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1. Introduction =8 fork=0
. : . diy = 3)
“The (C.G) algorithm is one of the efficient numerical - gin T Bd, fork >1

algorithms that are characterized by simplicity and nice

convergence property Where k is integer , gy is the gradient of the f(x) and By is

coefficient of (C. G)algorithm [1,2,3 ,4, 5,6 ]

ek f) M The line search of C.G algorithm depend the weak Wolfe
Let x be a variable and f:R" = R. The CG method conditions are commonly utilized:
produces {x; } as follows: fx, +a,d,)—f(x,)< a?aka(xk)Tdk 4)
"Xy =X, +ad," )
. . . . T T
Where x,is the current point , a, > 0 is step size . Vf(xk + akdk) dk > gvf(xk) dk 5)

Additionally, robust Wolfe conditions necessitate the
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inclusion of condition (4) and

‘g(xk+akdk)Tdk|<—a gld, " (6)

2. The new conjugacy oefficient

In this section, we will use the modified QN direction
in [7] which is defined in eq.(7) satisfy perry condition to
generate a new scale (4;). Then, we equality stander (C.G)
direction which is defined in eq.(3) and the modified QN
direction to derive a new conjugacy coefficient (B<) as
follows:

dis1 = =V frr1Gr+1  AeSie 7

Multiplying eq (7) by (y)
dis1Vi = ViV fer1Ge1 + LcYieSi (®)

From QN condition (V™1 f, 1Y% = S,) and perry condition
(dk+1Yk = —tGk+15k)

—tGk+1Sk = ~SkJk+1 T AVkSk ©)
(- t)9k+15k
A=t (10)
After , we submit eq. (10) in eq. (7), we get
_ -1 (1_t)9£+15k
dierr = =V feraGewr + |7 re " | Sk an
k°k

And by equating eq. (11) and eq.(3) , we obtained

_ (1-6)gk 415 .
V7 fer1Gra1 +[y,€—sk:1k] Sk = —Gk+1 + Brsk  (12)

Multiply by both side of eq.(12) s;Vfi.+1 and we get:
—Sk ka+1‘7_ Je+19k+1

1- t)g S
[ Al Sk Vfir1Sk=—Sk Vfxs19k+1

Yk k
+ Bk Vfir15k (13)
(1-t) G415
T k+1°k| T _ T
-Skk+1 T sk Sk Vfie+1Sk = =Sk V191 +
* T
B*skVfi+1Sk (14)
(- t)gk+1sk va
~Sk Gk+1+SEV ka1 Gran+ #
¥ il 15)
ﬂk B 51’5 Vik+1Sk (
ﬁ* — —g£+15k Szvfk+19k+1 (1—t)g;€+15k ] (16)
SE Vfk+1Sk St Vfk+1Sk yEsk

From [8] since
SkVfi+1Sk = 2/3 sgye + 2/3(fic — fres1) Vi
 we get :
ﬂ* gk+15k + yl’{-gk+1 (1—t)g£+15k ]
2/35;yic+2/3 (Fe—fra) — 2/3 sgyi+2/3 (Fe—Fra1) Vi sk
Then new direction is defined:

i1
= —Gk+1

9k+15k Vi G+t
Z 7. 2
ISk t3 (fk fier1) 3 SkVk +§(fk = fie+1)

[(1 — t)Gi415k ]
yk Sk Sk

a7

The new algorithm :
Stepl: given xo € R™, Set k= 0.
Step2: let dy = —go
Step3: Determine the positive step length (ay)
that satisfies equations (4) and (6), and then
determine xj,, in eq.(2)
Step4: if |lgkll <1075 | Cease operations;
otherwise, calculate the new direction with
equation eq (17).

T
Step5: If k=n or Powell restart Zegkl 5

lgk+1ll?

0.2 [9], Then, continue to step 2. Otherwise, set
k to k+1 and proceed to step 3.

Theorem [1]:
Let the line search Ol in (2) satisfies the strong Wolfe

condition, then the new search direction given by eq (17) is a
sufficient descent direction.

Proof:
After we multiplying both sides of Eq. (17) by (”;(&)then
+1

I

we get:

T
di+19k41

2
||gk+1

+1

_ 9k+15k Vi Gies1
= *2 2
ISk t3 (fk fier1) 3 SkVk +§(fk = frr1)

[(1 - t)gk+1sk ] SkGk+1

Vi Sk 2
||gk+1

(18)

By using eq.(6),we obtain

< OGSk N Vi I+t
=G 7 . 2
3 SkVk +§(fk = fr+1) 3 SkVk +§(fk = fr+1)
[(1 —t) — agpsk ] —0Sk gk

Vi Sk 2
||gk+l ”

since Yy grr1 < ||yk ” ”ngr1 and from (4) , we obtain
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—a (gisi)?

<( N
[2/3 sgyr — 2/3 Sagrdy] ||gk+1 ”

T
—0Sk gk ||J’k ” ||gk+1 ”

[2/3 diy, - 2/3 6, g3l ||

L|a- o’ (gidy)?

- 2
Yie Sk ||gk+l

SEYk
Since s < —kik
K9k < (0+1)

()

2/3 syl —2/3 Say (G - 1)] & ”

oSk

(O‘ + 1) ||yk || ||gk+l

:2/3 s,{yk - 2/3 5ak ((;’;;,:)] ||gk+1 ”2

000" ()

r 2
Vi Sk ||gk+1 ”

T
0S8k Yk

c+1) ||y k || ||g kel

|2/3 SpYir[1 — Say ((:.;;_k)l )

2
(1-00" (3) sine
||gk+l ”2

2
||gk+l ”

+

Il
o)

where 1 is small constant

dis19k+1 < —(1 - 7)||gk+1 ”2
(19)

The proof is complet.

ASSUMPTION(A) [10]

(“(i(i) The set S, defined as S = {x: f(x) < f(xp)}, is
bounded, indicating the  existence of a positive scalar
b > 0 such that ||x|| < b,Vx € s.

(i) The function f demonstrates continuous
differentiability inside a neighborhood N of S, and its
gradient satisfies the Lipschitz condition, as given by
the equation:

lgC) — gLl —yll, vx,y € N N (20)

On the basis of these assumptions concerning f, we are able
to arrive at the conclusion that there is a positive constant
represented by y>0 that occurs in such a way that:

Y=<Vl sy 21

Below the assumptions (i) and (ii) on f, we are able to deduce

that there exists y >0 such as

y<|Vf )| <y (22) "

For strictly convex function we have :

(iii)
(g Vx,yeS,u>0

(23)

Theorm[2] : Global convergence
Given Assumption [A]and theorem [1] hold then
lim (inf | g |=0)
Proof
Since this is the case, taking into consideration the absolute
value of 3, we obtain:

_ | ~Jic+15k
=l —>
SV T3 (fx = fr+1)
N Vi Gr+1
2. 2
35KV T3 (fk = fr+1)
[(1 - t)gk+15k ] |
yk Sk
|[),* < | —91€+15k |
- 2 2
-3 [Siyi + 3 (fres1 — fi)]
ylfgk+1

+ |

7 . 2
3KVt 3 (fk+1 = fi)
+ | [ t)gk+1sk] |

3’k Sk

From eq, (4),eq.5 and since y;gr,1 < ||yk ” ”gk+1 ” we have:
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5l < 795 |
= [2/3 sgyk — 2/3 Sakgydy]
. [yellgeal
[2/3 sgyr —2/3 6aygidy]
| (1—t)agy sk |
Vi Sk
Since s, = —g; [11] we obtain
|ﬁ* < | 0'||gk,||2

(2/3 .|| +2/3 6allgli?]

elllg

(273 wfls | +2/3 6aillgli?]
|0z valal?,
el
ldal <lgeal+ s, = D

1 1
—_— 1 = oo.
2]{21 ”dk+1”2 D2 ZkEl

ie. %imllgkll =0.

+ |

4. Numerical result and comparisons

“The numerical results of the new technique and the HS
C.G method are reported in this section. These results are
based on test problems chosen from [12], and they are
presented in this section. Taking into consideration the fact
that the halting criterion is||g|| < 107>, we are having this
in mind. The employment of cubic lines is what allows for
the unique method to be accomplished. It is necessary to
make use of the Dolan-More tool [13] in order to guarantee
that the performance of the new approach is satisfactory.

Figures (1,2) Using the Dolan-More graph, this research
presents an illustration of the performance of the novel
method. This illustration is offered in this study. Particularly
for problem dimensions that are somewhat close to (1000,
10000), the focus is on the number of function evaluations
(NOF), which will be discussed further below. In Figures (3,
4), It is possible to accomplish the goals that have been set
by placing an emphasis on the performance of the new
technique, which is dependent on the (NOI) with dimensions
that are typically between 1000 and 10000. Because of this,
we are able to accomplish the specified results.

Figure (5,6) displays the graphical description of the new
technique, which is based on the amount of time spent by the
central processing unit (CPU) and has dimensions of 1000
and 10000. These parameters, which are used to characterize
the approach, are displayed presently.
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Figure 1. performance profiles of NOF with (n=1000)
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Figure 2. performance profiles of NOF with (n=10000)
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Figure 3. performance profiles of NOI with (n=1000)
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Conclusion

On the other hand, this was only the case when those
aspects were taken into consideration. Despite the fact that
the one-of-a-kind method was successful in establishing
both sufficient descent and global convergence in certain
instances, this was only the case when those criteria were
taken into consideration. This success of our algorithm is
proved by the numerical results that are depicted in the
graphics that were explained earlier in this paragraph.
Making a direct contrast with the traditional method to high-
speed computing is the means by which this is
accomplished.
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