
Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (67-79)

67

Software Defect Prediction Based on Deep Learning Algorithms:
A Systematic Literature Review

Akhlas Tariq Hasan1 and Shayma Mustafa Mohi-Aldeen2

1,2 Department of Computer Science, College of Computer Science and Mathematics, University of Mosul, Iraq
Email: ekhlas.23csp58@student.uomosul.edu.iq1 and shaymamustafa@uomosul.edu.iq2

Article information Abstract
Article history:
Received 23 December ,2024
Revised 03 February ,2025
Accepted 16 February ,2025
Published 26 June ,2025

 Software bug prediction (SDP) techniques identify bugs in the early stages of the software
development life cycle through a series of steps to produce reliable and high-quality software. Deep
learning techniques are widely used in SDP, which can produce accurate and exceptional results in
different fields.
The study aims to systematically review models, techniques, datasets, and performance evaluation
metrics to gain a complete understanding of current methodologies related to SDP, and the use of
DL in software defect prediction research between 2019 and 2024. A comprehensive review of
studies in this area was completed to answer the research questions and summarize the results from
the initial investigations. 30 primary studies that passed the systematic review quality assessment of
the studies were used. However, the six most common evaluation metrics used in SDP were
confusion matrix, Scoar-1F, recall, precision, accuracy, and area under the curve (AUC). The top
three DL algorithms used in building SDP models and used in predicting software bugs were
convolutional neural network (CNN), long-short-term memory (LSTM), and bidirectional LSTM.
We conclude that the application of deep learning in SDP remains a challenge, but it has the potential
to achieve better prediction performance. Future research directions focus on improving these
models and exploring their applications across diverse programming environments

Keywords:
Computer
Mathematics

Correspondence:
Author Name
Email: author1@round.com

DOI: 10.33899/csmj.2025.156086.1160, ©Authors, 2025, College of Computer Science and Mathematics, University of Mosul, Iraq.
This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0).

1. Introduction

With the rapid development of computer technology,
software applications have expanded to all parts of people’s
daily lives, creating a situation in which the economy,
production, and life are fully dependent on computer
software. But software failure can bring about serious or
even fatal consequences, especially for high-risk
systems.[1]

System failure is more often caused by software
defects, which are important factors affecting software
quality.[2]

At the internal level of software, defects are errors or
faults in the software development or maintenance process;
A fault is an error that has effects on system behavior, at the
external level of software, defects are violations or failures
of the functions that the software needs to perform.[3]

Software Defect Prediction (SDP) as a crucial
technique that aids developers in identifying defective
software modules in advance, allowing for more efficient
allocation of testing resources through the analysis of
software repositories and training predictive models on
gathered data.[4]

Software reliability and quality mainly depend on
removing faults or defects in software. Although some
defects might arise from causes unrelated to code (such as
compilers or byte code representations), the main source of
software faults is software code. The traditional way of
finding software defects is by testing and conducting
reviews. However, these activities may require extensive
time and effort. On the other hand, automatic prediction of
defective software modules at early stages may guide
developers in improving code quality at a reduced cost
compared to a fully manual approach, predicting defect-

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM)

www.csmj.uomosul.edu.iq

mailto:ekhlas.23csp58@student.uomosul.edu.iq1
mailto:shaymamustafa@uomosul.edu.iq2
http://creativecommons.org/licenses/by/4.0
https://orcid.org/0000-0003-0537-8742
https://csmj.uomosul.edu.iq/

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (67-79)

68

prone parts of software before discovering faults by
performing substantial efforts is a challenging task. The
main challenge of SDP is identifying the faulty parts of
source code with better fault prediction performance.[5]

Deep Learning is subfield of machine learning that uses
supervised and unsupervised strategies. It has been very
successful in various fields, successful in various such as
computer vision and Natural language processing. Deep
learning enables computational models made of multiple
layers to learn data representations at multiple levels of
abstraction.[6]

Deep learning is chosen for its ability to capture
complex from large datasets.[7]

The advantages of deep learning over machine learning
are that deep learning has best-in-class performance, has the
ability to extract features automatically and eliminates the
feature engineering stage, and makes it easy to generalize
the trained model to other domains. Deep learning is a
rapidly growing research topic with many deep learning
architectures, and new models are being developed to suit
different research domains.[8]

In general, the utility of deep learning becomes better
as the amount of training data increases. As a result, the
ability to solve complex applications and its accuracy are
constantly increasing. Deep learning is beating the AI
community by making improvements to solving problems
and will lead to more success in the future because it
requires very little manual engineering.[9]

This paper is organized as follows: Section 2 describes
the Research Questions, Section 3 describes the Algorithms
Used in Software Defect Prediction, Section 4 Discussion
of the Research Questions, Section 5 describes the
Challenges in Applying Deep Learning, Section 6 describes
the Practical applications of prediction techniques in real
world programs, Section 7 describes the Related Works,
Section 8 describes the Conclusion.

2. Research Questions
The aim of this study is to obtain a presentation and

overview of current research in the field of software bug
prediction using deep learning techniques that enable the
system developer to create a set of high-quality tests that
have the ability to detect software errors or defects and
evaluate the quality of these techniques through the
following questions:

RQ. 1 what are the main components of software defect
prediction (SDP)?

RQ. 2 What kinds of metrics are the most used for fault
prediction?

RQ. 3 What are the types of software defect prediction
(SDP)?

RQ. 4 What kinds of methods are the most used for

fault prediction?

2.1. Sources Of Information
This paper presents a systematic literature review of the

work done in software defect prediction using deep
learning, and in order to have a broad view, many papers
and journals were searched and publications related to this
study were selected in the time period from 2019 to 2024.
The search strategy was based on the identification of
alternative words and synonyms of terms used in research
questions to decrease the effect of the differences in terms
After selecting the publications related to the study in this
period, 30 closely related articles in software defect
prediction were found. Figure 1 illustrates the steps for
integrating deep learning with software defects.

Figure 1. Integrating Deep Learning with Software

Defects [10]

2.2. Software defect prediction
Defect prediction is a technique used in software

engineering to identify and predict defects and errors in
software systems before they occur.[11] The goal of defect
prediction is to improve software quality and reduce the
number of post-release problems by enabling developers to
focus their efforts on high-risk areas. The benefits of defect
prediction include the following:

Early detection of errors: Defect prediction allows
developers to discover potential problems early in the
development process, reducing the cost and effort required
to fix them.

Resource optimization: By focusing efforts on high-
risk areas, resources can be used more efficiently, leading
to better software quality.

Decision support: Project managers can use defect
prediction results to make informed decisions about
resource allocation and release planning.

Process improvement: Defect data analysis can provide
insight into the software development process, enabling

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (67-79)

69

organizations to identify areas for improvement.[12]

2.3. Deep Learning in Software Defect
Prediction

Deep learning is known as a subcategory of machine
learning techniques. In this type of learning, new
architectures are used where multiple layers of processing
units are employed to extract features and it is used as a new
solution for most of the fields especially in software
topics.[13]

Deep learning is used in predicting software bugs
because it is able to process large amounts of data and
identify complex patterns. Through the training process,
deep learning models can learn to recognize signs of
potential errors or vulnerabilities in software code, thus
improving software quality and reliability [14]. It can also
be used in anomaly detection, code review, and predictive
maintenance. Deep learning began to be incorporated into
software bug prediction when developers sought more
efficient ways to analyze large databases and identify
potential problems before they appeared in production.
Traditional methods often rely on rule-based systems or
simpler statistical techniques, which can be limited in
scope. Deep learning, with its ability to learn from
unstructured and imbalanced data and adapt to new patterns,
allows for more accurate predictions and improved
decision-making in software development processes. It is
therefore a vital tool for improving software reliability and
reducing the time and cost associated with patching and
maintenance.[15]

Deep learning is an effective tool for predicting
software defects, which contributes to improving software
quality and reducing the costs associated with fixing
errors.[16] .

One of the main benefits of deep learning is the
automatic extraction of features from data, which saves time
and effort, Deep learning models show superior
performance in processing large and complex data, and it
also has the ability to deal with unbalanced and unstructured
data more effectively [12]. Which increases the accuracy of
predictions.

2.4. Comparison Between Traditional
Methods and Deep learning

Traditional techniques and deep learning are two
different approaches in the field of artificial intelligence,
traditional methods rely heavily on designing a pre-defined
model based on algorithms and statistical analysis of data,
in contrast, deep learning relies on artificial neural networks
that are able to learn directly from big data. The main
differences between the two approaches lie in the ability to
handle data. Traditional methods suffer from performance
limitations when dealing with complex and unstructured

data and require hand-designed features, deep learning, on
the other hand, can process large amounts of data more
efficiently and extract features automatically, making it
suitable for applications such as image and video
processing. [16]

3. Algorithms Used in Software Defect
Prediction

This paper presents deep learning algorithms and
traditional machine learning techniques to enhance
software defect prediction (SDP).

3.1. Convolutional Neural Networks (CNNs)
CNNs are designed to process structured data using

convolutional layers to automatically learn features from
the input data. By automatically extracting features from
the data, this reduces the need for manual feature
engineering, which can be time-consuming [8].This model
can recognize patterns regardless of their position in the
data input. Additionally, CNNs learn features at multiple
levels and consist of an input layer, an output layer,
convolutional layers, pooling layers, and fully connected
layers, making them adept at extracting features
automatically, as shown in Figure 2.[17]

A given neuron has the same number of input neurons
and the same weight, and the pooling layer reduces the size
of the input neuron and increases the learning rate.[18]

 CNNs are widely used in image processing, video
recognition, and natural language processing. Their
advantages include higher accuracy and efficiency in
handling spatial sequences of data, including automatic
feature learning and performance. They are easier to train
and have fewer parameters compared to other deep
learning architectures. However, they typically require
larger datasets for training, a lot of time, and can be
computationally intensive.[19],[20]

Figure 2. CNN architecture [17]

3.2. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) algorithm is a type of
recurrent neural network (RNN) designed to efficiently learn
long-term dependencies in sequential data. LSTMs work by
processing sequences of data step by step. LSTMs consist of
memory cells that can retain information over extended
periods, using three gates: an input gate, a forget gate, and an
output gate ,as shown in Figure 3 .The input gate controls the

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (67-79)

70

flow of new information, the forget gate determines what
information should be discarded, and the output gate
determines what information should be passed to the next
layer. It has the ability to mitigate the vanishing gradient
problem, making it suitable for time series forecasting (such
as wind speed forecasting). It can be computationally
intensive and requires fine-tuning of parameters, and it
updates its internal state based on both the current input and
the previous hidden state, allowing it to make accurate
predictions.[21]

Figure 3. LSTM architecture [22]

3.3. Bidirectional LSTM (BI-LSTM)
The Bidirectional LSTM (BI-LSTM) algorithm is an

extension of the LSTM algorithm described above that uses
two LSTM algorithms on the input data. The input sequence
is fed to the LSTM algorithm in the first round (i.e. the
forward layer) and the reverse form of the input sequence is
fed into the algorithm in the second round in the backward
layer.Using two LSTMs improves the learning of long-term
dependencies and as a result improves the accuracy of the
model. BI-LSTM runs faster and takes less time to make
predictions, Figure 4. Illustrates the architecture of BI-
LSTM.[23]

Figure 4. BI-LSTM architecture [23]

3.4. Recurrent Neural Networks (RNNs)
Recurrent Neural Networks (RNNs) are a class of neural

networks designed for processing sequences of data. Unlike
traditional feed forward neural networks, RNNs have
connections that loop back on themselves, allowing them to
maintain a memory of previous inputs. This architecture
makes RNNs particularly effective for tasks involving
sequential data, such as time series analysis, natural language
processing, and speech recognition, Figure 5. Illustrates the
architecture of RNN.[24]

Advantages include improved accuracy in predictions,
automatic feature extraction, and the ability to handle large
volumes of data and real-time monitoring. However, they
also have disadvantages, such as requiring substantial labeled

training data, being computationally intensive, and lacking
interpretability, which makes understanding their decision-
making process challenging.[25]

Figure 5. RNN architecture [22]

3.5 Multi-Layer Perceptron (MLPs)
MLPs consist of an input layer, multiple hidden layers,

and an output layer, where each neuron in one layer
connects to every neuron in the next, as shown in Figure 6.
This structure allows MLPs to model complex relationships
and detect patterns in data. Advantages include their ability
to learn non-linear functions and flexibility in various
applications. However, they require extensive feature
engineering and may struggle with large datasets due to
over fitting.[9]

Figure 6. MLP architecture [26]

3.6 Deep Neural Networks (DNN)
Deep neural networks (DNNs) are used to predict the

severity of software defects. The algorithm for this type
consists of multiple layers of neurons that process the input
data, enabling the model to learn complex patterns from
defect reports. This approach is characterized by high
accuracy and the ability to handle large data sets, making it
suitable for complex tasks such as defect classification.
Additionally, However, drawbacks include the need for
large computational resources and the potential for over
fitting if not properly organized. The algorithm works by
converting textual defect descriptions into numerical
vectors, which are then processed by the DNN to predict
severity levels, with a neuron coverage measure used to
assess the model’s effectiveness in exploring the input
space, Figure 7 illustrates the architecture of DNN.[27]

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (67-79)

71

Figure 7. DNN architecture [28]

3.7 Deep Graph Neural Networks (DGNN)
We present DeepWukong, a new deep learning-based

approach that embeds both textual and code structured
features into an effective representation to support detection
of a wide range of vulnerabilities. DeepWukong first
performs program slicing to extract fine-grained but
complicated semantic features and then combines with
graph neural networks to produce compact and low-
dimensional representation, that DeepWukong outperforms
several state-of-the-arts, including traditional vulnerability
detectors and deep-learning-based approaches, Figure 8
shows the DGNN architecture.[29]

Figure 8. the structure of the graph neural

network in Deep wukong [29]

3.8 Gated hierarchical long short-term
memory (GH-LSTM)

Gated Hierarchical Long Short-Term Memory (GH-
LSTM) Algorithm for Software Defect Prediction This
algorithm consists of a hierarchical structure that uses two
types of features: semantic features extracted from abstract
syntax trees (ASTs) and traditional software metrics. The
algorithm works by first processing the source code to
extract both types of features, which are then fed into its
LSTM networks. The outputs are combined using a closed-
loop fusion mechanism, and the combined features are
passed through a fully connected layer to predict whether a
module is defective or clean. The advantages include
improved prediction accuracy by leveraging semantic and
traditional features that can capture different aspects of the
code, leading to better defect detection, Figure 9 shows the
DGNN architecture The disadvantages include increased
complexity in model training and the need for more
computational resources.[30],[31]

Figure 9. Overview of GH-LSTM [30]

3.9 Software Quality Assessment Deep
Encoder Network (SQADEN)

The Deep Quadrilateral Advectional Regression
Neural Network with Non-Parametric Statistical
Measurement (SQADEN) for Software Fault Prediction.
This algorithm consists of two main components: feature
selection and classification. Feature selection uses a non-
parametric Torgerson-Gower measurement technique to
identify relevant software metrics while reducing time
complexity. Classification is performed using a supervised
Quadrilateral Advectional Regression deep neural network,
which analyzes training and test samples to predict software
defects, Figure 10 shows the DGNN architecture. The
advantages of SQADEN include improved prediction
accuracy, reduced time and space complexity compared to
existing methods, and the ability to handle high-
dimensional datasets efficiently. However, disadvantages
may include potential implementation complexity and
dependence on input data quality for optimal performance.
The algorithm works by identifying important features and
then using deep learning techniques to classify software
modules as defective or non-defective, ultimately achieving
accurate predictions with minimal errors.[32]

Figure 10. Schematic diagram of Quadratic Censored

regressive convolution deep neural network[32]

4. Discussion of Research Questions
This section discusses the answers from the research

that described the research questions.

4.1. Research question 1: What are the main
components of SDP?

In the SDP process, three main components are relied
upon: the dependent variables, the independent variables
and the model, The dependent variables are the defect data

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (67-79)

72

of a piece of code, either defective or non-defective, and can
be binary or ordinal variables.

 The independent variables (inputs) are the metrics in
which the program code is recorded. The model contains the
rules or algorithms that predict the dependent variable from
the independent variables, The inputs (variables) are
divided into training and test datasets to determine the
effectiveness of the classifier, The training dataset is used
to create the classifier. It is then used to predict potential
defects in the test dataset and evaluate these predictions
using different performance metrics to determine whether
they are correct or not. Figure 11.

 Software metrics play a fundamental role in SDP, and
most SDP strategies rely on software metrics as
independent variables, Metrics are designed to support bug
finding in software projects, Given the huge diversity of
software applications, identifying, locating, and detecting
software defects has become a daunting task for researchers,
Moreover, the density of defects also poses a challenge in
detecting and predicting software defects. Typically, faulty
software databases are composed of naturally imbalanced
data, which generates randomness in the pattern properties,
this motivates the development of an efficient and accurate
SDP model.[33],[34]

Figure 11. Proposed method of SDP[33]

4.2 Research question 2: What kind of metrics
are the most used for fault prediction

Metrics actually aim to measure the accuracy of
algorithms in estimating, by comparing the actual
evaluation results derived from the dataset of predicting
software defects with the expected evaluation resulting
from applying the algorithms using a set of evaluation
metrics. Several different evaluation metrics are used,
among which five metrics are prominent and widely used
and have been used in These metrics are based on a matrix
(Accuracy, precision, Recall, F1-Score) and include the
Confusion Matrix (Confusion Matrix) which is a table that
displays the prediction results for classifying software
defects, summarizing the correct and incorrect prediction
values by comparing them with the training values which
are described as true and false with the prediction values
which are described as positive and negative as shown in
Figure 12.[12]

Figure 12. shows the confusion matrix for predicting

software defects [33]

The confusion matrix includes the terms below:
1. : (True Positive (TP It is the true positive

expectation of a software defect, i.e. if there is a software
defect and it is expected to be a software defect.

2. :(TN)True Negative It is the true genetic
prediction of the software defect, i.e. if there is no software
defect and its prediction is no software defect.

3. (False Positive (FP : It is a false positive
prediction of a software defect, i.e. if there is no software
defect and it is predicted to be a software defect.

4. False Negativ (FN(: It is a false negative
prediction of a software defect, i.e. if there is a software
defect and it is predicted, there is no software
defect.[34],[35]

Accuracy

It is the total number of correct predictions divided by
the total number of predictions made on the data set. The
best accuracy is 1 while the worst accuracy is 0, which can
be calculated using the following equation:

Accuracy =
TP + TN

TP + FP + TN + FN

precision

It is the percentage of correct positive predictions (TP)
divided by the total number of positive predictions. The best
accuracy is 1 and the worst accuracy is 0, which can be
calculated using the following equation:

precision =
TP

TP + FP

Recall

It is the ratio of true positive predictions (TP) divided
by true positive predictions plus false negative predictions,
which can be calculated using the following equation:

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (67-79)

73

Recall =
TP

TP + FN

F1- Score
It is the harmonic meaning of the evaluation accuracy

and recall, which can be calculated using the following
equation.[36]

AUC

It indicates the relative performance of the True
Positive Rate (TPR) and False Positive Rate (FPR). The
greater the area under the Receiver Operating Characteristic
(ROC) curve, the higher the model’s.[33]

4.3 Research question 3: What are the types of
software defect prediction?

Early detection and prediction of software defects play
an important role in modern software development. To
address this problem of software defect prediction, software
defect prediction can be classified into two main types:

1. Within-project defect prediction (WPDP)
This type involves prediction of defects within the

same project where the model is trained and tested on data
from the same code base and allows it to take advantage of
the specific characteristics and patterns present in that
project.

2. Cross-project defect prediction (CPDP)
This type aims to generalize predictions across

different software systems where the model is trained on
data from one project and tested on a different project which
is more challenging due to the differences in code structures
and characteristics between projects.[36],[37],[38]

4.4 Research question 4: What kind of methods
are the most used for fault prediction?

Deep learning algorithms are collected after a
comprehensive study of the research in Table 1, which
shows a set of research specialized in deep learning
algorithms.

 The percentage of each algorithm was calculated
according to previous studies.

Figure 13. Percentage of Algorithms in previous

studies

The Figure 13 above shows the distribution of different

algorithms used, where CNN represents the largest share
with 33% of the total due to its high ability to extract spatial
features, followed by LSTM algorithm with 23% due to its
ability to handle sequential data, RNNs with 15% have
connections that loop back on themselves, allowing them to
maintain a memory of previous inputs, BI-LSTM with 10%
it uses information in both directions, and many other
algorithms that constitute smaller percentages. This Figure
provides a visual breakdown of the relative use or
prevalence of these different algorithms. These higher
percentages for these three algorithms are due to their
proven effectiveness in predicting software errors based on
their ability to handle complex data efficiently.

5. Challenges in Applying Deep Learning to
software defect prediction

The challenges associated with the use of deep learning
are important issues that must be taken into consideration
when applying this technology in various field In software
development, predicting defects in software engineering is
still a major challenge, leading to system failure, increasing
maintenance costs, and making the development process
more difficult, but they are not insurmountable by
understanding these challenges and applying appropriate
strategies for them. The most prominent of these challenges
are:
1. The problem of imbalanced data In many cases, the data
used to train deep learning models is imbalanced, which is
one of the most prominent challenges facing deep learning
models in the field of software defect prediction, in many
software projects, the number of defects is much less
compared to defect-free software, this imbalance can lead
to model bias, the model may tend to predict the most
common data category (defect-free software) and neglect
the less common category (defects), leading to low accuracy
in prediction, also, the evaluation is inaccurate, traditional
metrics such as accuracy may appear good, while the actual
performance in defect recognition is poor, this problem can
be solved by using rebalancing techniques and applying
special algorithms that deal with the problem of imbalance.
2. The problem of the need for huge computational

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (67-79)

74

resources
 Deep learning models require large computational

resources, which represents a real challenge, especially in
environments that lack the necessary resources, including
time and cost, deep learning model training processes
require a long time and high costs, which is impractical for
many organizations, these models also require a powerful
infrastructure in terms of computing power, such as
graphics processing units (GPUs) or clouds, which can be
expensive and difficult, this problem can be solved using
cloud computing services (Google Cloud)that provide
flexible and affordable computational resources.[21],[39]
3. The problem of difficulty in interpreting typical results

 Interpreting typical results in deep learning is a
challenge for researchers and developers and affects users'
confidence, especially in the medical and security fields, to
solve this problem, techniques such as (Attention
Mechanisms) can be used and models of a simple nature can
be designed that use the most influential features in
decision-making and then trained on intermediate outputs
that contribute to analyzing decisions, and cooperation
between data scientists and specialists in this field, which
contributes to increasing reliability, especially in sensitive
fields.[40]

6. Practical Applications of Prediction
Techniques in Real World programs

 Many practical applications of prediction
techniques in real-world software, where they are used in
diverse areas such as predicting software bugs by analyzing
changes in code and reducing errors in software
development, which contributes to improving quality and
reducing maintenance costs. In the financial sector,

prediction models are used to analyze data and forecast
market movements, helping investors make informed
decisions, in healthcare, prediction techniques are used to
analyze medical data and predict diseases, helping doctors
provide better care to patients, in general, prediction
techniques enhance the ability to make data-driven
decisions, leading to improved performance and efficiency
across various industries.

There are several suggestions for improving deep
learning models in the future to meet industry needs.
Proposal 1: Integrating deep learning with traditional
methods

To effectively meet industry needs, deep learning
models should be integrated with traditional methods in
defect prediction, this integration can improve prediction
accuracy by leveraging the strengths of both methods,
leading to more reliable models that are able to handle
changing programming environments.[41],[42]
Proposal 2: Applying active learning and collaborating
with industry

Building partnerships with industrial organizations to
identify their specific needs and ensuring that models meet
these needs by collecting relevant data and modifying the
input features. This strategy not only enhances the accuracy
of models, but also ensures their compatibility with industry
requirements, leading to more effective solutions in
processing complex programming data.[43],[44]

7. Works related
This section presents the previous works that used deep

learning in SDP. Different methods of deep learning have
been used in software defects

Table.1. Summary of Related Works

(The List of Studies in the Field of Software Defect Prediction)
No Authors Objective of the

study
Methodology/
approaches/

tools/techniques used

Metrics Data set Key Finding Accuracy

1 Hoang et al.,
2019

for just-in-time defect
prediction

developed DeepJIT
 using

(CNN)

AUC QT and
OPENSTACK

achieving improvements of
10.36-13.69%

in Area Under the Curv e
(AUC)

 -

2 Deyu Chen
 et al., 2019

for cross-project defect
prediction

proposed the DeepCPDP
method using (Bi -LSTM)

with the Sim AST
representation for cross-
project defect prediction

AUC PROMISE The results showed that
DeepCPDP significantly

outperformed eight state-of-
the-art baselines, achieving

an average performance
improvement of 6.18% to

21.17%.

-

3 Al Qasem and
Akour,
2019

investigated software fault
prediction using deep
learning algorithms

(MLPs) and (CNNs) Accuracy NASA the CNN algorithm
outperformed MLPs,

achieving accuracies of up to
100% on some datasets

98%

4 Liang et al.,
2019

for software defect prediction proposed the Seml
framework using a Long

Short Term Memory
(LSTM) algorithm

prediction
Recall

F1- score

1,306 open-
source Java

projects

that Seml outperformed
state-of-the-art approaches in

both within-project and
cross-project defect

prediction

49.81%

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (67-79)

75

No Authors Objective of the
study

Methodology/
approaches/

tools/techniques used

Metrics Data set Key Finding Accuracy

5 Lei Qiao et al.,
2019

defect prediction using a specially designed
neural network
(DPNN model)

MSE MIS and KC2 Their approach
outperformed existing
models, reducing mean

square error by over 14%
and increasing correlation by

more than 8%.

-

6 Ahmad
Hasanpour et

al.,
2020

or software defect prediction. Using
tack Sparse Auto-Encoder
(SSAE) and Deep Belief

Network (DBN)

most evaluation metrics

prediction
Accuracy

NASA SSAE model achieved better
results than DBN in most

evaluation metrics
enhancing prediction

accuracy.

83.8%

7 Cheng
 et al.,2020

static detection of software
vulnerabilities in C/C++

programs

DeepWukong
(DGNN)

Accuracy
F1- score

dataset of
105,428 real-

world programs

demonstrating superior
performance compared to
traditional static detectors
and existing deep-learning

approaches.

86%

8 Ghosh and
Singh,
2020

Prediction for software fault
effectively calculated

suspicious cores for program
statements

(CNN) dataset
comprising test
case results and

statement
coverage from

example
programs

approach effectively
calculated suspicious scores

for program statements,
improving fault localization

accuracy

-

9 Chakraborty et
al.,

2020

vulnerability detection used a graph-based model
with representation

learning

Accuracy
precision

recall
F1- score

new dataset
from real-world

projects
(Chromium and

Debian)

study achieved a precision
improvement of up to

33.57% and a recall increase
of 128.38%

93%

10 Deng et al.,
2020

proposed a defect prediction
framework

(LSTM)
leveraging Abstract Syntax

Trees (ASTs)

F1- score seven open-
source projects

from the
PROMISE

LSTM approach
outperformed traditional and

state-of-the-art methods

-

11 Kukkar et al.,
2020

developed a duplicate bug
report detection system

(CNN) Accuracy
Recall

F1- score

six publicly
available
datasets

achieving an accuracy rate
between 85% and 99%

91%

12 Kumar et al.,
2020

developed a defect severity
prediction model

using various deep learning Accuracy
F1- score

AUC

six software
projects

achieving high predictive
power with AUC values

close to 1 when using
SMOTE for data balancing

80%

13 Mnyanghwalo
et al., 2020

for fault detection in
electrical secondary

distribution networks

(RNN) Accuracy
AUC

dataset collected
from a low-

voltage
transformer in

Tanzania
between 2012

and 2020

found that RNNs were
efficient in detecting and
classifying faults, with
accuracy improving as
complexity increased.

95.6%

14 Kumar et al.,
2021

predicting software defect
severity levels

using various embedding
and feature selection

techniques

Accuracy
AUC

Neuron
coverage

six software
projects (CDT,

JDT, PDE,
Platform,
Bugzilla,

Thunderbird)

that models utilizing word
embeddings and SMOTE

significantly improved
prediction accuracy and

neuron coverage

-

15 Yu et al.,
2021

Defect prediction within and
across projects

developed model called
DPSAM, utilizing a self-

attention mechanism
(DBN)

(DP-CNN)

Accuracy
Precision

Recall
F1- score

seven open-
source Java

projects

PROMISE

achieving notable F1 score
improvements of 16.8% in

within-project defect
prediction and 23% in cross-

project defect prediction

66.8%

16 Bani-Salameh
et al.,
2021

detecting the priority of bug
reports and

and allows developers to find
the highest priority bug

reports

(RNN-LSTM) Accuracy
AUC

F1- score

2000 bug
reports from

JIRA

achieved an accuracy of
90.8%, outperforming other
algorithms like KNN (74%)

and SVM (87%)

90.8%

17 Nevendra and
Singh,
2021

The aims to identify the
defective instance using the

enhanced deep learning
method

(CNN) Accuracy
Precision

Recall
F1- score

19 open-source
defect datasets

approach significantly
outperformed Li's CNN and
standard machine learning

models

77,5%

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (67-79)

76

No Authors Objective of the
study

Methodology/
approaches/

tools/techniques used

Metrics Data set Key Finding Accuracy

18 Wang et al.,
2021

the goal GH-LSTMs model
to extract both semantic
and traditional software
features and effectively

combine
the extracted features using

gated fusion mechanism. and
demonstrate that proper

feature fusion can
significantly boost the
performance of defect

predictio

(GH-LSTMs) Precision
Recall

F1- score

10 open-source
projects
 from

 PROMISE

GH-LSTMs outperformed
existing methods

51%

19 Elsaraiti and
Merabet,

2021

has been proposed to forecast
wind
speed

(LSTM)
(RNN)

 forecast wind
speed using

hourly data from
Halifax, Canada

LSTM model significantly
improved prediction

accuracy, achieving RMSE
values of 8.5128 for spring

and 4.7796 for summer

-

20 Liu et al.,
2021

study and analysis of
software defect prediction

methods in a cloud
environmen

Autoencoder models in deep
learning theory can

automatically learn features
from the original data and

obtain feature representations
of the input data

cost-sensitive deep
ladder network algorithm

(CSDLN)

Accuracy
F1- score

used a dataset
from various

projects

found that their improved
deep belief network method
achieved better prediction

accuracy compared to
traditional models

-

21 Sharma et al.,
2022

predict the regions of source
code that contain faults

(CCFT-CNN)
 (CNN)

F1- score PROMISE 2% improvement in F-
measure over baseline

models

-

22 Rizvi, 2023 power outage prediction and
fault detection

(CNNs)
 (RNNs)
 (GANs)

Accuracy
Precision

- achieved a 95% accuracy in
predicting outages and 92%

average precision in
classifying fault types

95%

23 Borandag et
al.,

2023

research was to statistically
demonstrate that DL

algorithms outperformed ML
algorithms

(RNN)
(CNN)

(LSTM)
(Bi-LSTM)

ACC
AUC

SFP XP-TDD
and

e Eclipse and
Apache Active

MQ

They found that deep
learning algorithms

outperformed traditional
machine learning techniques

-

24 Zain et al.,
2023

To synthesize literature on
SDP using DL, pertaining to

measurements, models,
techniques, datasets, and

achievements

(CNN)
(DNN)
(LSTM)
(DBN)

 (SDAE)

Accuracy
Precision

Recall
F1- score

AUC
MCC
PRC

PROMISE and
NASA

indicated that DL models
generally outperformed

traditional Machine Learning
models in terms of accuracy,

f-measure, and AUC

-

25 Giray et al.,
2023

tudy, identify, analyze and
summarize the current state

of use of deep learning
algorithms for SDP

(CNN)
(RNN)

 (LSTM)
(GRU)
(MLP)
(DBN)

- analyzing 102
studies

the most frequently used DL
algorithm is CNN. The other
widely used algorithms are
RNN/LSTM/GRU, MLP,

and DBN

-

26 Batool and
Khan,
2023

identify faults at the early
stages of the software
development life cycle

(SDLC)

(LSTM)
(Bi-LSTM)

(RBFN)

Accuracy
Precision

Recall
F1- score

CK metrics-
based datasets

And
Git repository

found that LSTM and
BILSTM performed better in
accuracy, while RBFN was

faster

93%

27 Lv, 2024 identifying and anticipating
mechanical failures is
explored through an

examination of vibration
datasets sourced from actual

industrial machinery

(CNN – LSTM) Accuracy
Recall

F1- score

vibration
datasets from

industrial
machinery

achieved an accuracy of 95%
outperforming traditional
methods like SVM and

Random Forest

95%

28 Alkaberi and
Assiri, 2024

determine whether a software
unit is faulty

(CNN)
(MLP)

Kendall
MSE

twelve open-
source software
project from the

PROMISE

MLP achieved a Kendall
value of 0.416 and a mean

squared error (MSE) of
0.195, outperforming the

CNN

-

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (67-79)

77

No Authors Objective of the
study

Methodology/
approaches/

tools/techniques used

Metrics Data set Key Finding Accuracy

29 Khleel and
Nehéz, 2024

aims
to combine a bidirectional

long short-term memory (Bi-
LSTM) network with

oversampling techniques. To
establish the

effectiveness and efficiency
of the proposed model

(Bi-LSTM) Accuracy
Precision

Recall
F1- score

Mcc
AUC
MSE

The focus on
Accuracy and
F-measures

six public
software defect

datasets
(ant, camel, ivy,
jedit, log4j, and

xerces)

PROMISE

achieved average accuracies
of 88%, 94%, and 92% on

original and balanced
datasets

92%

30 Sivavelu and
Palanisamy,

2024

predictions are used to
identify defective modules
before the testing and to

minimize the time and cost

(SQADEN) Accuracy
Precision

Recall
F1- score

time
complexity

PROMISE achieved superior accuracy,
precision, and recall
compared to existing

methods, with significant
reductions in prediction time

and space complexity

98%

Conclusion
This study highlights the critical role and

transformative potential of deep learning techniques in
software defect prediction (SDP). As software applications
become increasingly important in everyday life, the
reliability of these systems has become of paramount
importance. A systematic review of the existing literature
reveals that traditional defect detection methods are often
inadequate due to their reliance on manual testing and a
growing consensus on the effectiveness of deep learning
methods in identifying defect-prone modules early in the
development process.

The results confirm deep learning models such as
convolutional neural networks (CNNs) and long-short-term
memory (LSTM) networks, and we demonstrate that these
models significantly outperform traditional machine
learning methods in terms of accuracy, recall, and overall
predictive performance. These advances not only enhance
the efficiency of the software development lifecycle but
also reduce the costs associated with defect management
and maintenance.

In conclusion, the integration of deep learning into
software defect prediction represents a major advance in
ensuring software reliability and quality and not only
improves the identification of potential bugs, but also paves
the way for more resilient and efficient software systems in
the future. Future research should focus on improving these
models and exploring their applicability across diverse
programming languages and environments.

 Future research should focus on enabling
organizations to apply deep learning models to define clear
goals such as improving software quality, comprehensively
analyzing customer data from identifying customer
behavior patterns to improving marketing strategies,
collecting balanced data, reducing costs associated with
defect fixing, forming teams of developers and project
managers, collaborating between these teams to understand

business needs to design models that meet those needs,
seamlessly integrating models into workflows, training
technical teams to ensure optimal use, leading to better
outcomes in real-world business applications, and exploring
their applicability across diverse programming languages
and environments.

Acknowledgement
I would like to express my deepest thanks and gratitude

to the Deanship of the College of Computer and
Mathematics at the University of Mosul for their assistance
and facilitation of research requirements.

Conflict of interest
None.

References
[1] Liu, W., Wang, B., & Wang, W. (2021). Deep learning software

defect prediction methods for cloud environments research.
Scientific Programming, 2021(1), 2323100.

[2] Liang, H., Yu, Y., Jiang, L., & Xie, Z. (2019). Seml: A semantic
LSTM model for software defect prediction. IEEE Access, 7, 83812-
83824.

[3] Altaie, A. M., Hamo, A. Y., & Alsarraj, R. G. (2021). Software Fault
Estimation Tool Based on Object-Oriented Metrics. Iraqi Journal of
Science, 63-69.

[4] Qiao, L., Li, X., Umer, Q., & Guo, P. (2020). Deep learning based
software defect prediction. Neurocomputing, 385, 100-110.

[5] Giray, G., Bennin, K. E., Köksal, Ö., Babur, Ö., & Tekinerdogan, B.
(2023). On the use of deep learning in software defect prediction.
Journal of Systems and Software, 195, 111537.

[6] Chakraborty, S., Krishna, R., Ding, Y., & Ray, B. (2021). Deep
learning based vulnerability detection: Are we there yet?. IEEE
Transactions on Software Engineering, 48(9), 3280-3296.

[7] Hoang, T., Dam, H. K., Kamei, Y., Lo, D., & Ubayashi, N. (2019,
May). Deepjit: an end-to-end deep learning framework for just-in-
time defect prediction. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR) (pp. 34-45).
IEEE.

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (67-79)

78

[8] Chen, D., Chen, X., Li, H., Xie, J., & Mu, Y. (2019). DeepCPDP: Deep
learning based cross-project defect prediction. IEEE Access, 7,
184832-184848.

[9] Al Qasem, O., & Akour, M. (2019). Software fault prediction using
deep learning algorithms. International Journal of Open Source
Software and Processes (IJOSSP), 10(4), 1-19.

[10] Edan, T.N.O.(2023) Software defect prediction based on Ensemble
learning. Unpublished thesis, College of Computer Science and
Mathematics, 99p.

[11] Kumar, L., Dastidar, T. G., Goyal, A., Murthy, L. B., Misra, S.,
Kocher, V., & Padmanabhuni, S. (2020). Predicting software defect
severity level using deep-learning approach with various hidden
layers. In Neural Information Processing: 28th International
Conference, ICONIP 2021, Sanur, Bali, Indonesia, December 8–12,
2021, Proceedings, Part VI 28 (pp. 744-751). Springer International
Publishing.

[12] Özakıncı, R., & Kolukısa Tarhan, A. (2023). A decision analysis
approach for selecting software defect prediction method in the early
phases. Software Quality Journal, 31(1), 121–177.

[13] Hasanpour, A., Farzi, P., Tehrani, A., & Akbari, R. (2020). Software
defect prediction based on deep learning models: Performance study.
arXiv preprint arXiv:2004.02589.

[14] Kukkar, A., Mohana, R., Kumar, Y., Nayyar, A., Bilal, M., & Kwak,
K. S. (2020). Duplicate bug report detection and classification system
based on deep learning technique. IEEE Access, 8, 200749-200763.

[15] Mnyanghwalo, D., Kundaeli, H., Kalinga, E., & Hamisi, N. (2020).
Deep learning approaches for fault detection and classifications in the
electrical secondary distribution network: Methods comparison and
recurrent neural network accuracy comparison. Cogent Engineering,
7(1), 1857500.

[16] Taye, M. M. (2023). Understanding of Machine Learning with Deep
Learning Architectures, Workflow, Applications and Future
Directions. In Computers (Vol. 12, Issue 5).
https://doi.org/10.3390/computers12050091.

[17] Pandey, S. K., Haldar, A., & Tripathi, A. K. (2023). Is deep learning
good enough for software defect prediction?. Innovations in Systems
and Software Engineering, 1-16.

[18] Lv, J. (2024). Research on Mechanical Fault Diagnosis and
Prediction Technology Based on Deep Learning. Transactions on
Computer Science and Intelligent Systems Research, 4, 112-117.

[19] Sharma, K. K., Sinha, A., & Sharma, A. (2022). Software Defect
Prediction using Deep Learning by Correlation Clustering of Testing
Metrics. International journal of electrical and computer engineering
systems, 13(10), 953-960.

[20] Alkaberi, W., & Assiri, F. (2024). Predicting the Number of Software
Faults using Deep Learning. Engineering, Technology & Applied
Science Research, 14(2), 13222-13231.

[21] Elsaraiti, M., & Merabet, A. (2021). Application of long-short-term-
memory recurrent neural networks to forecast wind speed. Applied
Sciences, 11(5), 2387.

[22] Laura , W., Lars , G., & Timo , K. (2020). “Detecting Software
Vulnerabilities with Deep Learning”. Berlin: Humboldt University of
Berlin.

[23] Batool, I., & Khan, T. A. (2023). Software fault prediction using deep
learning techniques. Software Quality Journal, 31(4), 1241-1280.

[24] Borandag, E. (2023). Software fault prediction using an RNN-based
deep learning approach and ensemble machine learning techniques.
Applied Sciences, 13(3), 1639.

[25] Rizvi, M. (2023). Leveraging Deep Learning Algorithms for
Predicting Power Outages and Detecting Faults: A Review.
Advances in Research, 24(5), 80-88.

[26] Ramkumar, M., Babu, C. G., Kumar, K. V., Hepsiba, D.,

Manjunathan, A., & Kumar, R. S. (2021, March). ECG cardiac
arrhythmias classification using DWT, ICA and MLP neural
networks. In Journal of Physics: Conference Series (Vol. 1831, No.
1, p. 012015). IOP Publishing.

[27] Kumar, L., Dastidar, T. G., Murthy Neti, L. B., Satapathy, S. M.,
Misra, S., Kocher, V., & Padmanabhuni, S. (2021). Deep-learning
approach with Deepxplore for software defect severity level
prediction. In Computational Science and Its Applications–ICCSA
2021: 21st International Conference, Cagliari, Italy, September 13–
16, 2021, Proceedings, Part VII 21 (pp. 398-410). Springer
International Publishing.

[28] Satapathy, S. C., Jena, A. K., Singh, J., Bilgaiyan, S., Ghosh, D., &
Singh, J. (2020). A novel approach of software fault prediction using
deep learning technique. Automated Software Engineering: A Deep
Learning-Based Approach, 73-91.

[29] Cheng, X., Wang, H., Hua, J., Xu, G., & Sui, Y. (2021).
Deepwukong: Statically detecting software vulnerabilities using
deep graph neural network. ACM Transactions on Software
Engineering and Methodology (TOSEM), 30(3), 1-33.

[30] Wang, H., Zhuang, W., & Zhang, X. (2021). Software defect
prediction based on gated hierarchical LSTMs. IEEE Transactions on
Reliability, 70(2), 711-727.

[31] Sivavelu, S., & Palanisamy, V. (2024). Nonparametric Statistical
Feature Scaling Based Quadratic Regressive Convolution Deep
Neural Network for Software Fault Prediction. Computers, Materials
& Continua, 78(3).

[32] Khleel, N. A. A., & Nehéz, K. (2024). Software defect prediction
using a bidirectional LSTM network combined with oversampling
techniques. Cluster Computing, 27(3), 3615-3638.

[33] Vujović, Ž. (2021). Classification model evaluation metrics.
International Journal of Advanced Computer Science and
Applications, 12(6), 599–606.Wahono, R. S. (2015). A systematic
literature review of software defect prediction. Journal of Software
Engineering, 1(1), 1–16.

[34] Zain, Z. M., Sakri, S., & Ismail , N. H. A. (2023). Application of deep
learning in software defect prediction: systematic literature review
and meta-analysis. Information and Software Technology, 158,
107175.

[35] Bani-Salameh, H., Sallam, M., & Al shboul, B. (2021). A deep-
learning-based bug priority prediction using RNN-LSTM neural
networks. e-Informatica Software Engineering Journal, 15(1).

[36] Yu, T. Y., Huang, C. Y., & Fang, N. C. (2021, August). Use of deep
learning model with attention mechanism for software fault
prediction. In 2021 8th International Conference on Dependable
Systems and Their Applications (DSA) (pp. 161-171). IEEE.

[37] Nevendra, M., & Singh, P. (2021). Software defect prediction using
deep learning. Acta Polytechnica Hungarica, 18(10), 173-189.

[38] Zhang, X., Li, Y.,& Wang, J. (2023).Interpretable Deep Learning: A
Comprehensive Survey. IEEE Transaction on Neural Networks and
Learning Systems .Advance online publication .

[39] Aldabbagh, G. M. T., & Hasoon, S. O. (2024). DEFECT SEVERITY
CODE PREDICTION BASED ON ENSEMBLE LEARNING.
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie
Środowiska, 14(4), 146-153.

[40] Al-Mansoori, A., & Al-Hamadi, A. (2023). Sustainable practices in
the manufacturing sector: Challenges and opportunities.
Sustainability, 15(1), 234-250. https://doi.org/10.3390/su150100234
.

[41] Fadel, N. A. A., & Bahnam, B. S. (2024). Determining the Quality of
Dairy Products Using Machine Learning Techniques. Journal of
Education and Science, 33(1), 17-31. doi:
10.33899/edusj.2023.144324.1405.

[42] Faidhi Hamad, K., Celik, B., & Maghded Ahmed, R. (2024).

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (67-79)

79

Classification of Circular Mass of Breast Cancer Using Artificial
Neural Network vs. Discriminant Analysis in Medical Image
Processing. IRAQI JOURNAL OF STATISTICAL
SCIENCES,21(1), 46-58.

 doi: 10.33899/iqjoss.2024.0183231.

[43] Hamid,D.N.,&Younis,M.C.(2024).Electronic Health Data Records
for Diabetes Patients Based on Deep Learning Models: A Review,
18(2), 52-64.

[44] Al-Zakarya,M.A,& Al-Irhaim,Y.F. (2023). Unsupervised and Semi-
Supervised Speech Recognition System: A Review, 17(1), 34-42.

	Long Short-Term Memory (LSTM) algorithm is a type of recurrent neural network (RNN) designed to efficiently learn long-term dependencies in sequential data. LSTMs work by processing sequences of data step by step. LSTMs consist of memory cells that ca...

