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Abstract

Software bug prediction (SDP) techniques identify bugs in the early stages of the software
development life cycle through a series of steps to produce reliable and high-quality software. Deep
learning techniques are widely used in SDP, which can produce accurate and exceptional results in
different fields.
The study aims to systematically review models, techniques, datasets, and performance evaluation
metrics to gain a complete understanding of current methodologies related to SDP, and the use of
DL in software defect prediction research between 2019 and 2024. A comprehensive review of
studies in this area was completed to answer the research questions and summarize the results from
the initial investigations. 30 primary studies that passed the systematic review quality assessment of
the studies were used. However, the six most common evaluation metrics used in SDP were
confusion matrix, Scoar-1F, recall, precision, accuracy, and area under the curve (AUC). The top
three DL algorithms used in building SDP models and used in predicting software bugs were
convolutional neural network (CNN), long-short-term memory (LSTM), and bidirectional LSTM.
We conclude that the application of deep learning in SDP remains a challenge, but it has the potential
to achieve better prediction performance. Future research directions focus on improving these
models and exploring their applications across diverse programming environments
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Software Defect Prediction (SDP) as a crucial
technique that aids developers in identifying defective
software modules in advance, allowing for more efficient
allocation of testing resources through the analysis of
software repositories and training predictive models on
gathered data.[4]

1. Introduction

With the rapid development of computer technology,
software applications have expanded to all parts of people’s
daily lives, creating a situation in which the economy,
production, and life are fully dependent on computer
software. But software failure can bring about serious or
even fatal consequences, especially for high-risk
systems.[1]

Software reliability and quality mainly depend on
removing faults or defects in software. Although some
defects might arise from causes unrelated to code (such as
compilers or byte code representations), the main source of
software faults is software code. The traditional way of

System failure is more often caused by software
defects, which are important factors affecting software

quality.[2]

At the internal level of software, defects are errors or
faults in the software development or maintenance process;
A fault is an error that has effects on system behavior, at the
external level of software, defects are violations or failures
of the functions that the software needs to perform.[3]
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finding software defects is by testing and conducting
reviews. However, these activities may require extensive
time and effort. On the other hand, automatic prediction of
defective software modules at early stages may guide
developers in improving code quality at a reduced cost
compared to a fully manual approach, predicting defect-
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prone parts of software before discovering faults by
performing substantial efforts is a challenging task. The
main challenge of SDP is identifying the faulty parts of
source code with better fault prediction performance.[5]

Deep Learning is subfield of machine learning that uses
supervised and unsupervised strategies. It has been very
successful in various fields, successful in various such as
computer vision and Natural language processing. Deep
learning enables computational models made of multiple
layers to learn data representations at multiple levels of
abstraction.[6]

Deep learning is chosen for its ability to capture
complex from large datasets.[7]

The advantages of deep learning over machine learning
are that deep learning has best-in-class performance, has the
ability to extract features automatically and eliminates the
feature engineering stage, and makes it easy to generalize
the trained model to other domains. Deep learning is a
rapidly growing research topic with many deep learning
architectures, and new models are being developed to suit
different research domains.[8]

In general, the utility of deep learning becomes better
as the amount of training data increases. As a result, the
ability to solve complex applications and its accuracy are
constantly increasing. Deep learning is beating the Al
community by making improvements to solving problems
and will lead to more success in the future because it
requires very little manual engineering.[9]

This paper is organized as follows: Section 2 describes
the Research Questions, Section 3 describes the Algorithms
Used in Software Defect Prediction, Section 4 Discussion
of the Research Questions, Section 5 describes the
Challenges in Applying Deep Learning, Section 6 describes
the Practical applications of prediction techniques in real
world programs, Section 7 describes the Related Works,
Section 8 describes the Conclusion.

2. Research Questions

The aim of this study is to obtain a presentation and
overview of current research in the field of software bug
prediction using deep learning techniques that enable the
system developer to create a set of high-quality tests that
have the ability to detect software errors or defects and
evaluate the quality of these techniques through the
following questions:

RQ. 1 what are the main components of software defect
prediction (SDP)?

RQ. 2 What kinds of metrics are the most used for fault
prediction?

RQ. 3 What are the types of software defect prediction
(SDP)?

RQ. 4 What kinds of methods are the most used for
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fault prediction?

2.1. Sources Of Information

This paper presents a systematic literature review of the
work done in software defect prediction using deep
learning, and in order to have a broad view, many papers
and journals were searched and publications related to this
study were selected in the time period from 2019 to 2024.
The search strategy was based on the identification of
alternative words and synonyms of terms used in research
questions to decrease the effect of the differences in terms
After selecting the publications related to the study in this
period, 30 closely related articles in software defect
prediction were found. Figure 1 illustrates the steps for
integrating deep learning with software defects.

Figure 1. Integrating Deep Learning with Software
Defects [10]

2.2. Software defect prediction

Defect prediction is a technique used in software
engineering to identify and predict defects and errors in
software systems before they occur.[11] The goal of defect
prediction is to improve software quality and reduce the
number of post-release problems by enabling developers to
focus their efforts on high-risk areas. The benefits of defect
prediction include the following:

Early detection of errors: Defect prediction allows
developers to discover potential problems early in the
development process, reducing the cost and effort required
to fix them.

Resource optimization: By focusing efforts on high-
risk areas, resources can be used more efficiently, leading
to better software quality.

Decision support: Project managers can use defect
prediction results to make informed decisions about
resource allocation and release planning.

Process improvement: Defect data analysis can provide
insight into the software development process, enabling
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organizations to identify areas for improvement.[12]

2.3. Deep Learning in Software Defect
Prediction

Deep learning is known as a subcategory of machine
learning techniques. In this type of learning, new
architectures are used where multiple layers of processing
units are employed to extract features and it is used as a new
solution for most of the fields especially in software
topics.[13]

Deep learning is used in predicting software bugs
because it is able to process large amounts of data and
identify complex patterns. Through the training process,
deep learning models can learn to recognize signs of
potential errors or vulnerabilities in software code, thus
improving software quality and reliability [14]. It can also
be used in anomaly detection, code review, and predictive
maintenance. Deep learning began to be incorporated into
software bug prediction when developers sought more
efficient ways to analyze large databases and identify
potential problems before they appeared in production.
Traditional methods often rely on rule-based systems or
simpler statistical techniques, which can be limited in
scope. Deep learning, with its ability to learn from
unstructured and imbalanced data and adapt to new patterns,
allows for more accurate predictions and improved
decision-making in software development processes. It is
therefore a vital tool for improving software reliability and
reducing the time and cost associated with patching and
maintenance.[15]

Deep learning is an effective tool for predicting
software defects, which contributes to improving software
quality and reducing the costs associated with fixing
errors.[16] .

One of the main benefits of deep learning is the
automatic extraction of features from data, which saves time
and effort, Deep learning models show superior
performance in processing large and complex data, and it
also has the ability to deal with unbalanced and unstructured
data more effectively [12]. Which increases the accuracy of
predictions.

2.4. Comparison Between Traditional
Methods and Deep learning

Traditional techniques and deep learning are two
different approaches in the field of artificial intelligence,
traditional methods rely heavily on designing a pre-defined
model based on algorithms and statistical analysis of data,
in contrast, deep learning relies on artificial neural networks
that are able to learn directly from big data. The main
differences between the two approaches lie in the ability to
handle data. Traditional methods suffer from performance
limitations when dealing with complex and unstructured
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data and require hand-designed features, deep learning, on
the other hand, can process large amounts of data more
efficiently and extract features automatically, making it
suitable for applications such as image and video
processing. [16]

3. Algorithms
Prediction

Used in Software Defect

This paper presents deep learning algorithms and
traditional machine learning techniques to enhance
software defect prediction (SDP).

3.1. Convolutional Neural Networks (CNNs)

CNNs are designed to process structured data using
convolutional layers to automatically learn features from
the input data. By automatically extracting features from
the data, this reduces the need for manual feature
engineering, which can be time-consuming [8].This model
can recognize patterns regardless of their position in the
data input. Additionally, CNNs learn features at multiple
levels and consist of an input layer, an output layer,
convolutional layers, pooling layers, and fully connected
layers, making them adept at extracting features
automatically, as shown in Figure 2.[17]

A given neuron has the same number of input neurons
and the same weight, and the pooling layer reduces the size
of the input neuron and increases the learning rate.[18]

CNNs are widely used in image processing, video
recognition, and natural language processing. Their
advantages include higher accuracy and efficiency in
handling spatial sequences of data, including automatic
feature learning and performance. They are easier to train
and have fewer parameters compared to other deep
learning architectures. However, they typically require
larger datasets for training, a lot of time, and can be
computationally intensive.[19],[20]

Input Layer Hidden Layers Classification Layer

Convolution

Figure 2. CNN architecture [17]
3.2. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) algorithm is a type of
recurrent neural network (RNN) designed to efficiently learn
long-term dependencies in sequential data. LSTMs work by
processing sequences of data step by step. LSTMs consist of
memory cells that can retain information over extended
periods, using three gates: an input gate, a forget gate, and an
output gate ,as shown in Figure 3 .The input gate controls the
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flow of new information, the forget gate determines what
information should be discarded, and the output gate
determines what information should be passed to the next
layer. It has the ability to mitigate the vanishing gradient
problem, making it suitable for time series forecasting (such
as wind speed forecasting). It can be computationally
intensive and requires fine-tuning of parameters, and it
updates its internal state based on both the current input and
the previous hidden state, allowing it to make accurate
predictions.[21]

Figure 3. LSTM architecture [22]

3.3. Bidirectional LSTM (BI-LSTM)

The Bidirectional LSTM (BI-LSTM) algorithm is an
extension of the LSTM algorithm described above that uses
two LSTM algorithms on the input data. The input sequence
is fed to the LSTM algorithm in the first round (i.e. the
forward layer) and the reverse form of the input sequence is
fed into the algorithm in the second round in the backward
layer.Using two LSTMs improves the learning of long-term
dependencies and as a result improves the accuracy of the
model. BI-LSTM runs faster and takes less time to make
predictions, Figure 4. Illustrates the architecture of BI-
LSTM.[23]

Figure 4. BI-LSTM architecture [23]

3.4. Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are a class of neural
networks designed for processing sequences of data. Unlike
traditional feed forward neural networks, RNNs have
connections that loop back on themselves, allowing them to
maintain a memory of previous inputs. This architecture
makes RNNs particularly effective for tasks involving
sequential data, such as time series analysis, natural language
processing, and speech recognition, Figure 5. Illustrates the
architecture of RNN.[24]

Advantages include improved accuracy in predictions,
automatic feature extraction, and the ability to handle large
volumes of data and real-time monitoring. However, they
also have disadvantages, such as requiring substantial labeled
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training data, being computationally intensive, and lacking
interpretability, which makes understanding their decision-
making process challenging.[25]

Figure 5. RNN architecture [22]
3.5 Multi-Layer Perceptron (MLPs)

MLPs consist of an input layer, multiple hidden layers,
and an output layer, where each neuron in one layer
connects to every neuron in the next, as shown in Figure 6.
This structure allows MLPs to model complex relationships
and detect patterns in data. Advantages include their ability
to learn non-linear functions and flexibility in various
applications. However, they require extensive feature
engineering and may struggle with large datasets due to
over fitting.[9]
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Figure 6. MLP architecture [26]
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3.6 Deep Neural Networks (DNN)

Deep neural networks (DNNs) are used to predict the
severity of software defects. The algorithm for this type
consists of multiple layers of neurons that process the input
data, enabling the model to learn complex patterns from
defect reports. This approach is characterized by high
accuracy and the ability to handle large data sets, making it
suitable for complex tasks such as defect classification.
Additionally, However, drawbacks include the need for
large computational resources and the potential for over
fitting if not properly organized. The algorithm works by
converting textual defect descriptions into numerical
vectors, which are then processed by the DNN to predict
severity levels, with a neuron coverage measure used to
assess the model’s effectiveness in exploring the input
space, Figure 7 illustrates the architecture of DNN.[27]
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Input layer output layer

Figure 7. DNN architecture [28]
3.7 Deep Graph Neural Networks (DGNN)

We present DeepWukong, a new deep learning-based
approach that embeds both textual and code structured
features into an effective representation to support detection
of a wide range of vulnerabilities. DeepWukong first
performs program slicing to extract fine-grained but
complicated semantic features and then combines with
graph neural networks to produce compact and low-
dimensional representation, that DeepWukong outperforms
several state-of-the-arts, including traditional vulnerability
detectors and deep-learning-based approaches, Figure 8
shows the DGNN architecture.[29]

Figure 8. the structure of the graph neural
network in Deep wukong [29]

3.8 Gated hierarchical
memory (GH-LSTM)

Gated Hierarchical Long Short-Term Memory (GH-
LSTM) Algorithm for Software Defect Prediction This
algorithm consists of a hierarchical structure that uses two
types of features: semantic features extracted from abstract
syntax trees (ASTs) and traditional software metrics. The
algorithm works by first processing the source code to
extract both types of features, which are then fed into its
LSTM networks. The outputs are combined using a closed-
loop fusion mechanism, and the combined features are
passed through a fully connected layer to predict whether a
module is defective or clean. The advantages include
improved prediction accuracy by leveraging semantic and
traditional features that can capture different aspects of the
code, leading to better defect detection, Figure 9 shows the
DGNN architecture The disadvantages include increased
complexity in model training and the need for more
computational resources.[30],[31]

long short-term
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Figure 9. Overview of GH-LSTM [30]

3.9 Software Quality Assessment
Encoder Network (SQADEN)

The Deep Quadrilateral Advectional Regression
Neural Network with Non-Parametric  Statistical
Measurement (SQADEN) for Software Fault Prediction.
This algorithm consists of two main components: feature
selection and classification. Feature selection uses a non-
parametric Torgerson-Gower measurement technique to
identify relevant software metrics while reducing time
complexity. Classification is performed using a supervised
Quadrilateral Advectional Regression deep neural network,
which analyzes training and test samples to predict software
defects, Figure 10 shows the DGNN architecture. The
advantages of SQADEN include improved prediction
accuracy, reduced time and space complexity compared to
existing methods, and the ability to handle high-
dimensional datasets efficiently. However, disadvantages
may include potential implementation complexity and
dependence on input data quality for optimal performance.
The algorithm works by identifying important features and
then using deep learning techniques to classify software
modules as defective or non-defective, ultimately achieving
accurate predictions with minimal errors.[32]

Deep
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Figure 10. Schematic diagram of Quadratic Censored
regressive convolution deep neural network[32]

4. Discussion of Research Questions

This section discusses the answers from the research
that described the research questions.

4.1. Research question 1: What are the main
components of SDP?
In the SDP process, three main components are relied

upon: the dependent variables, the independent variables
and the model, The dependent variables are the defect data
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of a piece of code, either defective or non-defective, and can
be binary or ordinal variables.

The independent variables (inputs) are the metrics in
which the program code is recorded. The model contains the
rules or algorithms that predict the dependent variable from
the independent variables, The inputs (variables) are
divided into training and test datasets to determine the
effectiveness of the classifier, The training dataset is used
to create the classifier. It is then used to predict potential
defects in the test dataset and evaluate these predictions
using different performance metrics to determine whether
they are correct or not. Figure 11.

Software metrics play a fundamental role in SDP, and
most SDP strategies rely on software metrics as
independent variables, Metrics are designed to support bug
finding in software projects, Given the huge diversity of
software applications, identifying, locating, and detecting
software defects has become a daunting task for researchers,
Moreover, the density of defects also poses a challenge in
detecting and predicting software defects. Typically, faulty
software databases are composed of naturally imbalanced
data, which generates randomness in the pattern properties,
this motivates the development of an efficient and accurate
SDP model.[33],[34]

Selection of — Model

Maerics TN - Building
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Data Pre-
Seurce Code
Repository

processing
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Split Dara Into

Fearres | o sty amd | Performance
Extraction Evaluation

Testing(20%) sets

Figure 11. Proposed method of SDP[33]

4.2 Research question 2: What kind of metrics
are the most used for fault prediction

Metrics actually aim to measure the accuracy of
algorithms in estimating, by comparing the actual
evaluation results derived from the dataset of predicting
software defects with the expected evaluation resulting
from applying the algorithms using a set of evaluation
metrics. Several different evaluation metrics are used,
among which five metrics are prominent and widely used
and have been used in These metrics are based on a matrix
(Accuracy, precision, Recall, F1-Score) and include the
Confusion Matrix (Confusion Matrix) which is a table that
displays the prediction results for classifying software
defects, summarizing the correct and incorrect prediction
values by comparing them with the training values which
are described as true and false with the prediction values
which are described as positive and negative as shown in
Figure 12.[12]
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Figure 12. shows the confusion matrix for predicting
software defects [33]

The confusion matrix includes the terms below:

1. : (True Positive (TP It is the true positive
expectation of a software defect, i.e. if there is a software
defect and it is expected to be a software defect.

2. (TN)True Negative It is the true genetic
prediction of the software defect, i.e. if there is no software
defect and its prediction is no software defect.

3. (False Positive (FP : It is a false positive
prediction of a software defect, i.e. if there is no software
defect and it is predicted to be a software defect.

4. False Negativ (FN( : It is a false negative
prediction of a software defect, i.e. if there is a software
defect and it is predicted, there is no software
defect.[34],[35]

Accuracy

It is the total number of correct predictions divided by
the total number of predictions made on the data set. The
best accuracy is 1 while the worst accuracy is 0, which can
be calculated using the following equation:

TP + TN
TP + FP + TN + FN

Accuracy =

precision

It is the percentage of correct positive predictions (TP)
divided by the total number of positive predictions. The best
accuracy is 1 and the worst accuracy is 0, which can be
calculated using the following equation:

o _ TP
precision = TP + Fp
Recall

It is the ratio of true positive predictions (TP) divided
by true positive predictions plus false negative predictions,
which can be calculated using the following equation:
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Recall = — %
€= TP+ PN

F1- Score

It is the harmonic meaning of the evaluation accuracy
and recall, which can be calculated using the following
equation.[36]

precision+Recall
F1 —score = 2+ ————
precision+Recall

AUC

It indicates the relative performance of the True
Positive Rate (TPR) and False Positive Rate (FPR). The
greater the area under the Receiver Operating Characteristic
(ROC) curve, the higher the model’s.[33]

4.3 Research question 3: What are the types of
software defect prediction?

Early detection and prediction of software defects play
an important role in modern software development. To
address this problem of software defect prediction, software
defect prediction can be classified into two main types:

1. Within-project defect prediction (WPDP)

This type involves prediction of defects within the
same project where the model is trained and tested on data
from the same code base and allows it to take advantage of
the specific characteristics and patterns present in that
project.

2. Cross-project defect prediction (CPDP)

This type aims to generalize predictions across
different software systems where the model is trained on
data from one project and tested on a different project which
is more challenging due to the differences in code structures
and characteristics between projects.[36],[37],[38]

4.4 Research question 4: What kind of methods
are the most used for fault prediction?

Deep learning algorithms are collected after a
comprehensive study of the research in Table 1, which
shows a set of research specialized in deep learning
algorithms.

The percentage of each algorithm was calculated
according to previous studies.
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Figure 13. Percentage of Algorithms in previous
studies

The Figure 13 above shows the distribution of different
algorithms used, where CNN represents the largest share
with 33% of the total due to its high ability to extract spatial
features, followed by LSTM algorithm with 23% due to its
ability to handle sequential data, RNNs with 15% have
connections that loop back on themselves, allowing them to
maintain a memory of previous inputs, BI-LSTM with 10%
it uses information in both directions, and many other
algorithms that constitute smaller percentages. This Figure
provides a visual breakdown of the relative use or
prevalence of these different algorithms. These higher
percentages for these three algorithms are due to their
proven effectiveness in predicting software errors based on
their ability to handle complex data efficiently.

5. Challenges in Applying Deep Learning to
software defect prediction

The challenges associated with the use of deep learning
are important issues that must be taken into consideration
when applying this technology in various field In software
development, predicting defects in software engineering is
still a major challenge, leading to system failure, increasing
maintenance costs, and making the development process
more difficult, but they are not insurmountable by
understanding these challenges and applying appropriate
strategies for them. The most prominent of these challenges
are:

1. The problem of imbalanced data In many cases, the data
used to train deep learning models is imbalanced, which is
one of the most prominent challenges facing deep learning
models in the field of software defect prediction, in many
software projects, the number of defects is much less
compared to defect-free software, this imbalance can lead
to model bias, the model may tend to predict the most
common data category (defect-free software) and neglect
the less common category (defects), leading to low accuracy
in prediction, also, the evaluation is inaccurate, traditional
metrics such as accuracy may appear good, while the actual
performance in defect recognition is poor, this problem can
be solved by using rebalancing techniques and applying
special algorithms that deal with the problem of imbalance.

2. The problem of the need for huge computational
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resources

Deep learning models require large computational
resources, which represents a real challenge, especially in
environments that lack the necessary resources, including
time and cost, deep learning model training processes
require a long time and high costs, which is impractical for
many organizations, these models also require a powerful
infrastructure in terms of computing power, such as
graphics processing units (GPUs) or clouds, which can be
expensive and difficult, this problem can be solved using
cloud computing services (Google Cloud)that provide
flexible and affordable computational resources.[21],[39]

3. The problem of difficulty in interpreting typical results

Interpreting typical results in deep learning is a
challenge for researchers and developers and affects users'
confidence, especially in the medical and security fields, to
solve this problem, techniques such as (Attention
Mechanisms) can be used and models of a simple nature can
be designed that use the most influential features in
decision-making and then trained on intermediate outputs
that contribute to analyzing decisions, and cooperation
between data scientists and specialists in this field, which
contributes to increasing reliability, especially in sensitive
fields.[40]

6. Practical Applications of Prediction
Techniques in Real World programs

Many practical applications of prediction
techniques in real-world software, where they are used in
diverse areas such as predicting software bugs by analyzing
changes in code and reducing errors in software
development, which contributes to improving quality and
reducing maintenance costs. In the financial sector,

prediction models are used to analyze data and forecast
market movements, helping investors make informed
decisions, in healthcare, prediction techniques are used to
analyze medical data and predict diseases, helping doctors
provide better care to patients, in general, prediction
techniques enhance the ability to make data-driven
decisions, leading to improved performance and efficiency
across various industries.

There are several suggestions for improving deep
learning models in the future to meet industry needs.

Proposal 1: Integrating deep learning with traditional
methods

To effectively meet industry needs, deep learning
models should be integrated with traditional methods in
defect prediction, this integration can improve prediction
accuracy by leveraging the strengths of both methods,
leading to more reliable models that are able to handle
changing programming environments.[41],[42]

Proposal 2: Applying active learning and collaborating
with industry

Building partnerships with industrial organizations to
identify their specific needs and ensuring that models meet
these needs by collecting relevant data and modifying the
input features. This strategy not only enhances the accuracy
of models, but also ensures their compatibility with industry
requirements, leading to more effective solutions in
processing complex programming data.[43],[44]

7. Works related

This section presents the previous works that used deep
learning in SDP. Different methods of deep learning have
been used in software defects

Table.1. Summary of Related Works
(The List of Studies in the Field of Software Defect Prediction)

No Authors Objective of the Methodology/ Metrics Data set Key Finding Accuracy
study approaches/
tools/techniques used
1 Hoang et al., for just-in-time defect developed DeeplJIT AUC QT and achieving improvements of
2019 prediction using OPENSTACK 10.36-13.69%
(CNN) in Area Under the Curv e
(AUC)
2 Deyu Chen for cross-project defect proposed the DeepCPDP AUC PROMISE The results showed that
etal.,2019 prediction method using (Bi -LSTM) DeepCPDP significantly
with the Sim AST outperformed eight state-of-
representation for cross- the-art baselines, achieving
project defect prediction an average performance
improvement of 6.18% to
21.17%.
3 Al Qasem and investigated software fault (MLPs) and (CNNs) Accuracy NASA the CNN algorithm 98%
Akour, prediction using deep outperformed MLPs,
2019 learning algorithms achieving accuracies of up to
100% on some datasets
4 Liang et al., for software defect prediction proposed the Seml prediction 1,306 open- that Seml outperformed 49.81%
2019 framework using a Long Recall source Java state-of-the-art approaches in
Short Term Memory F1- score projects both within-project and
(LSTM) algorithm cross-project defect
prediction
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No Authors Objective of the Methodology/ Metrics Data set Key Finding Accuracy
study approaches/
tools/techniques used
5 Lei Qiao et al., defect prediction using a specially designed MSE MIS and KC2 Their approach -
2019 neural network outperformed existing
(DPNN model) models, reducing mean
square error by over 14%
and increasing correlation by
more than 8%.
6 Ahmad or software defect prediction. Using prediction NASA SSAE model achieved better 83.8%
Hasanpour et tack Sparse Auto-Encoder Accuracy results than DBN in most
al., (SSAE) and Deep Belief evaluation metrics
2020 Network (DBN) enhancing prediction
accuracy.
most evaluation metrics
7 Cheng static detection of software DeepWukong Accuracy dataset of demonstrating superior 86%
et al.,2020 vulnerabilities in C/C++ (DGNN) F1- score 105,428 real- performance compared to
programs world programs traditional static detectors
and existing deep-learning
approaches.
8 Ghosh and Prediction for software fault (CNN) dataset approach effectively -
Singh, effectively calculated comprising test calculated suspicious scores
2020 suspicious cores for program case results and for program statements,
statements statement improving fault localization
coverage from accuracy
example
programs
9 Chakraborty et vulnerability detection used a graph-based model Accuracy new dataset study achieved a precision 93%
al., with representation precision from real-world improvement of up to
2020 learning recall projects 33.57% and a recall increase
F1- score (Chromium and of 128.38%
Debian)
10 Deng et al., proposed a defect prediction (LSTM) F1- score seven open- LSTM approach -
2020 framework leveraging Abstract Syntax source projects outperformed traditional and
Trees (ASTs) from the state-of-the-art methods
PROMISE
11 Kukkar et al., developed a duplicate bug (CNN) Accuracy six publicly achieving an accuracy rate 91%
2020 report detection system Recall available between 85% and 99%
F1- score datasets
12 Kumar et al., developed a defect severity using various deep learning Accuracy six software achieving high predictive 80%
2020 prediction model F1- score projects power with AUC values
AUC close to 1 when using
SMOTE for data balancing
13 | Mnyanghwalo for fault detection in (RNN) Accuracy dataset collected found that RNNs were 95.6%
etal., 2020 electrical secondary AUC from a low- efficient in detecting and
distribution networks voltage classifying faults, with
transformer in accuracy improving as
Tanzania complexity increased.
between 2012
and 2020
14 Kumar et al., predicting software defect using various embedding Accuracy six software that models utilizing word -
2021 severity levels and feature selection AUC projects (CDT, embeddings and SMOTE
techniques Neuron JDT, PDE, significantly improved
coverage Platform, prediction accuracy and
Bugzilla, neuron coverage
Thunderbird)
15 Yuetal., Defect prediction within and developed model called Accuracy seven open- achieving notable F1 score 66.8%
2021 across projects DPSAM, utilizing a self- Precision source Java improvements of 16.8% in
attention mechanism Recall projects within-project defect
(DBN) F1- score prediction and 23% in cross-
(DP-CNN) PROMISE project defect prediction
16 Bani-Salameh detecting the priority of bug (RNN-LSTM) Accuracy 2000 bug achieved an accuracy of 90.8%
etal., reports and AUC reports from 90.8%, outperforming other
2021 and allows developers to find F1- score JIRA algorithms like KNN (74%)
the highest priority bug and SVM (87%)
reports
17 Nevendra and The aims to identify the (CNN) Accuracy 19 open-source approach significantly 71,5%
Singh, defective instance using the Precision defect datasets outperformed Li's CNN and
2021 enhanced deep learning Recall standard machine learning
method F1- score models
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No Authors Objective of the Methodology/ Metrics Data set Key Finding Accuracy
study approaches/
tools/techniques used
18 Wang et al., the goal GH-LSTMs model (GH-LSTMs) Precision 10 open-source GH-LSTMs outperformed 51%
2021 to extract both semantic Recall projects existing methods
and traditional software F1- score from
features and effectively
combine PROMISE
the extracted features using
gated fusion mechanism. and
demonstrate that proper
feature fusion can
significantly boost the
performance of defect
predictio
19 Elsaraiti and has been proposed to forecast (LSTM) forecast wind LSTM model significantly -
Merabet, wind (RNN) speed using improved prediction
2021 speed hourly data from accuracy, achieving RMSE
Halifax, Canada values of 8.5128 for spring
and 4.7796 for summer
20 Liu et al., study and analysis of cost-sensitive deep Accuracy used a dataset found that their improved -
2021 software defect prediction ladder network algorithm F1- score from various deep belief network method
methods in a cloud (CSDLN) projects achieved better prediction
environmen accuracy compared to
Autoencoder models in deep traditional models
learning theory can
automatically learn features
from the original data and
obtain feature representations
of the input data
21 Sharma et al., predict the regions of source (CCFT-CNN) F1- score PROMISE 2% improvement in F- -
2022 code that contain faults (CNN) measure over baseline
models
22 Rizvi, 2023 power outage prediction and (CNNs) Accuracy - achieved a 95% accuracy in 95%
fault detection (RNNs) Precision predicting outages and 92%
(GANs) average precision in
classifying fault types
23 Borandag et research was to statistically (RNN) ACC SFP XP-TDD They found that deep -
al., demonstrate that DL (CNN) AUC and learning algorithms
2023 algorithms outperformed ML (LSTM) e Eclipse and outperformed traditional
algorithms (Bi-LSTM) Apache Active machine learning techniques
MQ
24 Zain et al., To synthesize literature on (CNN) Accuracy PROMISE and indicated that DL models -
2023 SDP using DL, pertaining to (DNN) Precision NASA generally outperformed
measurements, models, (LSTM) Recall traditional Machine Learning
techniques, datasets, and (DBN) F1- score models in terms of accuracy,
achievements (SDAE) AUC f-measure, and AUC
MCC
PRC
25 Giray et al., tudy, identify, analyze and (CNN) - analyzing 102 the most frequently used DL -
2023 summarize the current state (RNN) studies algorithm is CNN. The other
of use of deep learning (LSTM) widely used algorithms are
algorithms for SDP (GRU) RNN/LSTM/GRU, MLP,
( MLP) and DBN
(DBN)
26 Batool and identify faults at the early (LSTM) Accuracy CK metrics- found that LSTM and 93%
Khan, stages of the software (Bi-LSTM) Precision based datasets BILSTM performed better in
2023 development life cycle (RBFN) Recall And accuracy, while RBFN was
(SDLC) F1- score Git repository faster
27 Lv, 2024 identifying and anticipating (CNN - LSTM) Accuracy vibration achieved an accuracy of 95% 95%
mechanical failures is Recall datasets from outperforming traditional
explored through an F1- score industrial methods like SVM and
examination of vibration machinery Random Forest
datasets sourced from actual
industrial machinery
28 Alkaberi and determine whether a software (CNN) Kendall twelve open- MLP achieved a Kendall -
Assiri, 2024 unit is faulty (MLP) MSE source software value of 0.416 and a mean
project from the squared error (MSE) of
PROMISE 0.195, outperforming the

CNN
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29 Khleel and aims (Bi-LSTM) Accuracy six public achieved average accuracies 92%
Nehéz, 2024 to combine a bidirectional Precision software defect of 88%, 94%, and 92% on
long short-term memory (Bi- Recall datasets original and balanced
LSTM) network with F1- score (ant, camel, ivy, datasets
oversampling techniques. To Mcce jedit, log4j, and
establish the AUC xerces)
effectiveness and efficiency MSE
of the proposed model PROMISE
The focus on
Accuracy and
F-measures
30 Sivavelu and predictions are used to (SQADEN) Accuracy PROMISE achieved superior accuracy, 98%
Palanisamy, identify defective modules Precision precision, and recall
2024 before the testing and to Recall compared to existing
minimize the time and cost F1- score methods, with significant
time reductions in prediction time
complexity and space complexity
. business needs to design models that meet those needs,
Conclusion ; ; . .
seamlessly integrating models into workflows, training
This study highlights the critical role and technical teams to ensure optimal use, leading to better

transformative potential of deep learning techniques in
software defect prediction (SDP). As software applications
become increasingly important in everyday life, the
reliability of these systems has become of paramount
importance. A systematic review of the existing literature
reveals that traditional defect detection methods are often
inadequate due to their reliance on manual testing and a
growing consensus on the effectiveness of deep learning
methods in identifying defect-prone modules early in the
development process.

The results confirm deep learning models such as
convolutional neural networks (CNNs) and long-short-term
memory (LSTM) networks, and we demonstrate that these
models significantly outperform traditional machine
learning methods in terms of accuracy, recall, and overall
predictive performance. These advances not only enhance
the efficiency of the software development lifecycle but
also reduce the costs associated with defect management
and maintenance.

In conclusion, the integration of deep learning into
software defect prediction represents a major advance in
ensuring software reliability and quality and not only
improves the identification of potential bugs, but also paves
the way for more resilient and efficient software systems in
the future. Future research should focus on improving these
models and exploring their applicability across diverse
programming languages and environments.

Future research should focus on enabling
organizations to apply deep learning models to define clear
goals such as improving software quality, comprehensively
analyzing customer data from identifying customer
behavior patterns to improving marketing strategies,
collecting balanced data, reducing costs associated with
defect fixing, forming teams of developers and project
managers, collaborating between these teams to understand
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outcomes in real-world business applications, and exploring
their applicability across diverse programming languages
and environments.
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	Long Short-Term Memory (LSTM) algorithm is a type of recurrent neural network (RNN) designed to efficiently learn long-term dependencies in sequential data. LSTMs work by processing sequences of data step by step. LSTMs consist of memory cells that ca...

