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model that describes interactions among an arbitrary number
of ecological competitors [8]. The Lotka-Volterra model has
evolved into a versatile mathematical framework for
understanding complex interactions. It was initially
developed to describe the dynamics of interactions between
two species, such as predators and prey, in biological
systems. Essentially, the equations in the model illustrate

1. Introduction

The first system of equations modeling predator-prey
systems was developed in 1925 by the American biophysicist
Alfred Lotka, whose research aimed to demonstrate
oscillating chemical processes, and the following year, the
Italian mathematician Vito Volterra expanded on this idea by

studying cyclical shifts in the populations of predatory fish how species populations change over time due to reciprocal

and their prey in the A.d riatic Sea during World War L Sipce interactions such as competition, predation, or symbiosis [4],
the war between Austria and Italy halted commercial fishing, [16], [11]. The Lotka-Volterra model is unique in that it

the population of predatory fish increased compared to the
years before the war, while the population of prey fish
decreased [1], [7], [14], [13]. Later, this model was named
after these two researchers and became known as the Lotka-
Volterra model or the predator-prey model. Their work
established the theoretical foundations of population biology
and served as the basis for subsequent researchers'
investigations into the dynamic behavior of biological
populations [3], [10].

The Lotka-Volterra model is a dynamic predator-prey

neither converges nor diverges. Its long-term dynamical
behavior is directly influenced by its initial conditions.
Unlike ecosystems that often tend to reach a stable
equilibrium state, the population size continuously fluctuates
between a definite peak and a defined valley [3].

One of the most popular models for illustrating an ordinary
non-linear control system is the predator-prey scenario.
Numerous significant physical events are simulated using
nonlinear differential equations in various scientific and
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technological fields. It is often impossible, or very difficult,
to solve these problems analytically. However, there has been
a notable increase in the use of analytical approximation
methods in recent years to obtain reasonably accurate
solutions [5], [12].

This study applies the Lotka-Volterra model to the
interaction between financial corruption and the population
in society. Combating corruption is crucial for the country's
future growth and stability. This approach not only enhances
the theoretical understanding of the financial dynamics of
corruption but also provides policymakers and other
stakeholders with valuable insights.

It is possible to modify the Lotka-Volterra model for use
in social sciences to examine how a society's population
dynamics and financial corruption interact. Financial
corruption, a persistent and pervasive issue in many parts of
the world, particularly in developing countries, has a
significant impact on the political, social, and economic
spheres. Because financial corruption interacts with the
population, the Lotka-Volterra model allows for the
examination of how degrees of financial corruption and
population segments influence each other over time. The
model can be used to identify potential tipping points when
the level of financial corruption may lead to significant
societal consequences, such as widespread unrest, economic
downturns, or changes in population behavior.
Understanding these dynamics is essential for formulating
strategies to counteract financial corruption and promote
stability and prosperity.

The analysis of differential equations and their solutions

is essential for understanding numerous phenomena across
science, engineering, and mathematics. A critical part of this
analysis involves verifying the existence, uniqueness, and
stability of solutions under specific conditions. An important
criterion that significantly contributes to these investigations
is the Lipschitz condition, which provides a measure of how
quickly a function can vary with its variables.
In this paper, we introduces a nonlinear Lotka-Volterra
model depicts the relationship between population and the
level of corruption. The main tools used in the study are the
Picard approximation iteration and the principles of Ulam
stability. The proposed model is governed by the following
system of differential equations:

0 - £10() ~ LU -~ a0 (D), .
di? = —p W(D) + p, ®(DW(T) — BLn(W(D)).

Dy (1) = Dy, Yy (1) = ¥,

Here, (1) represents a time-dependent social or

demographic indicator, while W(t) denotes the level of
corruption. The constants &;,&,,a, p1,p,, and B are fixed
parameters characterizing the internal dynamics and
interaction coefficients of the system. Specifically, the term
—a®? (1) models intrinsic limitations within the population,
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such as resource constraints or saturation effects, whereas the
logarithmic term —f In (W(t)) reflects the diminishing
impact of increasing corruption on the system.

Due to the presence of the logarithmic function, the
domain of the model requires the condition W(t) > 0 to
ensure the regularity and well-definedness of the system.
Assuming strictly positive initial conditions and bounded
solutions, the local existence and uniqueness of solutions are
established through the method of Picard successive
approximations. The continuity and local Lipschitz
continuity of the right-hand side functions satisfy the criteria
of the Picard—Lindeldf theorem, thereby guaranteeing the
uniqueness of the solution in a local time interval.

In addition, the model's sensitivity to small perturbations
in initial conditions is examined within the frameworks of
Ulam, Ulam—Hyers, and Ulam—Hyers—Rassias stability. The
results demonstrate that the system exhibits robustness with
respect to such perturbations and that the solution is stable in
the Ulam sense. These findings underscore the reliability of
the model under realistic assumptions and contribute to the
theoretical foundation for future applications in socio-
economic policy modeling.

2. Model Description

System (1.1) models the dynamic interaction between
honest individuals in society, denoted by ®(t), and the level
of corruption, denoted by W(t). The system of differential
equations represents how these two populations evolve over
time under various influences.
®(t) represents the number or proportion of honest
individuals in society at time t, while ¥(t) represents the
level of corruption in society at time t.¢&; is the natural
growth rate of honest individuals, &, is the rate at which
corruption influences and reduces honesty, a is a saturation
effect that limits the growth of honesty, possibly due to social
or economic constraints, p; is the natural decline rate of
corruption, p, is the reinforcement effect where corruption
increases due to interaction with honest individuals, and {3 is
a nonlinear term modeling the logarithmic impact of
corruption reduction mechanisms.

Equation 1: Honest Individuals Dynamics

dd (1) ,
— = = 5100 - L@ - ad(D).

The term &, P(t) represents the natural growth of honesty.
The term —&,d(t)W(t) represents how corruption
negatively impacts honesty, possibly through social pressure
or institutional decay. The term —a®?2(t) accounts for a
saturation effect where honesty cannot grow indefinitely due
to societal limitations.
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Equation 2: Corruption Dynamics

d¥ (1)
drt

= —p ¥ (D) + p, (WD) — BIn(W(D)).

The term —p;W(t) represents the natural decay of
corruption, such as due to law enforcement or societal
resistance. The term p,®(t)W(t) represents the
reinforcement of corruption through interaction with honest
individuals (e.g., bribery converting honest individuals into
corrupt ones). The term —Bln(‘l’(r)) models the nonlinear
effect of anti-corruption measures, where corruption reduces,
but at a decreasing rate.

The model suggests conditions under which corruption can
be eliminated (Y—0) or persists at a steady level. Depending
on the parameters, a small increase in corruption influence
&,, p2 can lead to a sudden rise in corruption, while stronger
anti-corruption measures f3 can suppress it. Increasing p; or
decreasing p, can shift society towards a lower-corruption
state.

3. Preliminaries

Definition 3.1 [9]. Let f(x,y) be a function defined on the
set (a, b)XG, where G c R. The function f(x,y) is said to
satisfy the Lipschitz condition with respect to the second
variable if, for all x € (a,b) and for any y;,y, € G, the
following inequality holds:

f (o y) — flx y2) | < €lyr — vl

Definition 3.2 [2]. Let {f,(t)};=o be a sequence of
functions defined on a set E € R, We say that {f;,(£)}5-,
converges uniformly to the limit function f(t) on E if for
every € > 0, there exists a positive integer N such that for
all m = N and for all t € E, the following condition is
satisfied:

Ifm () = (O] < €.

Definition 3.3 [15]. A differential equation is said to be
Ulam-Hyers-Rassias stable with respect to ¢ if there exists a
positive constanit cf, > 0 such that for every € > 0 and
for every solution y € C1([a, b), B), there exists a solution
x € C([a, b), B) of the given equation satisfying
ly(®) = x(O)] < crpep(t), vt € [a, b).

Definition 3.4 [6]. Let E; be a group and E, be a quasi-

normed space. If the functions F,G : E; — E, satisfy the

inequality

dlF(x+y+2)+Fx—y)+F(y—2)+ F(x —z),G(x)
+G() +G(2)] < h(x,y,2),

where h is constant, it is referred to as Hyers-Ulam Stability.

Rassias introduced an inequality of the following from:

IfCx+y) = fQ) = FWIl = 6CIxIIP + llyl*),

where 8 > 0, which is know as Hyers-Ulam-Rassias stability
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(a generalized form of
inequality

Hyers-Ulam stability). If the

Ifx+y) —f)—fNI<e
is replaced by
If(x+y) = fO) = FDI < elllxlI” + llylIP),
where ¢ > 0, it is referred to as generalized Hyers-Ulam-
Rassias stability.

4. Main Results

Lemma 4.1: If the functions ®(7) and W(t) are bounded and
®(t) is bounded away from =zero, then the functions
F(r,®,¥) and g(r,d,¥) satisfies lipschitz condition
where:

F(L,®,%) = £ (1) - £00P(0) — ad?(v),
(5, ®,W) = —p,W(1) + p,®(W(D) — Bln(¥(D)).

Proof: A function is satisfies lipschitz condition if there
exists a constant (L) such that for all (t) in the domain:
|F (T, @1, W) — F(T, 02, W)l < L1 (|| — P, +
1%y =¥ ID.
Similarly, the same condition must hold for g.
The partial derivative of F with respect to () is:

aF

20 ~ SO -2ad(,
with respect to (W) is:

aF

ﬁ = =& 0(0).

These derivative are linear in ® and W. If ®(t) and ¥W(1)
are bounded, say |®(1)| < My and |W(1)| < My then:

ar
75| =< 1600 = 1621300 = 21 0l M,

dF
ﬁ| < 6| M.

Since both partial derivatives are bounded under assumption
that (@ and W) are bounded, (F) satisfies lipschitz condition
on any compact domain.
The partial derivatives of g with respect to (P) is:

dg

10 - p2¥ (1),

with respect to (W) is:
dg B
P +p2®(0) - TR
The term :—i is linear in W. And its bound is:

dg
E| < |pz2| M.

However, the term(j—f;) includes(— %), which becomes

unbounded as (W(t) — 0). To ensure lipschitz continuity,
Y(t) must be bounded away from zero, there exists a positive
constant My such that(W(t) = My > 0), under this
condition:

< lp1l + 1p2| Mg + ——

|d_g| 1Bl
av My’
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Since all derivatives are bounded under the given
assumptions, (g) satisfies lipschitz condition. If (®(7) and
Y (1) are bounded and W(7) is bounded away from zero, then
F(r,®,¥) and g(t, d, V) satisfy the lipschitz condition. m

Theorem 4.1: Let F:IX]JXK— Randg: I X x K —
R are two continuous functions, where I X J X K is an open
domain in R3. If there exist constants £, £, > 0 such that :
i) |F(r,®, W) — F(r,@,,¥,)| < L(|P — D, +

¥, — W20,
i) 1g(r, @1, W1) — g(7, @2, o) | < Lo(|Py — P, +

[Py — WD),

forvrel, &,9,€], ¥,¥, €K
Then for each interior point (tg @y W) in I X J X K there
exist an interval I, = (ty —#,To + 4 ) and there exist a
unique solution for system (1.1) on [ 4.

Proof:

(a) Find the interval I, =[1y —A,7¢ + A]
Since (1o ®g, Wo) € I X J X K, then there is a closed
neighborhood I, X J; X K. = [ty — a, Ty + a] X
[®g—Db, Py +Db] X [Wy — ¢, ¥, + ¢] such that
F and g are continuous on it, and there exists
M, N > 0 such that:

{ |F(z, @, ¥ < M;
lg(r,®, V)| <V

We choose

V(r,®,¥) € I, X J; X K.

= mi LA
£ =min (a, v ,N).
Let the sequences @, and W,, be defined on the interval I,

as follows:

(1) = Dy + f F(8,Ppy(8), Wos(8))ds,  n
T
1

Lpn(‘[) = \PO + frg'("s' (Dn—l('s): ‘Pn_l(é))dé, Vn

=1,

with the initial conditions:

Dy (1) = D, Yo (7) = ¥,
Foreach 7 € 5, we have @, (1) € Jy ,¥,(1) EK. Vn >
1;thatis (7,®,(1), Y, (1)) El, X J, X K. Vo = 1, forn
=1:
T
@,(0) = B+ [ F(s,0(), W)
To

Applying the bound on F:
T
[ Fa oo wnas

|®1(7) — Dol < jT|T(5’ @, (8), \po(ﬁ))ldé

<M [ ds <Mt —14] <MA <.
To

|®1(7) — Dol =
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Similarly, for ¥, (1):
Y.(0) =Y, + f g(8,P(8),¥Y(s))ds,
To

19, = ol = | [ 95 @o(), Wo(@)ds

To

W, (2) — Wyl < j 19.(5, Bo(s), Wo(5))| s

S]\ff;oda SN|lt—1| <NA <c
Thus, for every T € I, we have ®@,(7) € Jy and ¥;(7) €
K, .
Assume that the relationship is valid for n , i.e:

|®,(r) — Dol <.

¥, (1) — ¥ <«
We prove the validity of the relationship at (2 +1). We have
foreacht € I,

D41(7) = P + ITT(& D,,(8), ¥ (8))ds,

|® 141 (1) — Do = f F (5,0, (), ¥, (8)) s

To

|B,141(2) — ol < f IF (s, ®,0(5), W, (8))| s

SMfTTOds < M|t —10| < MA<D.
Similarly:

Wop(@) =¥ + j‘[g'(éy @, (8), l'pn("s))dﬁ;

To

W11 (2) — Wl = j (5 (), W, (8))dhs

9,01 (2) — Wyl < f 19.(5, ®,.(5), W, ()| s

T
SNf ds SN|lt—1| < NA<«C
To
Hence: @,,,.,(7) € Jy and ¥,,.,(7) € K. therefore:

(Dn(T) S J]b
WY,(7) € K,

Vvn=12,..
Vn=12,..

(b) The sequences (&,(7),¥,. (7)) convergence over
H/L vn = 1.
It is sufficient to show that for each 7 € I, the series

2n(Ppy1(1) — @, (0))and X, (W y1 (1) — W, ()
convergences.
For |7 — 14| < £ we have:

D, (1) = Dy(7) + jTT(é,dJ(a), Y(s))ds,

To

|®1(7) — Po()| =

f (s, Bo(s), Wo(6)) s
|B4(2) — Bo(D)] < f (5, Bo(s), Wo(s)) | ds

T
SMf ds < M|t — 19| < MA.
To

Similarly:



Al-Rafidain Journal of Computer Sciences and Mathematics (RICSM), Vol. 19, No. 1, 2025 (144-153)

W1 () — Yo ()| < NA.
|, (7) — P (D) = |<Do + f F(8,P1(8),¥1(8))ds — Dy

- (8 Do (8), Wo(8))ds

To

< j IF (5, B1.(8), W1 (8)) — F (5, Bo(8), Wo ()| ds

<L, [ (1940) = Do) + [9,(8) - WD

To

T
S,le (M|s — 19| + N|s — 15])ds

To

T
SLl(M+N)j |8 — Tolds
To

<00+

LM+ N A2
Similarly:

¥, (7) -1 (D) =
Thus, we obtain:

|®4’L+1(T) - Cl)n(‘[)l <

L,(M + N)A?
. :

Li(Ly + L)Y (M + M)A

(n+ 1)
Ly(Ly + L) (M + M)A
¥ (@ = ¥a (@ < ——— =5, :
— |¢fn _cbnl
Let V@ = (rr2im).
L(Ly + L)Y (M + M)A
_ (n+ 1)
8@ =\ £,L, + LYy 1(M + Nyan+t | V20,
(n+ 1)!

= V(r) <§(1).
The series §(7) is convergent, since:
Ly (L + L) M+ ) A
Yn = (n+ 1) :

and
lim

n -0 U,

Li(Ly + L) (M + N)A™?

Up+1

o (n + 2)!
= i L L) T + A /( ) )
n+1)!
(Ly+ Lo)A —0<1
noo (n+2) '

Since §(t) is converges, V() also converges, meaning that
®,,(7) and ¥, () are convergent.
Let ®(t) and W(r) be their limits &, () and ¥,(7)
respectively, that is for each T € 1.

Jim [,(7) — ()| = 0

= Vrel, and &,&, > 0,there exists ny € NV where
n = nyg.
§1 $2

|®,(7) — ()] <W' ¥, (7) — ¥ (D) <W'
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And hence 7 € [ 4

J.T}"(s, d,(8),¥,(8)ds — fr.‘}—”(s,d)(s),‘l’(é))da

t

SL| (19,(8) = P(8)| +[|¥p(8) —P(s)Dds

to
sz;f( & +§—2)45

Mhr NI
( $1 $2

W—}_M)hsfl-i_le

TT(é, @, (8), ‘{’%(5))5&3

<L

= lim

71 —00

T
- [ .o, wends
To
Taking the limit of the equation:
T
(D) = Py + | P68 W s (D)

To

D(1) =Dy + fTT(a, D(s),¥(8))ds,

To
T
Y@ = ¥y + | s, @0 W)
To
And we can calculate from part (a):
(7, ®(1),¥Y(1)) €l X Jp X K.

It remains to prove that the function (®, W) are continuous on
the interval 5.
&2

For any &;,&, >0, let § =j—; and § ==

~ and for every

T4,T, € I, where |1,_7,| < &, we have:
|®(1,) — @(7)| =

UHT(& D(8),¥(8))ds

- fTZ?(zs, D(s8),¥(8))ds

<

J-TZ?(A, d(8), ‘P(ﬁ))ds

71

< ffz |F (s, P(8), ¥(s8))|ds

1
T2 6
SM[ as < Mlt,_t| S M = Mﬁl =&,
T1
[W(r) —P(z)| =
T1
g(8,P(8),¥(8))ds

To

-| " 55 (), W(8))ds

< < f (s, D(s), W) ds

71

| " 98, 0(8), W(8))ds

T2 g
SNJ ds <Nty ty| N6 = N =2 =&,
7 N

Therefore (®,¥) are uniformly continuous on I, and are
connected over the same period I .

(c): We prove that the solution (@, W) is unique. Assume that
(®(7),P(1)) is another differentiable function defined on
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[To,To + A] such that :

dCTD(‘r) ~ ~
é'[ - T (qu)(‘[)’ LP(T));
a¥(r) ~ ~
dT - g’ (TI (D(T)l qJ(T));
With the initial conditions:
(7o) = P, Y (7o) = Y.
Then, certainly:
|EE(T) - (I)0| < b, |qj(T) - lpo| < C.

On some interval [Ty, Ty + 6], let T, be such that:

|® (1) — ®o| < band |P(r) — Wy| < cforty <T<Ty and
|®(7) — ®o| =0 and |P(z) — W,| = c. Suppose that t; <
Ty + A. Then, £ = min(a, 7~ ,=).

() — @ b b
ae — [BE =0 S0 e
T, — T T,—T, A
P(r,) -, ¢ ¢
N, = (@) =% _ >—>N.
TI_TO Tl_TO h

By the mean-value theorem, there exist (g4, &,) with 15 <
&1, &, < T4, such that:

M, = |‘5(51)| = |T(51;E’(31);¢’(31))| =M,

N = |qj(€2)| = |g,(52,613(52),ff1(52))| < N.
This is a contradiction. Thus T, =15+ A and the
inequalities hold for 1y, <t < 1) + 4, so:

|P(x) —do| <Bb,  |P(@)-W| <

on the interval Tty < T < 15 + 4.
Since (®, P) is a solution of system (1.1) on (o, To + #£) such
that (®(1y) — ®y) and (P(1,) — ¥,), we see that (P, P)
satisfies the integral equation:

(1) = D,y + j r (5®(s), F(s)) ds,

() =¥, + frg (5,515(5),‘?(5)) ds.

on [Ty, To+A]. We shall now prove by mathematical
induction that :
- Li(Ly+ L) IHB+)(t—19)"
|CD(T)—CD4¢(T)|S 1( 1 2) /rf' )( O)
= n! ’
_ Lo(Ly+ L)Y b+ )T —1)"
|l}1(—[)—lpn(f)| < 2( 1 2) /ns )( 0)

< Py .
on [Ty, Tg + A]. We thus assume that:
Li(Ly+ L))" 2B+ ) (T —T19)" !

|3(0) — @, (1) <

(n—-1)!
- Li(Ly+ L))" 2(b+c) AT
- (n—1)!
_ Ly(Ly+ L))" 2(0+)(t—19)" !
PO - @] < =5
_La(Ly 4+ £)" (0 + )R
- (n—1)! '
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on [Ty, Tg + £]. We have:

|B(0) — @, (D)] < [ |F(5,3(8), P(8)) —
F (8, @, W) |ds

< Llf (|P(8) — Do| + |P(8) — Wo|) ds

To

< L6+ )T —1p) < Ly(b + ).

|B() — @,(0)| < [ |F(5,B(8), P(s) —
F(8,®, W) |ds

<L, fqas(@ — 0|+ [F(s) = W) ds

T
< Llf LD+ O+ Ly(b+OR) ds
To

- L2+ A2 LiLy(b+ AP

L i L)+ A2

Similarly: ? )

90 - v, < f |95, B(s), F(s))
- g(:(a, Do, W) |ds

< sz (BCs) — Do| + [F(s) — W) s

< L,(b+)(t—19) < Ly(b+ ).
|[P(x) — ¥, ()| < f |g(s, ®(s), P(s))

To

) —g(8,®,¥,) |ds
< sz (|P(8) — &4| + |P(s) — ¥y |) ds

To

SLzJ- Li+)Aa+L,b+)A) ds
To

2 2 2
< L L, (b2+ oA N L, (b2+ Oh

" n!
Ly(Ly + L)™(b + )amE
lim —* = lim ( -
n-ow AU, noews Ly(Ly 4+ L))" 1(b+ C)/L’”’/
(Ly+ LA

= lim 0<1.

n —oo

n
(n — 1) is replaced by 7. When n = 1, we have :

|B(0) — @,.(0)] < [ [F (5, 8(s), (o)) —
F (8, Py, Wp-1) |ds

<L [ (86 = s + [T ~ ]y s
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TL(Ly+ L) 2(0+ (s — 1)t
SLl(LO 1)1 das
Ly (L + L))" 20+ (s —19)" !
+.£0 =D das)
TLA(Ly 4 L)+ ) (s —Tp)" !
< .Lo =11 das
TLLy (Ly+ L))" 20+ )(s — 1)t
+ J;O =D as)
< L2(Ly + L) 20+ ) [ —1o)]"
- (n—1)! [ n ]ro
L Ly(Lq + ﬁz)n_z(b +)[(8—10) ’
(n—-1)! [ n LO
< L2(Ly + L) 20+ ) (T —10)"
= !
R e o

|
L+ E) (£ + L) 204 (T 1)

n!
< Li(Ly+ L))" D+ (T —19)"

n!
< Li(Ly+ L))" B+ )"A"

n!

Similarly:

[P0~ ¥ < [ |9, B(), P(s)) —
g»(é, (;[)4,;_1,1-[—’%_1) |d5

<L, [ (80 = 0| + [P0 = W]y s

L+ £)" 20+ O (s — 7)™
= LZ(L (n—1)!
Ly (L + L))" 20+ (s — 1) !

+ J;O (n—1)!

TLLy (Ly + £2)n_2 b+ — To)n_l
ffo (n=1)!

TLA(Ly + L) E(B+ (8 — 1)
* LG (-1
< LiLy (Ly+ L) 2 +0) [(5 - To)]T
n

as

as)

<

das

das)

- (n—-1)!
L2 (Ly + L)"2(0+ ) [(s — )]
(n—1)! n L
< LiLy (Ly+ L) 2D+ ) (T —19)"
= !
_:222(1:1 + L))" 20+ )t — 7)™
n!
< Ly(Ly+ L)Ly + L) 20+ (T —19)"
- !
< Ly(Ly + Lz)n_l(b +/nc)(T —19)"

0

n!
< Ly(Ly+ L)1 + ) A"

n!
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For n = 1. Thus, by induction, the inequality holds for all

(n) on [Ty, Ty + A]. Hence, we have:

Li(Ly+ L))" Hb+ )" A"
n!

Ly(Ly + L)+ )"A"

n!

’

|®(0) - @,,(1)] <

|P(0) — ¥, (7)| <
forn =1,2,3, ... on [ty Tg + £].

Ly (L14+L)" Lo+ AT

Now the series( Y=o - Yand
n—1 n pMn
(X7=o Lzuluﬁﬁ, ©+oTA )converges.
. n—1 n pn
Thus ( lim LI(L1+£2)n‘ (b+)" A — O)
n —oo !
n-1 npn —_
and ( lim Loyt bp)™ G 9THT 0).So, (B(r) =
1 — 00 n:

lim &, (7)) and (P(zr) = lim ¥, (7)) on [Ty, T, + 4]. But

n —oo n -

recall that ( ®(7) = lim ®,(7)) and (¥(7) = lim ¥,(7))
n —oo n -0

on this interval. Thus,

® (1) = @(v),

P(1) = (7).

on [Ty, Ty + #]. Thus the solution (P, ¥) of the basic initial-

value problem is unique on [Ty, Ty + 4]

We have thus proved that the basic initial-value problem has

a unique solution on [Ty, Ty + £ ]. As we pointed out at the

start of the proof, we can carry through similar arguments on

the interval [Ty, Ty + /A]. We thus conclude that differential

equations (Z;f = F(r,o,¥) and Z—f = g(r,P,¥)) have a

unique solution (@, ¥) such that (®(7,) = @y and ¥(z,) =

Yyon|t—1| <A.m

Theorem 4.2: In system (1.1), if the functions F and g are
continuous and satisfy lipschiz condition, then the system
(1.1) is Ulam stability.
Proof: The system of equations:

T

() = Dy + f F(s8,®(8),¥(8))ds,

To

Y(r) =¥, + frg(5,¢(5),W(5))d5,

has Ulam stability if for any approximate solution

(@ (1), P(1)) that satifies the system within some small error

bound 8, there exists an exact solution (®(7), ¥()) such that
sup (||®(0) — 2@ + ||[F@) —P@)|| < € 7 € [70,7]

where € > 0 dependson § > 0.

Let (®(1), P(1)) be an approximate solution such that :

| (1) — Dy — fTT(é, ®(8),P(8))ds

| P(r) - ¥, — ng)(&s,fIS(é),‘TJ(s))da

For some small § > 0.

eo(1) = B(1) — D(0),
ep(t) =¥(@) —¥Y().

<6,

<54,

Then:
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llew (DIl = ||¢0 + f;T(ﬁ.a’(é),q’(é))ds — P, —
[L 7 (s, 0(5), W(s))ds

< f |17 (s, (o), Bls)) — F (s, (o), W(8))||ds
< f’L||(a~,_¢)+(¢_xp)||¢5

< f L(llea (Il + llew(s)Dds + 5.

Similarly:

llew(@Il < f L(lleq (&) + llew(s)|Dds + 6.
To

Let E(0) = llea (@Il + llew(DIl, then:

E(r) < f LE(8)ds + 26.
T

Applying Gronwall’s ineqliality:
E(7) < 28e* 70,
Thus, for any § > 0, the error between the approximate
solution (®(7), P(1)) and the exact solution (P (1), ¥ (7)) is
bounded by: € = 26e*~™) | thus the system is Ulam
stability. m

Ulam-Hyers-Rassias Stability: A system is said to have
Ulam-Hyers-Rassias stability if, for any functions ®(7) and
P (1) that approximately satisfy the integral equations within
a controlled deviation, there exist exact solutions ®(7) and
Y(t) such that the deviations between the approximate and
exact solutions are bounded by a function of the initial
deviation.

Formally, if there exist functions €4 (7) and €y (7) such that:

&(1) — by — fTT(s, 5(5),‘?’(5))d5| < €(1),

B() - W, — f 9(5, (), F(8)ds| < ey(D),

then there exist exact solutions (®(t), W(7)) such that:
|CT)(T) - CD(T)| < %,w(fcp(‘f)); (EW(T)),
|(p(T) - Lp('l')| = ®<IJ,W(€(I>(T))’ (E‘P(T)):
where (@4, @y) is functions that depends on €4(7) and
€y (1), respectively.
Proof: since (F and g) are satisfy lipschitz condition, there
exist constans L and L, such that for all T € [7, 7].

|F(z, @1, ¥1) — Fz, Py, V)| < Le(|Py — Py + |W; —

Lle)’
lg (T, @1, W1) — gz, @, Wp)| < Ly(|Py — Dy + |W; —
W ).

Let (€4 (7) and ey(7)) be the error functions between the
approximate and exact solutions:

eo(t) = B(1) — B (1),
ep(7) = ‘P(Tg —Y(7).

D(1) = €4(7) + Py + f F(s,D(8), P(8))ds,

To
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F(1) = ew(D) + ¥ + f P (58(s), F(s)) s,

Thus: K
|®(1) — @(1)| < €o() + Py +
f:o F(s,®(8), P(8))ds — Dy — f:o F (s, @(8), ¥(8))ds

< ee(7) + J]T(s,@(s),ff’(a)) — F(8,®(8),¥(8)|ds

To

€0 (D) +f Lr(|3 — | + | - W]) s
To

IA

lea(D] < €o(7) + f Lr(lep(8)] + lew(s)) ds.
Similarly: ’

leg(D)] < ew(r) + f Ly(lea(8)] + lew(8)]) ds.
Let E(7) = leap(D)] + leg ()] .
= E() =< (1) + ep(n) + f (LT +L4)E(5) as.
By Gronwall’s inequality: ’

E() < (eo(0) + ep(n))e/nlFHio)ds
Thus,

E() < (eo(r) + €y(r))elfrtie) T=10),
and hence,

ep(7) < E(1), eyw(r) < E(D),

This implies that:
eq(1) < (E@(T) + E‘P(T))e(ﬁg:th) (t-70) ’
ep(t) < (eo(D) + €y (T))e(LT“g) (t-70)_

which further leads to
eo(1) < Dopw(ea(D)), (ew(1)),
ey(r) < %,W(Ecp(f)),(fw(ﬂ)- =

5. Graphs analysis

These graphs mathematically represent the dynamic
interaction between society, ®(t), and corruption, ‘¥(1),
within the framework of the Lotka-Volterra model:

Lotka-Volterra Solution

PP

Lotka-Volterra Solution

Populations

Figure 1: The damped oscillatory dynamics of the
extended Lotka-Volterra model are illustrated through
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the numerical solution over the interval T €
[2000,2025], using parameters §; =9.5, § = 0.2,
a=1x10"% p; =0.25, p, =6.25x107% and B =
0.1, with initial conditions ®(0) = 100 and ¥(0) = 60.

104 Lotka-Volterra Solution

o7

Populations.

L L L L
2000 2005 2010 2015 2020 2025

.
Lotka-Volterra Solution
o T T

Populations.

L L
2015 2020 2025

Figure 2: Transition to Stability via Damped Oscillations
Simulation  with £, =50, § =0.9, a=5x 1075,
p1=0.9, p,=55x107> and B=0.1, and initial
conditions ®(0) = 100 and ¥(0) = 60.

In Figure 1, the top subplot (blue curve) depicts the temporal
evolution of the societal state variable ®(t), which exhibits
damped oscillatory behavior. The amplitude of these
oscillations gradually diminishes over time due to the
nonlinear damping term —a®?(t), which prevents
unbounded growth and produces successively lower peaks.
The bottom subplot (red curve) shows the evolution of the
corruption level W(t), which also demonstrates oscillatory
dynamics but with lower amplitude and slower variation,
influenced by the logarithmic damping term —f In (¥(1)).
The simulation highlights the adaptive interplay between
societal response and corruption: while the initial societal
resistance to increasing corruption is weak, a marked reaction
emerges once corruption exceeds a critical threshold. This
delayed yet intensified response suggests the presence of a
nonlinear feedback mechanism, wherein societal resilience
strengthens only after a tolerable limit has been surpassed.
In Figure 2, in contrast to the dynamics presented in Figure
1, this configuration induces more rapid and sharper
oscillations in the societal state ®(t) (blue curve) due to the
larger influence of &; and &,. The relatively small damping
coefficient o permits these high-amplitude oscillations to
persist longer, delaying convergence. Meanwhile, the
corruption level W(t) (red curve) experiences sharp drops
influenced by the dominant p; term, but its recovery is
impeded by the small value of p,. The logarithmic damping
—B In (W(1)) further moderates its fluctuations. Overall, the
simulation demonstrates how parameter tuning can lead the
system from an initially unstable state toward a bounded and
recurrent regime, highlighting the role of nonlinear damping
in achieving long-term equilibrium.

152

Conclusion

In this study, we have established that the functions
governing the dynamics of corruption and society satisfy
the Lipschitz condition under given assumptions, ensuring
the existence and uniqueness of a solution via the Picard
approximation theorem.

Our results confirm that corruption and society evolve
in a predictable manner over time, with their interactions
leading to a stable equilibrium. While corruption cannot be
entirely eradicated, it can be controlled and maintained at a
manageable level, preventing extreme fluctuations.

Acknowledgement

The authors gratefully acknowledge to the reviewers
for the valuable comments they provided, which
contributed to improving the scientific quality of this study.

Conflict of interest

None.

References

[1] Anisiu, M. C. (2014). Lotka, Volterra and their model. Didactica
mathematica, 32(01).

[2] Carmichael, R. D. (1928). EW Hobson, The Theory of Functions of
a Real Variable and the Theory of Fourier's Series.

[3] Cai, X. (2024). The Research History of Population Models.
Mathematical Modeling and Algorithm Application, 2(1), 57-60.

[4] Das, S., & Gupta, P. K. (2011). A mathematical model on fractional
Lotka—Volterra equations. Journal of theoretical biology, 277(1), 1-
6.

[5] Ellahi, R., & Zeeshan, A. (2011). Analytical Solutions for Non-
Linear Partial Differential Equations. LAP LAMBERT Academic
Publishing.

[6] Gronwall, T. H. (1919). Note on the derivatives with respect to a
parameter of the solutions of a system of differential equations.
Annals of Mathematics, 20(4), 292-296.

[7] Hassell, M. P. (1978). The dynamics of arthropod predator-prey
systems. Princeton University Press.

[8] Hofbauer, J., & Sigmund, K. (1988). The theory of evolution and
dynamical systems: mathematical aspects of selection. (No Title).

[9] Ishak, F. Y. (2020). Existence Solution for Nonlinear System of

Fractional Integrodifferential Equations of Volterra Type with

Fractional Boundary Conditions. Jurnal Matematika MANTIK, 6(1),

1-12.

Kusbeyzi, 1., Hacinhyan, A., & Aybar, O. (2010). Lotka—Volterra

Sistemlerinin Catallanma Analizi Ve Normal Formlari.

Kim, E. J., & Al-Saffar, A. (2022). Fisher information approach to

understand the Gompertz model. Mathematics in Applied Sciences

and Engineering, 3(4), 200-279.

Obaid, T. A. (2013). The predator-prey model simulation. Basrah

Journal of science, 31(2), 103-109.

[13] Pielou, E. C. (1969). An introduction to mathematical ecology.
[14] Puspita, A. S. H., Sutrima, S., Setiyowati, R., & Wibowo, S. (2024).

[10]

(1]

[12]



Al-Rafidain Journal of Computer Sciences and Mathematics (RICSM), Vol. 19, No. 1, 2025 (144-153)

STABILITY ANALYSIS OF CELLULAR OPERATING SYSTEM
MARKET SHARE IN INDONESIA WITH THE COMPETITIVE
LOTKA-VOLTERRA MODEL. BAREKENG: Jurnal Ilmu
Matematika dan Terapan, 18(1), 0333-0340.

[15] Rus, I. A. (2009). ULAM STABILITY OF ORDINARY
DIFFERENTIAL EQUATIONS. Studia Universitatis Babes-Bolyai,
Mathematica, (4).

[16] Wang, J., & Jiang, W. (2014). Impulsive perturbations in a predator—
prey model with dormancy of predators. Applied Mathematical
Modelling, 38(9-10), 2533-2542.

153



	Equation 1: Honest Individuals Dynamics
	Equation 2: Corruption Dynamics
	Figure 1: The damped oscillatory dynamics of the extended Lotka-Volterra model are illustrated through the numerical solution over the interval 𝝉 ∈,𝟐𝟎𝟎𝟎,𝟐𝟎𝟐𝟓., using parameters , 𝝃-𝟏.=𝟗.𝟓,  ,𝝃-𝟐.=𝟎.𝟐,  𝜶=𝟏×,𝟏𝟎-−𝟒.,  ,𝝆-𝟏.=𝟎.𝟐...

