € N(R), and
pn = np, by Theorem?2.9, then we have
(6)® — 0% € N(R), gives 0® — a2 € N(R), so a(a° —
o) E N(R)
Thus
N(R),

(6* —1)o(c® — 0) € N(R), then(c® —o0)% €

we get 6° — o € N(R), therefore R is zhou ring.

Theorem 3.8 :

If R is a STNC ring withn? + 2n = 0, for every neN(R)
then char(R) = 48, and every unit of order 4.

Proof :

Letoc €R,0 = p +n,where p € Tr(R), n € N (R), and
pn = np,

Forany u € U(R),thenu = p + n, givesu —n = p.
By Lemma2.5.1 u —n € U (R), this implies p? = 1.

On the other hand u? = p? + 2pn + n?%,s0 u? = p? +

82

n’,wheren' = 2np + n2 € N(R),sou? =1+7n/,

Nowu* = (1+n)2= 1+2n +n'’(since 2n' +n'> =

0),by assumption, then U* = 1.

Furthermore, since 6 € N(R)by Proposition3.1,and since
n? +2n =0 foreveryn € N(R) .

Then, 6% + 2(6) = 0,36 + 12 =0 ,then 48 =0 .

Example 3.8.1 :

Consider Z,g , where
N(Zys) = {0,6,12,18,24,30,36,42} ,and
U(Z,g) = {1,5,7,11,13,17,19,23,25,29,31,35,41,43,47}
Now that U* = 1 ,for every u € U(R)

Theorem 3.9 :

Let R be a STNC ring, then for every o € R, there is at
least b € R such that b € Id(R), or ab € Tr(R).

Proof :

Letoc €R, theno =p+n, wherep € Tr(R) and n €
N(R), and pn = np.

Since n is nilpotent, then n% =0, for some positive
integer ¢. So

b=pd1—po-2 8-3p2 _ 8=4p3 4 n8-5pt _

+ (_1) S+1 n 5-1

n+p°n

ob = (p +Tl)(p 5-1 _pS—Zn +p6—3n2 _p6—4n3 +
p5—5n4 — et (_1) 8+1n6—1)

ob=(p®—pSin+pSn? —pd-3n3 4 pd-int —
cee (_1) 5+1 pn8—1 +p6—1n _p8—2n2 +p6—3n3 _
p6—4n4 4ot (_1) 5+1n6’

ob=p?

If §iseven, then b = p?, p? € Id(R),or § isodd, then
ob=p,p €Tr(R).

Theorem 3.10 :

For a ring with 3 € N(R),then R is a STNC ring if and
only if every member of R is a sum of 3 tripotents and
nilpotent that commute.

Proof :
Let o € R,0 = p +n, where p € Tr(R), n € N(R), and
pn =mnp

0=0+0+p+n. As a result, ¢ is the sum of 3
tripotents that commute.
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Conversely: Let o=p,+p,+p3+n, where
P1,P2,p3 € Tr(R) and n € N(R), that commute with each
other

Now,0% = (py +p2 +p3 +1n)* = (p1 +p2 +p3)° +
3(p1 + p2 +p3)°n+3(ps + p2 +p3)°n* +1nd,=p; +
p, +ps +n'.

So,(p1 + p2 +p3)® = (p1 +p2)% +3(ps +p2)%ps +
3(p1 +p2) Pz +p3°.

since 3 € N(R), then 3(p; + p2)%ps +3(p1 +p2)ps 2 €
N(R), say n.

And (p, +p,)° = p3 +3p2p, + 3p,p% + p}

Since 3 € N(R)then n' = 3p?p, + 3p;p? € N(R),and
n+n' =n" € N(R)

3 _ .3 3 3 3 _
Therefore ¢° =p] +p, +p;+n'0°=p, +p,+p; +
nl’,
Then 63 — o =n" —n,50 6% — 0 € N(R) by Theorem 2.8,
o is a STNC ring.

Conclusion

We demonstrate that the Jacobson radical and the right
singular ideal over a strongly Tri-nil clean rings are nil
ideals in this work, which gives a new property of a strongly
Tri-nil clean ring. Additionally, provide the relationships
between rings that are strongly Tri-nil clean and rings that
are related. In addition, we study a ring with each of its two
members o,b in R,o.b = p,ob € Id(R), or ab € Tr(R).
and we introduce and study a particular class of strongly
Tri-nil clean rings. Lastly, we demonstrate that a ring that
contains all of the elements o in R,02 is a zhou ring that is
strongly Tri-nil clean.
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	(,,𝜎-2.)-3.−,𝜎-2.∈𝑁,𝑅., gives ,𝜎-6.−,𝜎-2.∈𝑁,𝑅., so 𝜎(,𝜎-5.−𝜎)∈𝑁,𝑅.
	Thus (,σ-4.−1)σ(,σ-5.−σ)∈N(R), then,(,σ-5.−σ)-2.∈N(R),
	we get ,,σ-5.−σ- .∈N(R), therefore 𝑅 is zhou ring.
	Theorem 3.8 :
	If 𝑅 is a STNC ring with ,𝑛-2.+2𝑛=0, for every 𝑛𝜖𝑁(𝑅) then 𝑐ℎ𝑎𝑟(𝑅)=48, and every unit of order 4.
	Proof :
	Let σ ∈ 𝑅, 𝜎=𝜌+𝑛, where 𝜌∈𝑇𝑟(𝑅),  𝑛 ∈ 𝑁 (𝑅), and 𝜌𝑛 = 𝑛𝜌,
	For any 𝑢∈𝑈(𝑅),then 𝑢=𝜌+𝑛, gives 𝑢−𝑛=𝜌.
	By Lemma2.5.1  𝑢−𝑛 ∈ U (𝑅), this implies ,𝜌-2.=1.
	On the other hand ,𝑢-2.=,𝜌-2.+2𝜌𝑛+,𝑛-2.,so ,𝑢-2.=,𝜌-2.+𝑛′,where ,𝑛-′.=2𝑛𝜌+,𝑛-2.∈𝑁(𝑅),so ,𝑢-2.=1+𝑛′,
	Now ,𝑢-4.=(,1+𝑛′)-2.= 1+2,𝑛-′.+,,𝑛-′.-2.(since 2,𝑛-′.+,,𝑛-′.-2.=0),by assumption, then ,𝑈-4.=1.
	Furthermore, since 6∈N(𝑅)by Proposition3.1,and since ,𝑛-2.+2𝑛=0 ,for every 𝑛∈𝑁,𝑅. .
	Then, ,6-2.+2,6.=0,36+12=0  ,then  48=0  .
	Example 3.8.1 :
	Consider  ,𝑍-48. , where
	𝑁,,𝑍-48..={0,6,12,18,24,30,36,42} ,and
	𝑈,,𝑍-48..={1,5,7,11,13,17,19,23,25,29,31,35,41,43,47}
	Now that ,𝑈-4.=1 ,for every 𝑢∈𝑈(𝑅)
	Theorem 3.9 :
	Let 𝑅 be a STNC ring, then for every 𝜎∈𝑅, there is at least 𝑏∈𝑅 such that 𝜎𝑏∈𝐼𝑑,𝑅., or 𝜎𝑏∈𝑇𝑟(𝑅).
	Proof :
	Let 𝜎∈𝑅, then 𝜎=𝜌+𝑛 , where 𝜌∈𝑇𝑟(𝑅) and 𝑛∈𝑁(𝑅), and  𝜌𝑛=𝑛𝜌.
	Since n is nilpotent, then ,,𝑛- 𝛿.=0 , for some positive integer 𝜍. So
	𝑏=,𝜌- 𝛿−1.−,𝜌- 𝛿−2.𝑛+,𝜌- 𝛿−3.,𝑛-2.−,𝜌- 𝛿−4.,𝑛-3.+,𝜌- 𝛿−5.,𝑛-4.−…   +,(−1)- 𝛿+1 .,𝑛- 𝛿−1.
	𝜎𝑏=(𝜌+𝑛)(,𝜌- 𝛿−1.−,𝜌- 𝛿−2.𝑛+,𝜌- 𝛿−3.,𝑛-2.−,𝜌- 𝛿−4.,𝑛-3.+,𝜌- 𝛿−5.,𝑛-4.−…+,(−1)- 𝛿+1 .,𝑛- 𝛿−1. )
	𝜎𝑏=(,𝜌- 𝛿.−,𝜌- 𝛿−1.𝑛+,𝜌- 𝛿−2.,𝑛-2.−,𝜌- 𝛿−3.,𝑛-3.+,𝜌- 𝛿−4.,𝑛-4.−…+,,−1.- 𝛿+1 .𝜌,𝑛- 𝛿−1.+,𝜌- 𝛿−1.𝑛−,𝜌- 𝛿−2.,𝑛-2.+,𝜌- 𝛿−3.,𝑛-3.−,𝜌- 𝛿−4.,𝑛-4.+…+,(−1)- 𝛿+1 .,𝑛- 𝛿.,
	𝜎𝑏= ,𝜌- 𝛿.
	If  𝛿 is even , then 𝜎𝑏=,𝜌-2., ,𝜌-2 .∈𝐼𝑑(R), or 𝛿  is odd, then 𝜎𝑏=,𝜌- ., ,𝜌- .∈𝑇𝑟(𝑅).
	Theorem 3.10 :
	For a ring with 3∈N(R),then R is a STNC ring if and only if every member of R is a sum of 3 tripotents and nilpotent that commute.
	Proof :
	Let 𝜎∈𝑅,𝜎=𝜌+𝑛, where 𝜌∈𝑇𝑟(𝑅), 𝑛∈𝑁(𝑅), and 𝜌𝑛=𝑛𝜌
	𝜎=0+0+𝜌+𝑛. As a result, σ is the sum of 3 tripotents that commute.
	Conversely: Let 𝜎=,𝜌-1.+,𝜌-2.+,𝜌-3.+𝑛, where ,𝜌-1.,,𝜌-2.,,𝜌-3.∈𝑇𝑟(𝑅) and 𝑛∈𝑁(𝑅), that commute with each other
	Now,,σ-3.=,(,ρ-1.+,ρ-2.+,ρ-3.+n)-3.=(,,ρ-1.+,ρ-2.+,ρ-3.)-3.+3(,,ρ-1.+,ρ-2.+,ρ-3.)-3.n+3(,,ρ-1.+,ρ-2.+,ρ-3.)-3.,n-2.+,n-3.,=,ρ-1.+,ρ-2.+,ρ-3.+n′.
	So,(,,ρ-1.+,ρ-2.+,ρ-3.)-3.=,(,ρ-1.+,ρ-2.)-3.+3,(,ρ-1.+,ρ-2.)-2.,,ρ-3.- .+3,(,ρ-1.+,ρ-2.)- .,,,ρ-3.- .-2.+,,,ρ-3.- .-3..
	since 3∈N(R), then   3,(,ρ-1.+,ρ-2.)-2.,,ρ-3.- .+3,(,ρ-1.+,ρ-2.)- .,,,ρ-3.- .-2.∈N(R), say n.
	And ,(,ρ-1.+,ρ-2.)-3.=,𝜌-1-3.+3,𝜌-1-2.,𝜌-2.+3,𝜌-1.,𝜌-2-2.+,𝜌-2-3.
	Since 3∈N(R)then 𝑛′=3,𝜌-1-2.,𝜌-2.+3,𝜌-1.,𝜌-2-2.∈N(R),and 𝑛+,𝑛-′.=𝑛′′∈N(R)
	Therefore ,σ-3.=,𝜌-1-3.+,𝜌-2-3.+,𝜌-3-3.+𝑛′′,,σ-3.=,𝜌-1.+,𝜌-2.+,𝜌-3.+𝑛′′,
	Then  ,𝜎-3.−𝜎=,𝑛-′′.−𝑛,so ,𝜎-3.−𝜎∈𝑁(𝑅) by Theorem 2.8, 𝜎 is a STNC ring.

