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     This research introduces and evaluates two enhanced conjugate gradient methods for unconstrained 
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the classical Hestenes-Stiefel (HS) method using a diverse suite of benchmark test functions. The 
numerical results obtained unequivocally demonstrate a significant improvement in computational 
efficiency achieved by the proposed methods. Notably, our enhanced methods consistently 
outperformed the HS method across several critical performance metrics, including a reduction in the 
number of iterations required for convergence, a decrease in the total number of function evaluations, 
and an overall faster computation time. 
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1. Introduction 

     In recent years, the field of unconstrained optimization 
has experienced substantial progress, particularly in the 
development of efficient algorithms tailored for solving 
large-scale unconstrained optimization problems. This 
study focuses on the unconstrained optimization problem 
formulated as: 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥),  𝑥𝑥 ∈ ℝ𝑛𝑛 ,                                                           (1) 
where 𝑓𝑓:ℝ𝑛𝑛 → ℝ is assumed to be a continuously 
differentiable function. Unconstrained optimization plays 
an important role in practical applications. For example, it 
is essential in machine learning, which is popular in many 
fields. Recently, Jandaghiet al. [1] proposed a novel 
machine learning approach to train a soft trunk robot model, 
giving a more accurate model estimation. When the scale of 

(1) is not large, the Newton method and quasi-Newton 
method are promising in solving it, and Javad Ebadi et al. [2] 
proposed a new BFGS method based on modified secant 
relations and verified its efficiency by applying it in solving 
(1). However, when solving (1) in large scale, the conjugate 
gradient (CG) method is more welcomesince it requires 
lower memory in practical computation. Featured in its 
efficiency, CG method has been applied by many researchers 
in a substantial number of fields such as image restoration 
problem [3,4], compressive signals problem [5], and signal 
reconstruction problem [6]. machine learning and numerical 
analysis [7,8,9].  In other practical fields, like disease model, 
optimization methods are used to solve fractional-order 
tuberculosis disease model [10] and fractional fascioliasis 
disease model [11], where the CG method can be considered 
to apply in the optimization problems appearing in the 
models. 
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     Typically, CG methods iteratively update an initial 
approximation x0 ∈ ℝn through the iterative formula: 
𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘,  𝑘𝑘 ≥ 0,                                                  (2) 
where 𝛼𝛼𝑘𝑘 denotes the step length, determined via a line 
search technique. In this study, the strong Wolfe conditions 
[12] are used to define the step length, ensuring that: 
𝑓𝑓(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘 𝑑𝑑𝑘𝑘) − 𝑓𝑓(𝑥𝑥𝑘𝑘) ≤ 𝜌𝜌𝛼𝛼𝑘𝑘 𝑔𝑔𝑘𝑘𝑇𝑇 𝑑𝑑𝑘𝑘,                            (3) 

𝜎𝜎 𝑔𝑔𝑘𝑘𝑇𝑇 𝑑𝑑𝑘𝑘 ≤ 𝑔𝑔𝑘𝑘+1𝑇𝑇  𝑑𝑑𝑘𝑘 ≤ −𝜎𝜎𝜎𝜎𝑘𝑘𝑇𝑇 𝑑𝑑𝑘𝑘,                                     (4) 
where 0 < 𝜌𝜌 < 𝜎𝜎 < 1. The search direction 𝑑𝑑𝑘𝑘 ∈ ℝ𝑛𝑛 is 
updated using: 
𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘  𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 > 0.        𝑑𝑑0 = −𝑔𝑔0         (5)  
where 𝑔𝑔𝑘𝑘 = ∇ 𝑓𝑓(𝑥𝑥𝑘𝑘), and the scalar 𝛽𝛽𝑘𝑘 defines different CG 
variants. Extensive research has been conducted to improve 
CG methods by developing new formulas for 𝛽𝛽𝑘𝑘 that 
enhance convergence behavior and numerical performance. 
    The classical CG methods are typically categorized based 
on their convergence and numerical characteristics. The 
first category, known for its global convergence, includes 
the Fletcher–Reeves (FR) [13], Dai–Yuan (DY) [14], and 
Conjugate Descent (CD) [15] methods: 

𝛽𝛽𝑘𝑘𝐹𝐹𝐹𝐹 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑔𝑔𝑘𝑘+1
𝑔𝑔𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘

,                                                                  (6) 

𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑔𝑔𝑘𝑘+1
𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

,                                                                (7) 

𝛽𝛽𝑘𝑘𝐶𝐶𝐶𝐶 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑔𝑔𝑘𝑘+1
−𝑔𝑔𝑘𝑘

𝑇𝑇𝑑𝑑𝑘𝑘
,                                                                (8) 

    Although globally convergent, these methods may suffer 
from performance degradation in practice due to issues such 
as jamming. The second category includes methods such as 
Polak–Ribière–Polyak (PRP) [16,17], Hestenes–Stiefel 
(HS) [18], and Liu–Storey (LS) [19], characterized by 

𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑔𝑔𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘

,                                                                 (9) 

𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

,                                                                 (10) 

𝛽𝛽𝑘𝑘𝐿𝐿𝐿𝐿 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
−𝑔𝑔𝑘𝑘

𝑇𝑇𝑑𝑑𝑘𝑘
,                                                                  (11) 

    These methods generally yield better numerical results 
but have more complex convergence analyses. 
     Motivated by the limitations of existing methods, 
researchers have explored new CG variants that aim to 
balance strong convergence properties with efficient 
numerical behavior. Among these efforts are modified CG 
algorithms [20–22] and three-term CG schemes [23,24]. 
    One such advancement is the Dai–Liao (DL) method 
[25], which modifies the traditional conjugacy condition 
𝑑𝑑𝑘𝑘+1⊤ 𝑦𝑦𝑘𝑘 = 0, typically valid under exact line search, to a 
weaker condition: 
𝑑𝑑𝑘𝑘+1⊤ 𝑦𝑦𝑘𝑘 = −𝑡𝑡𝑔𝑔𝑘𝑘+1⊤ 𝑑𝑑𝑘𝑘 , 𝑡𝑡 ≥ 0,                                           (12) 
leading to the DL update formula: 

𝛽𝛽𝑘𝑘DL = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

− 𝑡𝑡 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑣𝑣𝑘𝑘
𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

,                                                 (13) 

When if 𝑡𝑡 = 0, the DL formula reduces to the HS method. 
To ensure global convergence for general (non-convex) 
functions, a modified version is proposed: 

𝛽𝛽𝑘𝑘DL+ = max �𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

, 0� − 𝑡𝑡 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑣𝑣𝑘𝑘
𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

.                                  (14) 

While the DL method offers convergence under uniform 
convexity, its global behavior relies heavily on the parameter 
𝑡𝑡, and it may not always generate sufficient descent 
directions [26]. To address these concerns, Hager and Zhang 
[27] proposed an alternative formula incorporating the 
memoryless BFGS idea: 

𝛽𝛽𝑘𝑘𝑁𝑁 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

− 2 ‖𝑦𝑦𝑘𝑘‖2

�𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘�

2 𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑣𝑣𝑘𝑘,                                     (15) 

along with a restricted version ensuring descent: 
and showed that (15) satisfies the descent condition 
𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1𝑇𝑇 ≤ 7

8
‖𝑔𝑔𝑘𝑘+1‖2. To show that the method is globally 

convergence for general functions, Hager and Zhang [27] 
presented the following restricted version of (15): 

𝛽𝛽𝑘𝑘𝑁𝑁+ = max �𝛽𝛽𝑘𝑘𝑁𝑁, −1
‖𝑑𝑑𝑘𝑘‖min{𝜂𝜂,‖𝑔𝑔𝑘𝑘‖}

�.                                    (16) 

Results from numerical computations has shown that the 
method is efficient and promising. Furthermore, the DL-like 
methods proposed in [28] and [29] happened to be globally 
convergent and numerically stable, but like the method in 
[30], they also fail to fulfil the sufficient descent condition. 
To overcome the defect with DL CG versions; using singular 
value study, Babaie-Kafaki and Ghanbari [31] and Andrei 
[32] proposed an adaptive optimal choice for 𝑡𝑡, which 
increased the numerical strength of the DL methods. 
Numerical experiments show that these algorithms are robust 
and more efficient than Hager and Zhang [33] CG method. 
Despite the fact that different choices of the parameter 𝑡𝑡 have 
been suggested in [34, 35], and for nice review on recent 
advances on Dai-Liaomethods by Saman [37], the optimal 
choice of t in DL-type methods still requires moreattention, 
especially with hybrid CG methods.  
More recently, based on the integration of DL and JHJ 
techniques, Aminifard and Babaie-Kafaki [21] introduced 
the EJHJ method with: 

𝛽𝛽𝑘𝑘
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =

‖𝑔𝑔𝑘𝑘‖2−𝑚𝑚𝑚𝑚𝑚𝑚�
�𝑔𝑔𝑘𝑘�

�𝑔𝑔𝑘𝑘−1�
𝑔𝑔𝑘𝑘
⊤𝑔𝑔𝑘𝑘−1,0�

𝑚𝑚𝑚𝑚𝑚𝑚�‖𝑔𝑔𝑘𝑘−1‖2,𝑑𝑑𝑘𝑘−1
⊤ 𝑦𝑦𝑘𝑘−1�

− 𝑡𝑡 𝑔𝑔𝑘𝑘
⊤𝑣𝑣𝑘𝑘−1

𝑚𝑚𝑚𝑚𝑚𝑚�‖𝑔𝑔𝑘𝑘−1‖2,𝑑𝑑𝑘𝑘−1
⊤ 𝑦𝑦𝑘𝑘−1�

,                                                      

(17) 
and numerical experiments conducted on the EJHJ method 
verified its promising performance. Other recent 
contributions include a CG variant proposed by Alaa et al. 
[38], defined as: 

𝛽𝛽𝑘𝑘 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

− 𝑡𝑡 𝛼𝛼𝑘𝑘 ‖𝑑𝑑𝑘𝑘‖2𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘

(𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘)2

 , 𝑡𝑡 > 0.                            (18) 

     Building upon these advancements, the present work 
proposes a novel CG method for unconstrained optimization, 
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inspired by the Dai–Liao conjugacy condition and further 
refined using Taylor series expansion. The remainder of this 
article is organized as follows: Section 2 introduces the 
theoretical preliminaries and outlines the proposed hybrid 
method. Section 3 presents implementation details and 
computational considerations. Section 5 concludes the 
paper with a summary of findings and future perspectives. 

2. An Improved Dai–Liao Method and Its 
Algorithm 

     Building upon the classical Dai–Liao framework, we 
propose an enhanced class of CG methods derived through 
a refined approximation of the secant equation. Specifically, 
Basim et al. [39,40] extended the conventional secant 
condition by employing Taylor series expansions to obtain 
more accurate representations of the Hessian 
approximation. Two alternative secant relations were 
introduced: 
𝑣𝑣𝑘𝑘𝑇𝑇𝑄𝑄(𝑥𝑥𝑘𝑘)𝑣𝑣𝑘𝑘 = 5/6𝑣𝑣𝑘𝑘𝑇𝑇𝑦𝑦𝑘𝑘 + (𝑓𝑓𝑘𝑘 − 𝑓𝑓𝑘𝑘+1) − 1/3𝑔𝑔𝑘𝑘𝑇𝑇𝑣𝑣𝑘𝑘,                                                               
(19) 
and 
𝑣𝑣𝑘𝑘𝑇𝑇𝑄𝑄(𝑥𝑥𝑘𝑘)𝑣𝑣𝑘𝑘 = 6/5𝑣𝑣𝑘𝑘𝑇𝑇𝑦𝑦𝑘𝑘 + 6/5(𝑓𝑓𝑘𝑘 − 𝑓𝑓𝑘𝑘+1) + 2/5𝑔𝑔𝑘𝑘𝑇𝑇𝑣𝑣𝑘𝑘,                                                          
(20) 
where 𝑄𝑄(𝑥𝑥𝑘𝑘) denotes an approximation to the Hessian 
matrix at iteration 𝑘𝑘, and 𝑣𝑣𝑘𝑘 = 𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘. These 
formulations incorporate both gradient and function value 
information to improve the quality of the Hessian 
approximation. 
    In parallel, Perry [41] proposed a modified conjugacy 
condition, based on the second-order information: 
𝑑𝑑𝑘𝑘+1𝑇𝑇 𝑦𝑦𝑘𝑘 = −𝑣𝑣𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘+1,                                                      (21)  
which provides a more flexible framework for updating the 
search direction. 
    Motivated by the above, we incorporate relations (19), 
(20), and (21) into a modified Dai–Liao update formula. The 
proposed conjugate gradient parameter is defined as: 

𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘−𝑡𝑡𝑘𝑘𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑣𝑣𝑘𝑘
𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

,                                                  (22) 

where the scalar 𝑡𝑡𝑘𝑘 is adaptively computed based on one of 
two strategies: 

• Dai-Liao (BA1) method: 

𝑡𝑡𝑘𝑘 = 5
6

+ (𝑓𝑓𝑘𝑘−𝑓𝑓𝑘𝑘+1)−1/3𝑔𝑔𝑘𝑘
𝑇𝑇𝑣𝑣𝑘𝑘

𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

.                                            (23)  

• Dai-Liao (BA2) method: 

𝑡𝑡𝑘𝑘 = 6
5

+ 6/5(𝑓𝑓𝑘𝑘−𝑓𝑓𝑘𝑘+1)+2/5𝑔𝑔𝑘𝑘
𝑇𝑇𝑣𝑣𝑘𝑘

𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

.                                        (24) 

    These adaptive parameters enable the proposed methods 
to better reflect the underlying curvature information, 
enhancing the descent property and overall robustness of the 

search direction. 
    The full procedure of the improved Dai–Liao methods is 
outlined in the following algorithm. 

ALGORITHM: IMPROVED DAI–LIAO METHODS (BA1 
AND BA2) 

Step 1 : (Initialization) Given an initial point 𝑤𝑤0 ∈ 𝑅𝑅𝑛𝑛,  
parameters 0 < 𝜌𝜌 < 𝜎𝜎 < 1, and 𝜀𝜀 > 0. Set 𝑑𝑑0 =
−𝑔𝑔0, and 𝑘𝑘 = 0. 

Step 2 : If  ‖𝑔𝑔𝑘𝑘‖ ≤ 𝜀𝜀 then stop. 
Step 3 : Compute the step size 𝛼𝛼𝑘𝑘 by the weak Wolfe line 

search, 
Step 4 : Compute 𝑥𝑥𝑘𝑘+1  by (2). 
Step 5 : Compute  the search direction by (5) and 𝛽𝛽𝑘𝑘 from 

(22), where 𝑡𝑡𝑘𝑘 from (13), or (24). 
Step 6 : Set 𝑘𝑘 ≔ 𝑘𝑘 + 1 and go to Step 1. 

 
3. Numerical Results 

    This section presents a detailed numerical evaluation of 
the proposed improved Dai–Liao methods for solving 
unconstrained optimization problems. The performance of 
the proposed methods is compared against the well-known 
HS method, which is widely recognized in the optimization 
literature for its robustness and efficiency. 
    To ensure fairness and comprehensiveness, a variety of 
test problems were selected from the CUTE problem set [42] 
and additional benchmark collections [43,44], covering a 
broad spectrum of problem types and dimensions. All 
experiments were implemented in MATLAB R2013b and 
executed on a standard HP laptop. 
To maintain consistency, identical line search parameters 
and Wolfe condition settings were used across all methods. 
Specifically, the line search parameters were set to ρ=0.01 
and σ=0.3. The algorithm terminates under any of the 
following conditions: 

 The gradient norm satisfies ∥ 𝑔𝑔𝑘𝑘 ∥< 10−6, 
 The number of iterations exceeds 2000, 
 Or the CPU time exceeds 500 seconds. 

    If the algorithm fails to meet the convergence criteria, the 
outcome is recorded as NaN, indicating numerical instability 
or divergence. The variable N denotes the dimensionality of 
the problem under consideration. 
   To quantify performance, three key metrics were recorded 
for each algorithm: 

 NOI: Number of iterations, 
 NOF: Number of function evaluations, 
 CUPT: CPU time in seconds. 

    A detailed comparison of these metrics is presented in 
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Table 1. Table 2 presents a comparative evaluation of the 
proposed Dai–Liao-based methods  against the classical HS 
method. In this comparison, the HS method is considered 
the baseline, set at 100% for all metrics. The percentages 
shown for BA1 and BA2 represent their computational costs 
relative to HS. A lower percentage indicates improved 
performance and higher efficiency.  In addition, Figures 1–
3 depict the performance profiles of the tested algorithms 
using the methodology proposed by Dolan and Moré [45]. 
These performance profiles provide a graphical summary of 
the relative efficiency of each method across the full set of 
test problems. 

PERFORMANCE PROFILE ANALYSIS 

    The performance ratio for problem p∈P and algorithm 
s∈S is defined as: 

𝑟𝑟𝑝𝑝,𝑠𝑠 =
𝑡𝑡𝑝𝑝,𝑠𝑠

min�𝑡𝑡𝑝𝑝,𝑠𝑠: 𝑠𝑠 ∈ 𝑆𝑆�
, 

where 𝑡𝑡𝑝𝑝,𝑠𝑠 represents a specific performance metric (e.g., 
NOI, NOF, or CUPT), and the denominator corresponds to 
the best performance achieved by any method on problem p. 
The cumulative performance of algorithm sss is captured by: 

𝜌𝜌𝑠𝑠(𝜏𝜏) =
1
𝑛𝑛𝑝𝑝

size �𝑝𝑝 ∈ 𝑃𝑃: 𝑟𝑟𝑝𝑝,𝑠𝑠 ≤ 𝜏𝜏�, 

where 𝜌𝜌𝑠𝑠(𝜏𝜏) indicates the proportion of test problems for 
which the performance of algorithm s is within a factor τ\tauτ 
of the best possible performance. 
    As shown in Figures 1- 3, the proposed methods 
consistently outperform the HS method across all measured 
criteria.  

 
 

Table 1. Comparison of the proposed improved (ba1 and ba2) methods with the hs. 
 

Test 
Function 

N HS BA1 BA2 

NOI NOF CPUT NOI NOF CPUT NOI NOF CPUT 

'cosine' 500 NaN NaN NaN 55 231 0.02 52 195 0.02 

'cosine' 1000 43 114 0.02 31 169 0.03 25 138 0.02 

'cosine' 5000 NaN NaN NaN 34 185 0.15 53 257 0.22 

'cosine' 10000 NaN NaN NaN 46 229 0.35 45 213 0.33 

'dixmaana' 1500 41 161 0.22 27 97 0.15 27 128 0.19 

'dixmaana' 3000 38 145 0.51 28 97 0.31 25 113 0.35 

'dixmaana' 15000 31 137 1.75 24 96 3.91 23 119 5.77 

'dixmaana' 30000 37 189 6.68 29 97 2.70 20 94 2.38 

'dixmaanb' 1500 38 272 0.35 31 107 0.13 31 109 0.13 

'dixmaanb' 3000 38 190 0.58 22 100 0.30 26 111 0.33 

'dixmaanb' 15000 38 262 3.46 31 120 1.57 21 114 1.44 

'dixmaanb' 30000 36 188 4.90 26 122 3.14 22 108 2.94 

'dixmaanc' 1500 29 171 0.28 27 103 0.13 24 112 0.13 

'dixmaanc' 3000 31 157 0.46 28 98 0.30 33 158 0.47 

'dixmaanc' 15000 45 229 3.23 27 118 1.52 25 138 1.90 

'dixmaand' 30000 44 207 5.40 37 122 3.03 28 136 3.66 

'dixmaand' 1500 34 195 0.24 33 131 0.15 21 122 0.22 

'dixmaand' 3000 40 185 0.55 23 95 0.27 26 126 0.41 

'edensch' 500 47 163 0.05 51 243 0.05 67 356 0.08 

'edensch' 1000 47 144 0.06 49 204 0.08 45 185 0.07 

'edensch' 5000 71 331 0.69 61 447 0.92 NaN NaN NaN 

'edensch' 10000 NaN NaN NaN 75 440 1.83 102 768 3.19 

'eg2' 4 45 192 0.01 38 86 0.00 38 91 0.00 
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'fletchcr' 1000 NaN NaN NaN 106 730 0.07 150 1039 0.10 

'fletchcr' 5000 NaN NaN NaN 217 1857 0.81 297 2536 1.12 

'fletchcr' 10000 NaN NaN NaN 281 2553 2.15 199 1593 1.33 

'fletchcr' 12000 NaN NaN NaN 313 2801 2.80 307 2712 2.69 

'himmelbg' 500 7 25 0.01 3 15 0.00 3 15 0.00 

'himmelbg' 1000 3 20 0.00 2 9 0.00 2 9 0.00 

'himmelbg' 5000 4 27 0.02 3 21 0.01 3 21 0.01 

'himmelbg' 10000 8 33 0.05 3 14 0.03 3 14 0.03 

'penalty1' 500 NaN NaN NaN 26 130 0.16 28 160 0.20 

'penalty1' 1000 NaN NaN NaN 19 102 0.37 17 110 0.40 

'penalty1' 4000 32 261 11.77 14 81 3.70 19 108 4.82 

'penalty1' 10000 NaN NaN NaN 74 510 116.93 143 993 225.84 

'quartc' 500 37 148 0.04 46 176 0.04 44 197 0.04 

'quartc' 1000 69 248 0.09 49 173 0.06 54 214 0.07 

'quartc' 5000 73 281 0.51 85 293 0.53 64 274 0.50 

'quartc' 10000 80 275 0.99 75 233 0.84 96 345 1.25 

'bdexp' 500 NaN NaN NaN 3 14 0.00 3 14 0.00 

'bdexp' 1000 NaN NaN NaN 2 7 0.00 2 7 0.00 

'bdexp' 5000 NaN NaN NaN 3 19 0.03 NaN NaN NaN 

'bdexp' 10000 NaN NaN NaN 3 13 0.11 3 13 0.10 

'exdenschnf' 500 42 191 0.05 38 193 0.04 37 189 0.04 

'exdenschnf' 1000 42 201 0.05 29 144 0.03 33 164 0.03 

'exdenschnf' 5000 36 149 0.17 35 199 0.23 38 204 0.24 

'exdenschnf' 10000 42 205 0.45 39 202 4.73 39 216 3.34 

'exdenschnb' 500 32 200 0.03 22 102 0.01 26 106 0.02 

'exdenschnb' 1000 44 211 0.03 26 122 0.03 23 90 0.01 

'exdenschnb' 5000 27 148 0.25 29 137 0.08 18 88 0.06 

'exdenschnb' 10000 32 165 0.16 28 115 0.10 36 166 0.14 

'genquartic' 500 33 233 0.03 29 107 0.01 26 122 0.01 

'genquartic' 1000 34 128 0.02 29 118 0.02 30 151 0.03 

'genquartic' 5000 48 150 0.58 30 146 0.17 29 127 0.07 

'genquartic' 10000 59 194 0.19 25 115 0.21 25 108 0.13 

'biggsb1' 4 14 56 0.01 24 92 0.01 25 115 0.01 

'biggsb1' 10 66 125 0.01 87 179 0.01 68 132 0.01 

'nonscomp' 8000 97 247 0.17 86 277 0.17 152 398 0.25 

'raydan1' 4 23 95 0.01 26 69 0.00 22 60 0.00 

'raydan1' 50 71 128 0.01 62 120 0.00 63 120 0.00 

'raydan1' 100 99 164 0.01 131 277 0.01 132 298 0.01 

'raydan1' 5000 NaN NaN NaN NaN NaN NaN NaN NaN NaN 

'raydan2' 500 12 76 0.01 12 65 0.00 12 65 0.01 

'raydan2' 1000 19 136 0.02 17 70 0.01 15 64 0.01 

'raydan2' 5000 NaN NaN NaN 17 85 0.05 21 98 0.05 
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'raydan2' 10000 21 163 0.16 20 92 0.10 20 92 0.10 

'diagonal3' 4 28 95 0.01 21 87 0.00 27 102 0.00 

'diagonal3' 10 48 98 0.01 44 152 0.01 49 181 0.01 

'bv' 500 250 430 0.53 128 338 0.41 202 416 0.63 

'ie' 10 21 89 0.01 15 60 0.01 16 77 0.01 

'ie' 100 26 112 0.49 24 138 0.58 25 132 0.60 

'ie' 500 25 104 10.36 19 83 8.22 22 107 10.48 

'lin' 10 37 198 0.96 13 56 0.24 15 93 0.38 

'lin' 100 75 625 5.41 19 113 0.68 20 128 0.87 

'lin' 500 47 345 4.16 17 80 0.95 16 98 1.43 

'lin' 1000 32 158 135.20 19 118 92.00 19 118 98.02 

'pen1' 5 NaN NaN NaN 335 999 0.07 275 1041 0.06 

'pen1' 10 NaN NaN NaN 147 584 0.04 140 576 0.04 

'pen1' 100 90 539 0.33 266 856 0.47 245 971 0.77 

'pen1' 500 129 591 2.76 182 711 3.39 111 492 2.11 

 
 

Table 2. Percentage improvement in performance of the 
proposed (ba1 and ba2) methods relative to the hs method 

across all test problems. 

TOOLS HS BA1 BA2 

NOI 100% 67.47 % 68.07% 

NOF 100% 60.24 % 63.36% 

CPUT 100% 57.45% 83.68% 

 

From Table 2 the results highlight the efficiency and 
effectiveness of the proposed methods. 

1. Number of Iterations  

• The BA1 method reduced the number of iterations 
to 67.47%, indicating a 32.53% improvement over 
the HS method. 

• The BA2 method achieved a 31.93% reduction in 
iterations, completing the tasks with only 68.07% 
of the iterations required by HS. 

• These results demonstrate that both proposed 
methods achieve faster convergence. 

2. Number of Function Evaluations  

• BA1 required only 60.24% of the function 
evaluations compared to HS, showing a 39.76% 
improvement. 

• BA2 performed slightly more evaluations than BA1 
but still required only 63.36%, resulting in a 
36.64% gain in efficiency. 

• This reduction indicates that the proposed methods 
are more effective in minimizing the objective 
function with fewer evaluations. 

3. CPU Time  

• BA1 significantly reduced CPU time usage to 
57.45%, reflecting a 42.55% improvement over 
HS. 

• BA2 also reduced the time consumption, achieving 
83.68% of HS’s execution time, which corresponds 
to a 16.32% improvement. 

• These improvements are particularly valuable in 
large-scale optimization problems where 
computation time is critical. 

The data in Table 2 clearly highlights the superior 
performance of the proposed BA1 and BA2 methods 
compared to the classical HS method. In particular: 

• BA1 shows the most substantial improvements 
across all metrics, making it the most efficient 
among the tested methods. 

• BA2 also demonstrates strong performance, 
offering significant enhancements in convergence 
speed and computational efficiency. 

The consistent improvements validate the effectiveness of 
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integrating modified secant conditions and enhanced 
conjugate parameters in the optimization process. These 
results confirm that the proposed Dai–Liao-based methods 
are well-suited for solving large-scale unconstrained 
optimization problems efficiently. 

 

 
 
 
 
 
 
 
 

 

Figure 1: Performance based on NOI. 

 

 

 

 

 

 

Figure 2: Performance based on NOF. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Performance based on CPU. 
 
 

Conclusion 
    In this paper, we present two new methods, called BA1 and 
BA2, to solve large-scale optimization problems faster and 
better. These methods build upon the Dai–Liao conjugacy 
condition and are further refined through the application of 
Taylor series expansion. 

We tested them on a lot of tough, well-known test 
optimization problems with different dimensions. We also 
compared them to another well-known conjugate gradient 
method across several critical performance metrics, 
including a reduction in the number of iterations required for 
convergence, a decrease in the total number of function 
evaluations, and an overall faster computation time. 

The results were clear: our new methods, BA1 and BA2, 
were better than the HS method. They needed fewer steps to 
find the answer, did fewer calculations overall, and even took 
less time on the computer. What's even cooler is that the BA1 
method was the best in everything we measured. These new 
methods could be good alternatives to what's already out 
there, and they also give us new ideas for making even better 
methods in the future. 
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