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     Software bug prediction (SDP) techniques identify bugs in the early stages of the software 
development life cycle through a series of steps to produce reliable and high-quality software. Deep 
learning techniques are widely used in SDP, which can produce accurate and exceptional results in 
different fields. 
The study aims to systematically review models, techniques, datasets, and performance evaluation 
metrics to gain a complete understanding of current methodologies related to SDP, and the use of 
DL in software defect prediction research between 2019 and 2024. A comprehensive review of 
studies in this area was completed to answer the research questions and summarize the results from 
the initial investigations. 30 primary studies that passed the systematic review quality assessment of 
the studies were used. However, the six most common evaluation metrics used in SDP were 
confusion matrix, Scoar-1F, recall, precision, accuracy, and area under the curve (AUC). The top 
three DL algorithms used in building SDP models and used in predicting software bugs were 
convolutional neural network (CNN), long-short-term memory (LSTM), and bidirectional LSTM. 
We conclude that the application of deep learning in SDP remains a challenge, but it has the potential 
to achieve better prediction performance. Future research directions focus on improving these 
models and exploring their applications across diverse programming environments  
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1. Introduction 

With the rapid development of computer technology, 
software applications have expanded to all parts of people’s 
daily lives, creating a situation in which the economy, 
production, and life are fully dependent on computer 
software. But software failure can bring about serious or 
even fatal consequences, especially for high-risk 
systems.[1] 

System failure is more often caused by software 
defects, which are important factors affecting software 
quality.[2] 

At the internal level of software, defects are errors or 
faults in the software development or maintenance process; 
A fault is an error that has effects on system behavior, at the 
external level of software, defects are violations or failures 
of the functions that the software needs to perform.[3]  

Software Defect Prediction (SDP) as a crucial 
technique that aids developers in identifying defective 
software modules in advance, allowing for more efficient 
allocation of testing resources through the analysis of 
software repositories and training predictive models on 
gathered data.[4]   

Software reliability and quality mainly depend on 
removing faults or defects in software. Although some 
defects might arise from causes unrelated to code (such as 
compilers or byte code representations), the main source of 
software faults is software code. The traditional way of 
finding software defects is by testing and conducting 
reviews. However, these activities may require extensive 
time and effort. On the other hand, automatic prediction of 
defective software modules at early stages may guide 
developers in improving code quality at a reduced cost 
compared to a fully manual approach, predicting defect-
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prone parts of software before discovering faults by 
performing substantial efforts is a challenging task. The 
main challenge of SDP is identifying the faulty parts of 
source code with better fault prediction performance.[5]   

Deep Learning is subfield of machine learning that uses 
supervised and unsupervised strategies. It has been very 
successful in various fields, successful in various such as 
computer vision and Natural language processing.   Deep 
learning enables computational models made of multiple 
layers to learn data representations at multiple levels of 
abstraction.[6] 

Deep learning is chosen for its ability to capture 
complex from large datasets.[7] 

The advantages of deep learning over machine learning 
are that deep learning has best-in-class performance, has the 
ability to extract features automatically and eliminates the 
feature engineering stage, and makes it easy to generalize 
the trained model to other domains. Deep learning is a 
rapidly growing research topic with many deep learning 
architectures, and new models are being developed to suit 
different research domains.[8] 

In general, the utility of deep learning becomes better 
as the amount of training data increases. As a result, the 
ability to solve complex applications and its accuracy are 
constantly increasing. Deep learning is beating the AI 
community by making improvements to solving problems 
and will lead to more success in the future because it 
requires very little manual engineering.[9] 

This paper is organized as follows: Section 2 describes 
the Research Questions, Section 3 describes the Algorithms 
Used in Software Defect Prediction, Section 4 Discussion 
of the Research Questions, Section 5 describes the 
Challenges in Applying Deep Learning, Section 6 describes 
the Practical applications of prediction techniques in real 
world programs, Section 7 describes the Related Works, 
Section 8 describes the Conclusion. 

 

2.  Research Questions 
The aim of this study is to obtain a presentation and 

overview of current research in the field of software bug 
prediction using deep learning techniques that enable the 
system developer to create a set of high-quality tests that 
have the ability to detect software errors or defects and 
evaluate the quality of these techniques through the 
following questions: 

RQ. 1 what are the main components of software defect 
prediction (SDP)? 

RQ. 2 What kinds of metrics are the most used for fault 
prediction? 

RQ. 3 What are the types of software defect prediction 
(SDP)?  

RQ. 4 What kinds of methods are the most used for 

fault prediction? 
 

2.1. Sources Of Information 
This paper presents a systematic literature review of the 

work done in software defect prediction using deep 
learning, and in order to have a broad view, many papers 
and journals were searched and publications related to this 
study were selected in the time period from 2019 to 2024. 
The search strategy was based on the identification of 
alternative words and synonyms of terms used in research 
questions to decrease the effect of the differences in terms 
After selecting the publications related to the study in this 
period, 30 closely related articles in software defect 
prediction were found. Figure 1 illustrates the steps for 
integrating deep learning with software defects.  

 
Figure 1. Integrating Deep Learning with Software 

Defects [10] 

2.2. Software defect prediction 
Defect prediction is a technique used in software 

engineering to identify and predict defects and errors in 
software systems before they occur.[11] The goal of defect 
prediction is to improve software quality and reduce the 
number of post-release problems by enabling developers to 
focus their efforts on high-risk areas. The benefits of defect 
prediction include the following: 

Early detection of errors: Defect prediction allows 
developers to discover potential problems early in the 
development process, reducing the cost and effort required 
to fix them. 

Resource optimization: By focusing efforts on high-
risk areas, resources can be used more efficiently, leading 
to better software quality. 

Decision support: Project managers can use defect 
prediction results to make informed decisions about 
resource allocation and release planning. 

Process improvement: Defect data analysis can provide 
insight into the software development process, enabling 
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organizations to identify areas for improvement.[12]    
 

2.3. Deep Learning in Software Defect 
Prediction 

Deep learning is known as a subcategory of machine 
learning techniques. In this type of learning, new 
architectures are used where multiple layers of processing 
units are employed to extract features and it is used as a new 
solution for most of the fields especially in software 
topics.[13]  

Deep learning is used in predicting software bugs 
because it is able to process large amounts of data and 
identify complex patterns. Through the training process, 
deep learning models can learn to recognize signs of 
potential errors or vulnerabilities in software code, thus 
improving software quality and reliability [14]. It can also 
be used in anomaly detection, code review, and predictive 
maintenance. Deep learning began to be incorporated into 
software bug prediction when developers sought more 
efficient ways to analyze large databases and identify 
potential problems before they appeared in production. 
Traditional methods often rely on rule-based systems or 
simpler statistical techniques, which can be limited in 
scope. Deep learning, with its ability to learn from 
unstructured and imbalanced data and adapt to new patterns, 
allows for more accurate predictions and improved 
decision-making in software development processes. It is 
therefore a vital tool for improving software reliability and 
reducing the time and cost associated with patching and 
maintenance.[15] 

Deep learning is an effective tool for predicting 
software defects, which contributes to improving software 
quality and reducing the costs associated with fixing 
errors.[16] . 

One of the main benefits of deep learning is the 
automatic extraction of features from data, which saves time 
and effort, Deep learning models show superior 
performance in processing large and complex data, and it 
also has the ability to deal with unbalanced and unstructured 
data more effectively [12]. Which increases the accuracy of 
predictions. 

 

2.4.  Comparison Between Traditional 
Methods and Deep learning 

Traditional techniques and deep learning are two 
different approaches in the field of artificial intelligence, 
traditional methods rely heavily on designing a pre-defined 
model based on algorithms and statistical analysis of data, 
in contrast, deep learning relies on artificial neural networks 
that are able to learn directly from big data. The main 
differences between the two approaches lie in the ability to 
handle data. Traditional methods suffer from performance 
limitations when dealing with complex and unstructured 

data and require hand-designed features, deep learning, on 
the other hand, can process large amounts of data more 
efficiently and extract features automatically, making it 
suitable for applications such as image and video 
processing. [16] 

3. Algorithms Used in Software Defect 
Prediction 

This paper presents deep learning algorithms and 
traditional machine learning techniques to enhance 
software defect prediction (SDP). 
 

3.1. Convolutional Neural Networks (CNNs) 
CNNs are designed to process structured data using 

convolutional layers to automatically learn features from 
the input data. By automatically extracting features from 
the data, this reduces the need for manual feature 
engineering, which can be time-consuming [8].This model 
can recognize patterns regardless of their position in the 
data input. Additionally, CNNs learn features at multiple 
levels and consist of an input layer, an output layer, 
convolutional layers, pooling layers, and fully connected 
layers, making them adept at extracting features 
automatically, as shown in Figure 2.[17] 

A given neuron has the same number of input neurons 
and the same weight, and the pooling layer reduces the size 
of the input neuron and increases the learning rate.[18] 

 CNNs are widely used in image processing, video 
recognition, and natural language processing. Their 
advantages include higher accuracy and efficiency in 
handling spatial sequences of data, including automatic 
feature learning and performance. They are easier to train 
and have fewer parameters compared to other deep 
learning architectures. However, they typically require 
larger datasets for training, a lot of time, and can be 
computationally intensive.[19],[20] 

 
Figure 2.   CNN architecture [17] 

3.2. Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) algorithm is a type of 
recurrent neural network (RNN) designed to efficiently learn 
long-term dependencies in sequential data. LSTMs work by 
processing sequences of data step by step. LSTMs consist of 
memory cells that can retain information over extended 
periods, using three gates: an input gate, a forget gate, and an 
output gate ,as shown in Figure 3 .The input gate controls the 
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flow of new information, the forget gate determines what 
information should be discarded, and the output gate 
determines what information should be passed to the next 
layer. It has the ability to mitigate the vanishing gradient 
problem, making it suitable for time series forecasting (such 
as wind speed forecasting). It can be computationally 
intensive and requires fine-tuning of parameters, and it 
updates its internal state based on both the current input and 
the previous hidden state, allowing it to make accurate 
predictions.[21]

 

Figure 3.  LSTM architecture [22] 

3.3. Bidirectional LSTM (BI-LSTM)   
The Bidirectional LSTM (BI-LSTM) algorithm is an 

extension of the LSTM algorithm described above that uses 
two LSTM algorithms on the input data. The input sequence 
is fed to the LSTM algorithm in the first round (i.e. the 
forward layer) and the reverse form of the input sequence is 
fed into the algorithm in the second round in the backward 
layer.Using two LSTMs improves the learning of long-term 
dependencies and as a result improves the accuracy of the 
model. BI-LSTM runs faster and takes less time to make 
predictions, Figure 4. Illustrates the architecture of BI-
LSTM.[23]  

 
Figure 4.   BI-LSTM architecture [23] 

3.4. Recurrent Neural Networks (RNNs)  
Recurrent Neural Networks (RNNs) are a class of neural 

networks designed for processing sequences of data. Unlike 
traditional feed forward neural networks, RNNs have 
connections that loop back on themselves, allowing them to 
maintain a memory of previous inputs. This architecture 
makes RNNs particularly effective for tasks involving 
sequential data, such as time series analysis, natural language 
processing, and speech recognition, Figure 5. Illustrates the 
architecture of RNN.[24]  

Advantages include improved accuracy in predictions, 
automatic feature extraction, and the ability to handle large 
volumes of data and real-time monitoring. However, they 
also have disadvantages, such as requiring substantial labeled 

training data, being computationally intensive, and lacking 
interpretability, which makes understanding their decision-
making process challenging.[25] 

 
Figure 5. RNN architecture [22] 

3.5 Multi-Layer Perceptron (MLPs) 
MLPs consist of an input layer, multiple hidden layers, 

and an output layer, where each neuron in one layer 
connects to every neuron in the next, as shown in Figure 6. 
This structure allows MLPs to model complex relationships 
and detect patterns in data. Advantages include their ability 
to learn non-linear functions and flexibility in various 
applications. However, they require extensive feature 
engineering and may struggle with large datasets due to 
over fitting.[9] 

 
Figure 6. MLP architecture [26] 

 

3.6 Deep Neural Networks (DNN) 
Deep neural networks (DNNs) are used to predict the 

severity of software defects. The algorithm for this type 
consists of multiple layers of neurons that process the input 
data, enabling the model to learn complex patterns from 
defect reports. This approach is characterized by high 
accuracy and the ability to handle large data sets, making it 
suitable for complex tasks such as defect classification. 
Additionally, However, drawbacks include the need for 
large computational resources and the potential for over 
fitting if not properly organized. The algorithm works by 
converting textual defect descriptions into numerical 
vectors, which are then processed by the DNN to predict 
severity levels, with a neuron coverage measure used to 
assess the model’s effectiveness in exploring the input 
space, Figure 7 illustrates the architecture of DNN.[27] 
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Figure 7.  DNN architecture [28] 

3.7 Deep Graph Neural Networks (DGNN) 
We present DeepWukong, a new deep learning-based 

approach that embeds both textual and code structured 
features into an effective representation to support detection 
of a wide range of vulnerabilities. DeepWukong first 
performs program slicing to extract fine-grained but 
complicated semantic features and then combines with 
graph neural networks to produce compact and low-
dimensional representation, that DeepWukong outperforms 
several state-of-the-arts, including traditional vulnerability 
detectors and deep-learning-based approaches, Figure 8 
shows the DGNN architecture.[29] 

 
Figure 8. the structure of the graph neural 

network in Deep wukong [29] 

3.8 Gated hierarchical long short-term 
memory (GH-LSTM)  

Gated Hierarchical Long Short-Term Memory (GH-
LSTM) Algorithm for Software Defect Prediction This 
algorithm consists of a hierarchical structure that uses two 
types of features: semantic features extracted from abstract 
syntax trees (ASTs) and traditional software metrics. The 
algorithm works by first processing the source code to 
extract both types of features, which are then fed into its 
LSTM networks. The outputs are combined using a closed-
loop fusion mechanism, and the combined features are 
passed through a fully connected layer to predict whether a 
module is defective or clean. The advantages include 
improved prediction accuracy by leveraging semantic and 
traditional features that can capture different aspects of the 
code, leading to better defect detection, Figure 9 shows the 
DGNN architecture The disadvantages include increased 
complexity in model training and the need for more 
computational resources.[30],[31] 

  
Figure 9.  Overview of GH-LSTM [30] 

3.9 Software Quality Assessment Deep 
Encoder Network (SQADEN) 

The Deep Quadrilateral Advectional Regression 
Neural Network with Non-Parametric Statistical 
Measurement (SQADEN) for Software Fault Prediction. 
This algorithm consists of two main components: feature 
selection and classification. Feature selection uses a non-
parametric Torgerson-Gower measurement technique to 
identify relevant software metrics while reducing time 
complexity. Classification is performed using a supervised 
Quadrilateral Advectional Regression deep neural network, 
which analyzes training and test samples to predict software 
defects, Figure 10 shows the DGNN architecture. The 
advantages of SQADEN include improved prediction 
accuracy, reduced time and space complexity compared to 
existing methods, and the ability to handle high-
dimensional datasets efficiently. However, disadvantages 
may include potential implementation complexity and 
dependence on input data quality for optimal performance. 
The algorithm works by identifying important features and 
then using deep learning techniques to classify software 
modules as defective or non-defective, ultimately achieving 
accurate predictions with minimal errors.[32] 

 
Figure 10. Schematic diagram of Quadratic Censored 

regressive convolution deep neural network[32] 
 

4. Discussion of Research Questions  
This section discusses the answers from the research 

that described the research questions. 
 

4.1. Research question 1: What are the main 
components of SDP?  

In the SDP process, three main components are relied 
upon: the dependent variables, the independent variables 
and the model, The dependent variables are the defect data 
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of a piece of code, either defective or non-defective, and can 
be binary or ordinal variables. 

 The independent variables (inputs) are the metrics in 
which the program code is recorded. The model contains the 
rules or algorithms that predict the dependent variable from 
the independent variables, The inputs (variables) are 
divided into training and test datasets to determine the 
effectiveness of the classifier, The training dataset is used 
to create the classifier. It is then used to predict potential 
defects in the test dataset and evaluate these predictions 
using different performance metrics to determine whether 
they are correct or not. Figure 11. 

 Software metrics play a fundamental role in SDP, and 
most SDP strategies rely on software metrics as 
independent variables, Metrics are designed to support bug 
finding in software projects, Given the huge diversity of 
software applications, identifying, locating, and detecting 
software defects has become a daunting task for researchers, 
Moreover, the density of defects also poses a challenge in 
detecting and predicting software defects. Typically, faulty 
software databases are composed of naturally imbalanced 
data, which generates randomness in the pattern properties, 
this motivates the development of an efficient and accurate 
SDP model.[33],[34] 

 
Figure 11. Proposed method of SDP[33] 

4.2 Research question 2: What kind of metrics 
are the most used for fault prediction 

Metrics actually aim to measure the accuracy of 
algorithms in estimating, by comparing the actual 
evaluation results derived from the dataset of predicting 
software defects with the expected evaluation resulting 
from applying the algorithms using a set of evaluation 
metrics. Several different evaluation metrics are used, 
among which five metrics are prominent and widely used 
and have been used in These metrics are based on a matrix 
(Accuracy, precision, Recall, F1-Score) and include the 
Confusion Matrix (Confusion Matrix) which is a table that 
displays the prediction results for classifying software 
defects, summarizing the correct and incorrect prediction 
values by comparing them with the training values which 
are described as true and false with the prediction values 
which are described as positive and negative as shown in 
Figure 12.[12] 

 
Figure 12. shows the confusion matrix for predicting 

software defects [33] 
 
The confusion matrix includes the terms below: 
1. : (True Positive (TP It is the true positive 

expectation of a software defect, i.e. if there is a software 
defect and it is expected to be a software defect. 

2.  :(TN)True Negative It is the true genetic 
prediction of the software defect, i.e. if there is no software 
defect and its prediction is no software defect. 

3.  (False Positive (FP : It is a false positive 
prediction of a software defect, i.e. if there is no software 
defect and it is predicted to be a software defect. 

4. False Negativ  (FN( : It is a false negative 
prediction of a software defect, i.e. if there is a software 
defect and it is predicted, there is no software 
defect.[34],[35]  

 
Accuracy  

It is the total number of correct predictions divided by 
the total number of predictions made on the data set. The 
best accuracy is 1 while the worst accuracy is 0, which can 
be calculated using the following equation: 

 

Accuracy =  
TP +  TN

TP +  FP +  TN +  FN
 

  
precision 

It is the percentage of correct positive predictions (TP) 
divided by the total number of positive predictions. The best 
accuracy is 1 and the worst accuracy is 0, which can be 
calculated using the following equation: 

 

precision =  
TP

TP +  FP 
 

 
Recall 

It is the ratio of true positive predictions (TP) divided 
by true positive predictions plus false negative predictions, 
which can be calculated using the following equation: 
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Recall =  
TP 

TP +  FN
 

 
 

F1- Score 
It is the harmonic meaning of the evaluation accuracy 

and recall, which can be calculated using the following 
equation.[36] 

  
AUC 

It indicates the relative performance of the True 
Positive Rate (TPR) and False Positive Rate (FPR). The 
greater the area under the Receiver Operating Characteristic 
(ROC) curve, the higher the model’s.[33] 

 

4.3 Research question 3: What are the types of 
software defect prediction? 

Early detection and prediction of software defects play 
an important role in modern software development. To 
address this problem of software defect prediction, software 
defect prediction can be classified into two main types: 

1. Within-project defect prediction (WPDP) 
This type involves prediction of defects within the 

same project where the model is trained and tested on data 
from the same code base and allows it to take advantage of 
the specific characteristics and patterns present in that 
project. 

2. Cross-project defect prediction (CPDP) 
This type aims to generalize predictions across 

different software systems where the model is trained on 
data from one project and tested on a different project which 
is more challenging due to the differences in code structures 
and characteristics between projects.[36],[37],[38] 

 

4.4 Research question 4: What kind of methods 
are the most used for fault prediction? 

Deep learning algorithms are collected after a 
comprehensive study of the research in Table 1, which 
shows a set of research specialized in deep learning 
algorithms.  

 The percentage of each algorithm was calculated 
according to previous studies.  

 
Figure 13.  Percentage of Algorithms in previous 

studies 
 
The Figure 13 above shows the distribution of different 

algorithms used, where CNN represents the largest share 
with 33% of the total due to its high ability to extract spatial 
features, followed by LSTM algorithm with 23% due to its 
ability to handle sequential data, RNNs with 15%  have 
connections that loop back on themselves, allowing them to 
maintain a memory of previous inputs, BI-LSTM with 10% 
it uses information in both directions, and many other 
algorithms that constitute smaller percentages. This Figure 
provides a visual breakdown of the relative use or 
prevalence of these different algorithms. These higher 
percentages for these three algorithms are due to their 
proven effectiveness in predicting software errors based on 
their ability to handle complex data efficiently. 

 

5. Challenges in Applying Deep Learning to 
software defect prediction 

The challenges associated with the use of deep learning 
are important issues that must be taken into consideration 
when applying this technology in various field In software 
development, predicting defects in software engineering is 
still a major challenge, leading to system failure, increasing 
maintenance costs, and making the development process 
more difficult, but they are not insurmountable by 
understanding these challenges and applying appropriate 
strategies for them. The most prominent of these challenges 
are: 
1. The problem of imbalanced data  In many cases, the data 
used to train deep learning models is imbalanced, which is 
one of the most prominent challenges facing deep learning 
models in the field of software defect prediction, in many 
software projects, the number of defects is much less 
compared to defect-free software, this imbalance can lead 
to model bias, the model may tend to predict the most 
common data category (defect-free software) and neglect 
the less common category (defects), leading to low accuracy 
in prediction, also, the evaluation is inaccurate, traditional 
metrics such as accuracy may appear good, while the actual 
performance in defect recognition is poor, this problem can 
be solved by using rebalancing techniques and applying 
special algorithms that deal with the problem of imbalance.  
2. The problem of the need for huge computational 
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resources 
      Deep learning models require large computational 

resources, which represents a real challenge, especially in 
environments that lack the necessary resources, including 
time and cost, deep learning model training processes 
require a long time and high costs, which is impractical for 
many organizations, these models also require a powerful 
infrastructure in terms of computing power, such as 
graphics processing units (GPUs) or clouds, which can be 
expensive and difficult, this problem can be solved using 
cloud computing services (Google Cloud)that provide 
flexible and affordable computational resources.[21],[39] 
3. The problem of difficulty in interpreting typical results 

       Interpreting typical results in deep learning is a 
challenge for researchers and developers and affects users' 
confidence, especially in the medical and security fields, to 
solve this problem, techniques such as (Attention 
Mechanisms) can be used and models of a simple nature can 
be designed that use the most influential features in 
decision-making and then trained on intermediate outputs 
that contribute to analyzing decisions, and cooperation 
between data scientists and specialists in this field, which 
contributes to increasing reliability, especially in sensitive 
fields.[40]  

 

6. Practical Applications of Prediction 
Techniques in Real World programs 

       Many practical applications of prediction 
techniques in real-world software, where they are used in 
diverse areas such as predicting software bugs by analyzing 
changes in code and reducing errors in software 
development, which contributes to improving quality and 
reducing maintenance costs. In the financial sector, 

prediction models are used to analyze data and forecast 
market movements, helping investors make informed 
decisions, in healthcare, prediction techniques are used to 
analyze medical data and predict diseases, helping doctors 
provide better care to patients, in general, prediction 
techniques enhance the ability to make data-driven 
decisions, leading to improved performance and efficiency 
across various industries. 

There are several suggestions for improving deep 
learning models in the future to meet industry needs. 
Proposal 1: Integrating deep learning with traditional 
methods 

To effectively meet industry needs, deep learning 
models should be integrated with traditional methods in 
defect prediction, this integration can improve prediction 
accuracy by leveraging the strengths of both methods, 
leading to more reliable models that are able to handle 
changing programming environments.[41],[42]  
Proposal 2: Applying active learning and collaborating 
with industry 

Building partnerships with industrial organizations to 
identify their specific needs and ensuring that models meet 
these needs by collecting relevant data and modifying the 
input features. This strategy not only enhances the accuracy 
of models, but also ensures their compatibility with industry 
requirements, leading to more effective solutions in 
processing complex programming data.[43],[44] 

 

7. Works related   
This section presents the previous works that used deep 

learning in SDP. Different methods of deep learning have 
been used in software defects 

 
Table.1.   Summary of Related Works 

(The List of Studies in the Field of Software Defect Prediction) 
No Authors Objective of the 

study 
Methodology/ 
approaches/ 

tools/techniques used 

Metrics Data set Key Finding Accuracy 

1 Hoang  et al., 
2019 

 

for just-in-time defect 
prediction 

developed DeepJIT 
 using  

(CNN) 

AUC QT and 
OPENSTACK 

achieving improvements of 
10.36-13.69% 

in Area Under the Curv e 
(AUC) 

 - 

2 Deyu Chen 
 et al., 2019 

for cross-project defect 
prediction 

proposed the DeepCPDP 
method using (Bi -LSTM) 

with the Sim AST 
representation for cross-
project defect prediction 

AUC PROMISE The results showed that 
DeepCPDP significantly 

outperformed eight state-of-
the-art baselines, achieving 

an average performance 
improvement of 6.18% to 

21.17%. 

- 

3 Al Qasem and 
Akour, 
2019 

investigated software fault 
prediction using deep 
learning algorithms 

(MLPs) and (CNNs) Accuracy NASA the CNN algorithm 
outperformed MLPs, 

achieving accuracies of up to 
100% on some datasets 

98% 

4 Liang et al., 
2019 

for software defect prediction proposed the Seml 
framework using a Long 

Short Term Memory 
(LSTM) algorithm 

prediction 
Recall 

F1- score 

1,306 open-
source Java 

projects 

that Seml outperformed 
state-of-the-art approaches in 

both within-project and 
cross-project defect 

prediction 

49.81% 



Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (67-79)  

75 
 

No Authors Objective of the 
study 

Methodology/ 
approaches/ 
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Metrics Data set Key Finding Accuracy 

5 Lei Qiao et al., 
2019 

defect prediction using a specially designed 
neural network 
(DPNN model) 

MSE MIS and KC2 Their approach 
outperformed existing 
models, reducing mean 

square error by over 14% 
and increasing correlation by 

more than 8%. 

- 

6 Ahmad 
Hasanpour et 

al., 
2020 

or software defect prediction. Using 
tack Sparse Auto-Encoder 
(SSAE) and Deep Belief 

Network (DBN) 
 

most evaluation metrics 

prediction 
Accuracy 

NASA SSAE model achieved better 
results than DBN in most 

evaluation metrics 
enhancing prediction 

accuracy. 

83.8% 

7 Cheng 
 et al.,2020 

static detection of software 
vulnerabilities in C/C++ 

programs 

DeepWukong 
(DGNN) 

Accuracy 
F1- score 

dataset of 
105,428 real-

world programs 

demonstrating superior 
performance compared to 
traditional static detectors 
and existing deep-learning 

approaches. 
 

86% 

8 Ghosh and 
Singh, 
2020 

Prediction for software fault  
effectively calculated 

suspicious cores for program 
statements 

(CNN)  dataset 
comprising test 
case results and 

statement 
coverage from 

example 
programs 

approach effectively 
calculated suspicious scores 

for program statements, 
improving fault localization 

accuracy 

- 

9 Chakraborty et 
al., 

2020 

vulnerability detection used a graph-based model 
with representation 

learning 

Accuracy 
precision 

recall 
F1- score 

new dataset 
from real-world 

projects 
(Chromium and 

Debian) 

study achieved a precision 
improvement of up to 

33.57% and a recall increase 
of 128.38% 

93% 

10 Deng et al., 
2020 

proposed a defect prediction 
framework 

(LSTM) 
leveraging Abstract Syntax 

Trees (ASTs) 

F1- score seven open-
source projects 

from the 
PROMISE 

LSTM approach 
outperformed traditional and 

state-of-the-art methods 

- 

11 Kukkar et al., 
2020 

developed a duplicate bug 
report detection system 

(CNN) Accuracy 
Recall 

F1- score 

six publicly 
available 
datasets 

achieving an accuracy rate 
between 85% and 99% 

91% 

12 Kumar et al., 
2020 

developed a defect severity 
prediction model 

using various deep learning Accuracy 
F1- score 

AUC 

six software 
projects 

achieving high predictive 
power with AUC values 

close to 1 when using 
SMOTE for data balancing 

80% 

13 Mnyanghwalo 
et al., 2020 

for fault detection in 
electrical secondary 

distribution networks 

(RNN) Accuracy 
AUC 

 

dataset collected 
from a low-

voltage 
transformer in 

Tanzania 
between 2012 

and 2020 

found that RNNs were 
efficient in detecting and 
classifying faults, with 
accuracy improving as 
complexity increased. 

 

95.6% 

14 Kumar et al., 
2021 

predicting software defect 
severity levels 

using various embedding 
and feature selection 

techniques 

Accuracy 
AUC 

Neuron 
coverage 

six software 
projects (CDT, 

JDT, PDE, 
Platform, 
Bugzilla, 

Thunderbird) 

that models utilizing word 
embeddings and SMOTE 

significantly improved 
prediction accuracy and 

neuron coverage 

- 

15 Yu et al., 
2021 

Defect prediction within and 
across projects 

developed model called 
DPSAM, utilizing a self-

attention mechanism 
(DBN) 

(DP-CNN) 

Accuracy 
Precision 

Recall 
F1- score 

 

seven open-
source Java 

projects 
 

PROMISE 

achieving notable F1 score 
improvements of 16.8% in 

within-project defect 
prediction and 23% in cross-

project defect prediction 

66.8% 

16 Bani-Salameh 
et al., 
2021 

detecting the priority of bug 
reports and 

and allows developers to find 
the highest priority bug 

reports 

(RNN-LSTM) Accuracy 
AUC  

F1- score 

2000 bug 
reports from 

JIRA 

achieved an accuracy of 
90.8%, outperforming other 
algorithms like KNN (74%) 

and SVM (87%) 

90.8% 

17 Nevendra and 
Singh, 
2021 

The  aims to identify the 
defective instance using the 

enhanced deep learning 
method 

(CNN) Accuracy  
Precision  

Recall 
F1- score 

19 open-source 
defect datasets 

approach significantly 
outperformed Li's CNN and 
standard machine learning 

models 

77,5% 
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18 Wang et al., 
2021 

the goal GH-LSTMs model 
to extract both semantic 
and traditional software 
features and effectively 

combine 
the extracted features using 

gated fusion mechanism. and 
demonstrate that proper 

feature fusion can 
significantly boost the 
performance of defect 

predictio 

(GH-LSTMs) Precision 
Recall 

F1- score 

10 open-source 
projects 
 from 

 
 PROMISE 

 

GH-LSTMs outperformed 
existing methods 

51% 

19 Elsaraiti and 
Merabet, 

2021 

has been proposed to forecast 
wind  
speed 

(LSTM) 
(RNN) 

 forecast wind 
speed using 

hourly data from 
Halifax, Canada 

LSTM model significantly 
improved prediction 

accuracy, achieving RMSE 
values of 8.5128 for spring 

and 4.7796 for summer 

- 

20 Liu et al., 
2021 

study and analysis of 
software defect prediction 

methods in a cloud 
environmen 

Autoencoder models in deep 
learning theory can 

automatically learn features 
from the original data and 

obtain feature representations 
of the input data 

cost-sensitive deep 
ladder network algorithm 

(CSDLN) 

Accuracy 
F1- score 

used a dataset 
from various 

projects 

found that their improved 
deep belief network method 
achieved better prediction 

accuracy compared to 
traditional models 

- 

21 Sharma et al., 
2022 

predict the regions of source 
code that contain faults 

(CCFT-CNN)  
 (CNN) 

F1- score PROMISE 2% improvement in F-
measure over baseline 

models 

- 

22 Rizvi, 2023 power outage prediction and 
fault detection 

(CNNs) 
 (RNNs)    
 (GANs) 

Accuracy 
Precision 

 

- achieved a 95% accuracy in 
predicting outages and 92% 

average precision in 
classifying fault types 

95% 

23 Borandag et 
al., 

2023 

research was to statistically 
demonstrate that DL 

algorithms outperformed ML 
algorithms 

(RNN) 
(CNN) 

(LSTM) 
(Bi-LSTM ) 

ACC 
AUC 

SFP XP-TDD 
and 

e Eclipse and 
Apache Active 

MQ 
 

They found that deep 
learning algorithms 

outperformed traditional 
machine learning techniques 

- 

24 Zain et al., 
2023 

 

To synthesize literature on 
SDP using DL, pertaining to 

measurements, models, 
techniques, datasets, and 

achievements 

(CNN) 
(DNN) 
(LSTM) 
(DBN) 

 (SDAE) 

Accuracy 
Precision 

Recall 
F1- score 

AUC 
MCC 
PRC 

PROMISE and 
NASA 

indicated that DL models 
generally outperformed 

traditional Machine Learning 
models in terms of accuracy, 

f-measure, and AUC 

- 

25 Giray et al., 
2023 

tudy, identify, analyze and 
summarize the current state 

of use of deep learning 
algorithms for SDP 

(CNN) 
(RNN) 

 (LSTM) 
(GRU) 
( MLP)  
(DBN) 

- analyzing 102 
studies 

the most frequently used DL 
algorithm is CNN. The other 
widely used algorithms are 
RNN/LSTM/GRU, MLP, 

and DBN 
 

- 

26 Batool and 
Khan, 
2023 

identify faults at the early 
stages of the software 
development life cycle 

(SDLC) 

(LSTM) 
(Bi-LSTM ) 

(RBFN) 

Accuracy  
Precision  

Recall 
F1- score 

CK metrics-
based datasets 

And 
Git repository 

found that LSTM and 
BILSTM performed better in 
accuracy, while RBFN was 

faster 

93% 

27 Lv, 2024 identifying and anticipating 
mechanical failures is 
explored through an 

examination of vibration 
datasets sourced from actual 

industrial machinery 

(CNN – LSTM) Accuracy 
Recall 

F1- score 

vibration 
datasets from 

industrial 
machinery 

achieved an accuracy of 95% 
outperforming traditional 
methods like SVM and 

Random Forest 

95% 

28 Alkaberi and 
Assiri, 2024 

determine whether a software 
unit is faulty 

 

(CNN)  
(MLP) 

Kendall   
MSE 

twelve open-
source software 
project from the 

PROMISE 

MLP achieved a Kendall 
value of 0.416 and a mean 

squared error (MSE) of 
0.195, outperforming the 

CNN 

- 
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29 Khleel and 
Nehéz, 2024 

aims 
to combine a bidirectional 

long short-term memory (Bi-
LSTM) network with 

oversampling techniques. To 
establish the 

effectiveness and efficiency 
of the proposed model 

(Bi-LSTM) Accuracy  
Precision  

Recall  
F1- score 

Mcc  
AUC 
MSE 

 
The focus on 
Accuracy and 
F-measures 

six public 
software defect 

datasets 
(ant, camel, ivy, 
jedit, log4j, and 

xerces) 
 

PROMISE 

achieved average accuracies 
of 88%, 94%, and 92% on 

original and balanced 
datasets 

92% 

30 Sivavelu and 
Palanisamy, 

2024 

predictions are used to 
identify defective modules 
before the testing and to 

minimize the time and cost 

(SQADEN) Accuracy  
Precision  

Recall  
F1- score  

time 
complexity 

PROMISE achieved superior accuracy, 
precision, and recall 
compared to existing 

methods, with significant 
reductions in prediction time 

and space complexity 

98% 

Conclusion 
This study highlights the critical role and 

transformative potential of deep learning techniques in 
software defect prediction (SDP). As software applications 
become increasingly important in everyday life, the 
reliability of these systems has become of paramount 
importance. A systematic review of the existing literature 
reveals that traditional defect detection methods are often 
inadequate due to their reliance on manual testing and a 
growing consensus on the effectiveness of deep learning 
methods in identifying defect-prone modules early in the 
development process. 

The results confirm deep learning models such as 
convolutional neural networks (CNNs) and long-short-term 
memory (LSTM) networks, and we demonstrate that these 
models significantly outperform traditional machine 
learning methods in terms of accuracy, recall, and overall 
predictive performance. These advances not only enhance 
the efficiency of the software development lifecycle but 
also reduce the costs associated with defect management 
and maintenance. 

In conclusion, the integration of deep learning into 
software defect prediction represents a major advance in 
ensuring software reliability and quality and not only 
improves the identification of potential bugs, but also paves 
the way for more resilient and efficient software systems in 
the future. Future research should focus on improving these 
models and exploring their applicability across diverse 
programming languages and environments. 

 Future research should focus on enabling 
organizations to apply deep learning models to define clear 
goals such as improving software quality, comprehensively 
analyzing customer data from identifying customer 
behavior patterns to improving marketing strategies, 
collecting balanced data, reducing costs associated with 
defect fixing, forming teams of developers and project 
managers, collaborating between these teams to understand 

business needs to design models that meet those needs, 
seamlessly integrating models into workflows, training 
technical teams to ensure optimal use, leading to better 
outcomes in real-world business applications, and exploring 
their applicability across diverse programming languages 
and environments. 
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	Long Short-Term Memory (LSTM) algorithm is a type of recurrent neural network (RNN) designed to efficiently learn long-term dependencies in sequential data. LSTMs work by processing sequences of data step by step. LSTMs consist of memory cells that ca...

