
Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (178-186)

178

Improved Dai–Liao Conjugate Gradient Methods for Large-Scale
Unconstrained Optimization

Basim A. Hassan1 , Alaa Luqman Ibrahim2 and Mehamdia Abd Elhamid3

1Department of Mathematics, College of Computers Sciences and Mathematics, University of Mosul, Mosul, Iraq
2Department of Mathematics, College of Science, University of Zakho, Zakho, Kurdistan Region, Iraq
3Laboratory Informatics and Mathematics, Mohamed Cherif Messaadia University, Souk Ahras, Algeria
Email: basimah@uomosul.edu.iq1 , alaa.ibrahim@uoz.edu.krd2 and mehamdiaabdelhamid56@gmail.com3

Article information Abstract
Article history:
Received 03 May ,2025
Revised 17 June ,2025
Accepted 23 June ,2025
Published 26 June ,2025

 This research introduces and evaluates two enhanced conjugate gradient methods for unconstrained
optimization, building upon the Dai–Liao conjugacy condition and further refined through the
application of Taylor series expansion. These novel methodologies were rigorously compared against
the classical Hestenes-Stiefel (HS) method using a diverse suite of benchmark test functions. The
numerical results obtained unequivocally demonstrate a significant improvement in computational
efficiency achieved by the proposed methods. Notably, our enhanced methods consistently
outperformed the HS method across several critical performance metrics, including a reduction in the
number of iterations required for convergence, a decrease in the total number of function evaluations,
and an overall faster computation time.

Keywords:
Unconstrained Optimization,
 Secant Condition,
Conjugate Gradient Method,
Dai–Liao Method,
Computational Efficiency.

Correspondence:
Basim A. Hassan
Email:
basimah@uomosul.edu.iq

DOI: 10.33899/csmj.2025.159774.1186, ©Authors, 2025, College of Computer Science and Mathematics, University of Mosul, Iraq.
This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0).

1. Introduction

 In recent years, the field of unconstrained optimization
has experienced substantial progress, particularly in the
development of efficient algorithms tailored for solving
large-scale unconstrained optimization problems. This
study focuses on the unconstrained optimization problem
formulated as:
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥), 𝑥𝑥 ∈ ℝ𝑛𝑛 , (1)
where 𝑓𝑓:ℝ𝑛𝑛 → ℝ is assumed to be a continuously
differentiable function. Unconstrained optimization plays
an important role in practical applications. For example, it
is essential in machine learning, which is popular in many
fields. Recently, Jandaghiet al. [1] proposed a novel
machine learning approach to train a soft trunk robot model,
giving a more accurate model estimation. When the scale of

(1) is not large, the Newton method and quasi-Newton
method are promising in solving it, and Javad Ebadi et al. [2]
proposed a new BFGS method based on modified secant
relations and verified its efficiency by applying it in solving
(1). However, when solving (1) in large scale, the conjugate
gradient (CG) method is more welcomesince it requires
lower memory in practical computation. Featured in its
efficiency, CG method has been applied by many researchers
in a substantial number of fields such as image restoration
problem [3,4], compressive signals problem [5], and signal
reconstruction problem [6]. machine learning and numerical
analysis [7,8,9]. In other practical fields, like disease model,
optimization methods are used to solve fractional-order
tuberculosis disease model [10] and fractional fascioliasis
disease model [11], where the CG method can be considered
to apply in the optimization problems appearing in the
models.

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM)

www.csmj.uomosul.edu.iq

mailto:basimah@uomosul.edu.iq1
mailto:alaa.ibrahim@uoz.edu.krd2
mailto:mehamdiaabdelhamid56@gmail.com
mailto:basimah@uomosul.edu.iq
http://creativecommons.org/licenses/by/4.0
https://orcid.org/0000-0003-3510-9818
https://orcid.org/0000-0001-8862-9441
https://csmj.uomosul.edu.iq/

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (178-186)

179

 Typically, CG methods iteratively update an initial
approximation x0 ∈ ℝn through the iterative formula:
𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘, 𝑘𝑘 ≥ 0, (2)
where 𝛼𝛼𝑘𝑘 denotes the step length, determined via a line
search technique. In this study, the strong Wolfe conditions
[12] are used to define the step length, ensuring that:
𝑓𝑓(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘 𝑑𝑑𝑘𝑘) − 𝑓𝑓(𝑥𝑥𝑘𝑘) ≤ 𝜌𝜌𝛼𝛼𝑘𝑘 𝑔𝑔𝑘𝑘𝑇𝑇 𝑑𝑑𝑘𝑘, (3)

𝜎𝜎 𝑔𝑔𝑘𝑘𝑇𝑇 𝑑𝑑𝑘𝑘 ≤ 𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘 ≤ −𝜎𝜎𝜎𝜎𝑘𝑘𝑇𝑇 𝑑𝑑𝑘𝑘, (4)
where 0 < 𝜌𝜌 < 𝜎𝜎 < 1. The search direction 𝑑𝑑𝑘𝑘 ∈ ℝ𝑛𝑛 is
updated using:
𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘 𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 > 0. 𝑑𝑑0 = −𝑔𝑔0 (5)
where 𝑔𝑔𝑘𝑘 = ∇ 𝑓𝑓(𝑥𝑥𝑘𝑘), and the scalar 𝛽𝛽𝑘𝑘 defines different CG
variants. Extensive research has been conducted to improve
CG methods by developing new formulas for 𝛽𝛽𝑘𝑘 that
enhance convergence behavior and numerical performance.
 The classical CG methods are typically categorized based
on their convergence and numerical characteristics. The
first category, known for its global convergence, includes
the Fletcher–Reeves (FR) [13], Dai–Yuan (DY) [14], and
Conjugate Descent (CD) [15] methods:

𝛽𝛽𝑘𝑘𝐹𝐹𝐹𝐹 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑔𝑔𝑘𝑘+1
𝑔𝑔𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘

, (6)

𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑔𝑔𝑘𝑘+1
𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

, (7)

𝛽𝛽𝑘𝑘𝐶𝐶𝐶𝐶 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑔𝑔𝑘𝑘+1
−𝑔𝑔𝑘𝑘

𝑇𝑇𝑑𝑑𝑘𝑘
, (8)

 Although globally convergent, these methods may suffer
from performance degradation in practice due to issues such
as jamming. The second category includes methods such as
Polak–Ribière–Polyak (PRP) [16,17], Hestenes–Stiefel
(HS) [18], and Liu–Storey (LS) [19], characterized by

𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑔𝑔𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘

, (9)

𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

, (10)

𝛽𝛽𝑘𝑘𝐿𝐿𝐿𝐿 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
−𝑔𝑔𝑘𝑘

𝑇𝑇𝑑𝑑𝑘𝑘
, (11)

 These methods generally yield better numerical results
but have more complex convergence analyses.
 Motivated by the limitations of existing methods,
researchers have explored new CG variants that aim to
balance strong convergence properties with efficient
numerical behavior. Among these efforts are modified CG
algorithms [20–22] and three-term CG schemes [23,24].
 One such advancement is the Dai–Liao (DL) method
[25], which modifies the traditional conjugacy condition
𝑑𝑑𝑘𝑘+1⊤ 𝑦𝑦𝑘𝑘 = 0, typically valid under exact line search, to a
weaker condition:
𝑑𝑑𝑘𝑘+1⊤ 𝑦𝑦𝑘𝑘 = −𝑡𝑡𝑔𝑔𝑘𝑘+1⊤ 𝑑𝑑𝑘𝑘 , 𝑡𝑡 ≥ 0, (12)
leading to the DL update formula:

𝛽𝛽𝑘𝑘DL = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

− 𝑡𝑡 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑣𝑣𝑘𝑘
𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

, (13)

When if 𝑡𝑡 = 0, the DL formula reduces to the HS method.
To ensure global convergence for general (non-convex)
functions, a modified version is proposed:

𝛽𝛽𝑘𝑘DL+ = max �𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

, 0� − 𝑡𝑡 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑣𝑣𝑘𝑘
𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

. (14)

While the DL method offers convergence under uniform
convexity, its global behavior relies heavily on the parameter
𝑡𝑡, and it may not always generate sufficient descent
directions [26]. To address these concerns, Hager and Zhang
[27] proposed an alternative formula incorporating the
memoryless BFGS idea:

𝛽𝛽𝑘𝑘𝑁𝑁 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

− 2 ‖𝑦𝑦𝑘𝑘‖2

�𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘�

2 𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑣𝑣𝑘𝑘, (15)

along with a restricted version ensuring descent:
and showed that (15) satisfies the descent condition
𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1𝑇𝑇 ≤ 7

8
‖𝑔𝑔𝑘𝑘+1‖2. To show that the method is globally

convergence for general functions, Hager and Zhang [27]
presented the following restricted version of (15):

𝛽𝛽𝑘𝑘𝑁𝑁+ = max �𝛽𝛽𝑘𝑘𝑁𝑁, −1
‖𝑑𝑑𝑘𝑘‖min{𝜂𝜂,‖𝑔𝑔𝑘𝑘‖}

�. (16)

Results from numerical computations has shown that the
method is efficient and promising. Furthermore, the DL-like
methods proposed in [28] and [29] happened to be globally
convergent and numerically stable, but like the method in
[30], they also fail to fulfil the sufficient descent condition.
To overcome the defect with DL CG versions; using singular
value study, Babaie-Kafaki and Ghanbari [31] and Andrei
[32] proposed an adaptive optimal choice for 𝑡𝑡, which
increased the numerical strength of the DL methods.
Numerical experiments show that these algorithms are robust
and more efficient than Hager and Zhang [33] CG method.
Despite the fact that different choices of the parameter 𝑡𝑡 have
been suggested in [34, 35], and for nice review on recent
advances on Dai-Liaomethods by Saman [37], the optimal
choice of t in DL-type methods still requires moreattention,
especially with hybrid CG methods.
More recently, based on the integration of DL and JHJ
techniques, Aminifard and Babaie-Kafaki [21] introduced
the EJHJ method with:

𝛽𝛽𝑘𝑘
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =

‖𝑔𝑔𝑘𝑘‖2−𝑚𝑚𝑚𝑚𝑚𝑚�
�𝑔𝑔𝑘𝑘�

�𝑔𝑔𝑘𝑘−1�
𝑔𝑔𝑘𝑘
⊤𝑔𝑔𝑘𝑘−1,0�

𝑚𝑚𝑚𝑚𝑚𝑚�‖𝑔𝑔𝑘𝑘−1‖2,𝑑𝑑𝑘𝑘−1
⊤ 𝑦𝑦𝑘𝑘−1�

− 𝑡𝑡 𝑔𝑔𝑘𝑘
⊤𝑣𝑣𝑘𝑘−1

𝑚𝑚𝑚𝑚𝑚𝑚�‖𝑔𝑔𝑘𝑘−1‖2,𝑑𝑑𝑘𝑘−1
⊤ 𝑦𝑦𝑘𝑘−1�

,

(17)
and numerical experiments conducted on the EJHJ method
verified its promising performance. Other recent
contributions include a CG variant proposed by Alaa et al.
[38], defined as:

𝛽𝛽𝑘𝑘 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

− 𝑡𝑡 𝛼𝛼𝑘𝑘 ‖𝑑𝑑𝑘𝑘‖2𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘

(𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘)2

 , 𝑡𝑡 > 0. (18)

 Building upon these advancements, the present work
proposes a novel CG method for unconstrained optimization,

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (178-186)

180

inspired by the Dai–Liao conjugacy condition and further
refined using Taylor series expansion. The remainder of this
article is organized as follows: Section 2 introduces the
theoretical preliminaries and outlines the proposed hybrid
method. Section 3 presents implementation details and
computational considerations. Section 5 concludes the
paper with a summary of findings and future perspectives.

2. An Improved Dai–Liao Method and Its
Algorithm

 Building upon the classical Dai–Liao framework, we
propose an enhanced class of CG methods derived through
a refined approximation of the secant equation. Specifically,
Basim et al. [39,40] extended the conventional secant
condition by employing Taylor series expansions to obtain
more accurate representations of the Hessian
approximation. Two alternative secant relations were
introduced:
𝑣𝑣𝑘𝑘𝑇𝑇𝑄𝑄(𝑥𝑥𝑘𝑘)𝑣𝑣𝑘𝑘 = 5/6𝑣𝑣𝑘𝑘𝑇𝑇𝑦𝑦𝑘𝑘 + (𝑓𝑓𝑘𝑘 − 𝑓𝑓𝑘𝑘+1) − 1/3𝑔𝑔𝑘𝑘𝑇𝑇𝑣𝑣𝑘𝑘,
(19)
and
𝑣𝑣𝑘𝑘𝑇𝑇𝑄𝑄(𝑥𝑥𝑘𝑘)𝑣𝑣𝑘𝑘 = 6/5𝑣𝑣𝑘𝑘𝑇𝑇𝑦𝑦𝑘𝑘 + 6/5(𝑓𝑓𝑘𝑘 − 𝑓𝑓𝑘𝑘+1) + 2/5𝑔𝑔𝑘𝑘𝑇𝑇𝑣𝑣𝑘𝑘,
(20)
where 𝑄𝑄(𝑥𝑥𝑘𝑘) denotes an approximation to the Hessian
matrix at iteration 𝑘𝑘, and 𝑣𝑣𝑘𝑘 = 𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘. These
formulations incorporate both gradient and function value
information to improve the quality of the Hessian
approximation.
 In parallel, Perry [41] proposed a modified conjugacy
condition, based on the second-order information:
𝑑𝑑𝑘𝑘+1𝑇𝑇 𝑦𝑦𝑘𝑘 = −𝑣𝑣𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘+1, (21)
which provides a more flexible framework for updating the
search direction.
 Motivated by the above, we incorporate relations (19),
(20), and (21) into a modified Dai–Liao update formula. The
proposed conjugate gradient parameter is defined as:

𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘−𝑡𝑡𝑘𝑘𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑣𝑣𝑘𝑘
𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

, (22)

where the scalar 𝑡𝑡𝑘𝑘 is adaptively computed based on one of
two strategies:

• Dai-Liao (BA1) method:

𝑡𝑡𝑘𝑘 = 5
6

+ (𝑓𝑓𝑘𝑘−𝑓𝑓𝑘𝑘+1)−1/3𝑔𝑔𝑘𝑘
𝑇𝑇𝑣𝑣𝑘𝑘

𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

. (23)

• Dai-Liao (BA2) method:

𝑡𝑡𝑘𝑘 = 6
5

+ 6/5(𝑓𝑓𝑘𝑘−𝑓𝑓𝑘𝑘+1)+2/5𝑔𝑔𝑘𝑘
𝑇𝑇𝑣𝑣𝑘𝑘

𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

. (24)

 These adaptive parameters enable the proposed methods
to better reflect the underlying curvature information,
enhancing the descent property and overall robustness of the

search direction.
 The full procedure of the improved Dai–Liao methods is
outlined in the following algorithm.

ALGORITHM: IMPROVED DAI–LIAO METHODS (BA1
AND BA2)

Step 1 : (Initialization) Given an initial point 𝑤𝑤0 ∈ 𝑅𝑅𝑛𝑛,
parameters 0 < 𝜌𝜌 < 𝜎𝜎 < 1, and 𝜀𝜀 > 0. Set 𝑑𝑑0 =
−𝑔𝑔0, and 𝑘𝑘 = 0.

Step 2 : If ‖𝑔𝑔𝑘𝑘‖ ≤ 𝜀𝜀 then stop.
Step 3 : Compute the step size 𝛼𝛼𝑘𝑘 by the weak Wolfe line

search,
Step 4 : Compute 𝑥𝑥𝑘𝑘+1 by (2).
Step 5 : Compute the search direction by (5) and 𝛽𝛽𝑘𝑘 from

(22), where 𝑡𝑡𝑘𝑘 from (13), or (24).
Step 6 : Set 𝑘𝑘 ≔ 𝑘𝑘 + 1 and go to Step 1.

3. Numerical Results

 This section presents a detailed numerical evaluation of
the proposed improved Dai–Liao methods for solving
unconstrained optimization problems. The performance of
the proposed methods is compared against the well-known
HS method, which is widely recognized in the optimization
literature for its robustness and efficiency.
 To ensure fairness and comprehensiveness, a variety of
test problems were selected from the CUTE problem set [42]
and additional benchmark collections [43,44], covering a
broad spectrum of problem types and dimensions. All
experiments were implemented in MATLAB R2013b and
executed on a standard HP laptop.
To maintain consistency, identical line search parameters
and Wolfe condition settings were used across all methods.
Specifically, the line search parameters were set to ρ=0.01
and σ=0.3. The algorithm terminates under any of the
following conditions:

 The gradient norm satisfies ∥ 𝑔𝑔𝑘𝑘 ∥< 10−6,
 The number of iterations exceeds 2000,
 Or the CPU time exceeds 500 seconds.

 If the algorithm fails to meet the convergence criteria, the
outcome is recorded as NaN, indicating numerical instability
or divergence. The variable N denotes the dimensionality of
the problem under consideration.
 To quantify performance, three key metrics were recorded
for each algorithm:

 NOI: Number of iterations,
 NOF: Number of function evaluations,
 CUPT: CPU time in seconds.

 A detailed comparison of these metrics is presented in

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (178-186)

181

Table 1. Table 2 presents a comparative evaluation of the
proposed Dai–Liao-based methods against the classical HS
method. In this comparison, the HS method is considered
the baseline, set at 100% for all metrics. The percentages
shown for BA1 and BA2 represent their computational costs
relative to HS. A lower percentage indicates improved
performance and higher efficiency. In addition, Figures 1–
3 depict the performance profiles of the tested algorithms
using the methodology proposed by Dolan and Moré [45].
These performance profiles provide a graphical summary of
the relative efficiency of each method across the full set of
test problems.

PERFORMANCE PROFILE ANALYSIS

 The performance ratio for problem p∈P and algorithm
s∈S is defined as:

𝑟𝑟𝑝𝑝,𝑠𝑠 =
𝑡𝑡𝑝𝑝,𝑠𝑠

min�𝑡𝑡𝑝𝑝,𝑠𝑠: 𝑠𝑠 ∈ 𝑆𝑆�
,

where 𝑡𝑡𝑝𝑝,𝑠𝑠 represents a specific performance metric (e.g.,
NOI, NOF, or CUPT), and the denominator corresponds to
the best performance achieved by any method on problem p.
The cumulative performance of algorithm sss is captured by:

𝜌𝜌𝑠𝑠(𝜏𝜏) =
1
𝑛𝑛𝑝𝑝

size �𝑝𝑝 ∈ 𝑃𝑃: 𝑟𝑟𝑝𝑝,𝑠𝑠 ≤ 𝜏𝜏�,

where 𝜌𝜌𝑠𝑠(𝜏𝜏) indicates the proportion of test problems for
which the performance of algorithm s is within a factor τ\tauτ
of the best possible performance.
 As shown in Figures 1- 3, the proposed methods
consistently outperform the HS method across all measured
criteria.

Table 1. Comparison of the proposed improved (ba1 and ba2) methods with the hs.

Test
Function

N HS BA1 BA2

NOI NOF CPUT NOI NOF CPUT NOI NOF CPUT

'cosine' 500 NaN NaN NaN 55 231 0.02 52 195 0.02

'cosine' 1000 43 114 0.02 31 169 0.03 25 138 0.02

'cosine' 5000 NaN NaN NaN 34 185 0.15 53 257 0.22

'cosine' 10000 NaN NaN NaN 46 229 0.35 45 213 0.33

'dixmaana' 1500 41 161 0.22 27 97 0.15 27 128 0.19

'dixmaana' 3000 38 145 0.51 28 97 0.31 25 113 0.35

'dixmaana' 15000 31 137 1.75 24 96 3.91 23 119 5.77

'dixmaana' 30000 37 189 6.68 29 97 2.70 20 94 2.38

'dixmaanb' 1500 38 272 0.35 31 107 0.13 31 109 0.13

'dixmaanb' 3000 38 190 0.58 22 100 0.30 26 111 0.33

'dixmaanb' 15000 38 262 3.46 31 120 1.57 21 114 1.44

'dixmaanb' 30000 36 188 4.90 26 122 3.14 22 108 2.94

'dixmaanc' 1500 29 171 0.28 27 103 0.13 24 112 0.13

'dixmaanc' 3000 31 157 0.46 28 98 0.30 33 158 0.47

'dixmaanc' 15000 45 229 3.23 27 118 1.52 25 138 1.90

'dixmaand' 30000 44 207 5.40 37 122 3.03 28 136 3.66

'dixmaand' 1500 34 195 0.24 33 131 0.15 21 122 0.22

'dixmaand' 3000 40 185 0.55 23 95 0.27 26 126 0.41

'edensch' 500 47 163 0.05 51 243 0.05 67 356 0.08

'edensch' 1000 47 144 0.06 49 204 0.08 45 185 0.07

'edensch' 5000 71 331 0.69 61 447 0.92 NaN NaN NaN

'edensch' 10000 NaN NaN NaN 75 440 1.83 102 768 3.19

'eg2' 4 45 192 0.01 38 86 0.00 38 91 0.00

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (178-186)

182

'fletchcr' 1000 NaN NaN NaN 106 730 0.07 150 1039 0.10

'fletchcr' 5000 NaN NaN NaN 217 1857 0.81 297 2536 1.12

'fletchcr' 10000 NaN NaN NaN 281 2553 2.15 199 1593 1.33

'fletchcr' 12000 NaN NaN NaN 313 2801 2.80 307 2712 2.69

'himmelbg' 500 7 25 0.01 3 15 0.00 3 15 0.00

'himmelbg' 1000 3 20 0.00 2 9 0.00 2 9 0.00

'himmelbg' 5000 4 27 0.02 3 21 0.01 3 21 0.01

'himmelbg' 10000 8 33 0.05 3 14 0.03 3 14 0.03

'penalty1' 500 NaN NaN NaN 26 130 0.16 28 160 0.20

'penalty1' 1000 NaN NaN NaN 19 102 0.37 17 110 0.40

'penalty1' 4000 32 261 11.77 14 81 3.70 19 108 4.82

'penalty1' 10000 NaN NaN NaN 74 510 116.93 143 993 225.84

'quartc' 500 37 148 0.04 46 176 0.04 44 197 0.04

'quartc' 1000 69 248 0.09 49 173 0.06 54 214 0.07

'quartc' 5000 73 281 0.51 85 293 0.53 64 274 0.50

'quartc' 10000 80 275 0.99 75 233 0.84 96 345 1.25

'bdexp' 500 NaN NaN NaN 3 14 0.00 3 14 0.00

'bdexp' 1000 NaN NaN NaN 2 7 0.00 2 7 0.00

'bdexp' 5000 NaN NaN NaN 3 19 0.03 NaN NaN NaN

'bdexp' 10000 NaN NaN NaN 3 13 0.11 3 13 0.10

'exdenschnf' 500 42 191 0.05 38 193 0.04 37 189 0.04

'exdenschnf' 1000 42 201 0.05 29 144 0.03 33 164 0.03

'exdenschnf' 5000 36 149 0.17 35 199 0.23 38 204 0.24

'exdenschnf' 10000 42 205 0.45 39 202 4.73 39 216 3.34

'exdenschnb' 500 32 200 0.03 22 102 0.01 26 106 0.02

'exdenschnb' 1000 44 211 0.03 26 122 0.03 23 90 0.01

'exdenschnb' 5000 27 148 0.25 29 137 0.08 18 88 0.06

'exdenschnb' 10000 32 165 0.16 28 115 0.10 36 166 0.14

'genquartic' 500 33 233 0.03 29 107 0.01 26 122 0.01

'genquartic' 1000 34 128 0.02 29 118 0.02 30 151 0.03

'genquartic' 5000 48 150 0.58 30 146 0.17 29 127 0.07

'genquartic' 10000 59 194 0.19 25 115 0.21 25 108 0.13

'biggsb1' 4 14 56 0.01 24 92 0.01 25 115 0.01

'biggsb1' 10 66 125 0.01 87 179 0.01 68 132 0.01

'nonscomp' 8000 97 247 0.17 86 277 0.17 152 398 0.25

'raydan1' 4 23 95 0.01 26 69 0.00 22 60 0.00

'raydan1' 50 71 128 0.01 62 120 0.00 63 120 0.00

'raydan1' 100 99 164 0.01 131 277 0.01 132 298 0.01

'raydan1' 5000 NaN NaN NaN NaN NaN NaN NaN NaN NaN

'raydan2' 500 12 76 0.01 12 65 0.00 12 65 0.01

'raydan2' 1000 19 136 0.02 17 70 0.01 15 64 0.01

'raydan2' 5000 NaN NaN NaN 17 85 0.05 21 98 0.05

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (178-186)

183

'raydan2' 10000 21 163 0.16 20 92 0.10 20 92 0.10

'diagonal3' 4 28 95 0.01 21 87 0.00 27 102 0.00

'diagonal3' 10 48 98 0.01 44 152 0.01 49 181 0.01

'bv' 500 250 430 0.53 128 338 0.41 202 416 0.63

'ie' 10 21 89 0.01 15 60 0.01 16 77 0.01

'ie' 100 26 112 0.49 24 138 0.58 25 132 0.60

'ie' 500 25 104 10.36 19 83 8.22 22 107 10.48

'lin' 10 37 198 0.96 13 56 0.24 15 93 0.38

'lin' 100 75 625 5.41 19 113 0.68 20 128 0.87

'lin' 500 47 345 4.16 17 80 0.95 16 98 1.43

'lin' 1000 32 158 135.20 19 118 92.00 19 118 98.02

'pen1' 5 NaN NaN NaN 335 999 0.07 275 1041 0.06

'pen1' 10 NaN NaN NaN 147 584 0.04 140 576 0.04

'pen1' 100 90 539 0.33 266 856 0.47 245 971 0.77

'pen1' 500 129 591 2.76 182 711 3.39 111 492 2.11

Table 2. Percentage improvement in performance of the
proposed (ba1 and ba2) methods relative to the hs method

across all test problems.

TOOLS HS BA1 BA2

NOI 100% 67.47 % 68.07%

NOF 100% 60.24 % 63.36%

CPUT 100% 57.45% 83.68%

From Table 2 the results highlight the efficiency and
effectiveness of the proposed methods.

1. Number of Iterations

• The BA1 method reduced the number of iterations
to 67.47%, indicating a 32.53% improvement over
the HS method.

• The BA2 method achieved a 31.93% reduction in
iterations, completing the tasks with only 68.07%
of the iterations required by HS.

• These results demonstrate that both proposed
methods achieve faster convergence.

2. Number of Function Evaluations

• BA1 required only 60.24% of the function
evaluations compared to HS, showing a 39.76%
improvement.

• BA2 performed slightly more evaluations than BA1
but still required only 63.36%, resulting in a
36.64% gain in efficiency.

• This reduction indicates that the proposed methods
are more effective in minimizing the objective
function with fewer evaluations.

3. CPU Time

• BA1 significantly reduced CPU time usage to
57.45%, reflecting a 42.55% improvement over
HS.

• BA2 also reduced the time consumption, achieving
83.68% of HS’s execution time, which corresponds
to a 16.32% improvement.

• These improvements are particularly valuable in
large-scale optimization problems where
computation time is critical.

The data in Table 2 clearly highlights the superior
performance of the proposed BA1 and BA2 methods
compared to the classical HS method. In particular:

• BA1 shows the most substantial improvements
across all metrics, making it the most efficient
among the tested methods.

• BA2 also demonstrates strong performance,
offering significant enhancements in convergence
speed and computational efficiency.

The consistent improvements validate the effectiveness of

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (178-186)

184

integrating modified secant conditions and enhanced
conjugate parameters in the optimization process. These
results confirm that the proposed Dai–Liao-based methods
are well-suited for solving large-scale unconstrained
optimization problems efficiently.

Figure 1: Performance based on NOI.

Figure 2: Performance based on NOF.

Figure 3: Performance based on CPU.

Conclusion
 In this paper, we present two new methods, called BA1 and
BA2, to solve large-scale optimization problems faster and
better. These methods build upon the Dai–Liao conjugacy
condition and are further refined through the application of
Taylor series expansion.

We tested them on a lot of tough, well-known test
optimization problems with different dimensions. We also
compared them to another well-known conjugate gradient
method across several critical performance metrics,
including a reduction in the number of iterations required for
convergence, a decrease in the total number of function
evaluations, and an overall faster computation time.

The results were clear: our new methods, BA1 and BA2,
were better than the HS method. They needed fewer steps to
find the answer, did fewer calculations overall, and even took
less time on the computer. What's even cooler is that the BA1
method was the best in everything we measured. These new
methods could be good alternatives to what's already out
there, and they also give us new ideas for making even better
methods in the future.

Acknowledgement
None.

Conflict of interest
The author declares the following potential conflict of

interest: Basim A. Hassan is a member of the editorial board
of this journal. However, this manuscript was handled using
the journal’s standard editorial procedures, independently of
the author’s role, to ensure an objective and unbiased review
process. No other conflicts of interest are declared.

References

[1] Jandaghi, E., Chen, X., & Yuan, C. (2023). Motion dynamics
modeling and fault detection of a soft trunk robot. 2023 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
(AIM), 1324–1329.

[2] Ebadi, M. J., Fahs, A., Fahs, H., & Dehghani, R. (2023). Competitive
secant (BFGS) methods based on modified secant relations for
unconstrained optimization. Optimization, 72(7), 1691–1706.

[3] Yuan, G., Zhou, Y., & Zhang, M. (2023). A hybrid conjugate
gradient algorithm for nonconvex functions and its applications in
image restoration problems. Journal of Operational Research Society
of China, 11, 759–781.

[4] Ibrahim, A. L., Fathi, B. G., & Abdulrazzaq, M. B. (2025). Conjugate
gradient techniques: Enhancing optimization efficiency for large-
scale problems and image restoration. Numerical Algebra, Control
and Optimization. https://doi.org/10.3934/naco.2025008

[5] Yin, J., Jiang, X., & Wu, X. (2023). A family of inertial-relaxed
DFPM-based algorithms for solving large-scale monotone nonlinear
equations with application to sparse signal restoration. Journal of
Computational and Applied Mathematics, 419, 114674.

https://doi.org/10.3934/naco.2025008

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (178-186)

185

[6] Zhu, Z., Ma, J., & Zhang, B. (2020). A new conjugate gradient hard
thresholding pursuit algorithm for sparse signal recovery.
Computational and Applied Mathematics, 39, 1–20.

[7] Hassan, B. A., Moghrabi, I. A. R., Ibrahim, A. L., & Jabbar, H. N.
(2025). Improved conjugate gradient methods for unconstrained
minimization problems and training recurrent neural networks.
Engineering Reports, 7(1), e70019.
https://doi.org/10.1002/eng2.70019

[8] Ibrahim, A. L., Fathi, B. G., & Abdulrazzaq, M. B. (2025). Improving
three-term conjugate gradient methods for training artificial neural
networks in accurate heart disease prediction. Neural Computing and
Applications. https://doi.org/10.1007/s00521-025-11121-9

[9] Omar, D. H., Ibrahim, A. L., Hassan, M. M., Fathi, B. G., &
Sulaiman, D. A. (2024). Enhanced conjugate gradient method for
unconstrained optimization and its application in neural networks.
European Journal of Pure and Applied Mathematics, 17(4), 2692–
2705. https://doi.org/10.29020/nybg.ejpam.v17i4.5354

[10] Avazzadeh, Z., Hassani, H., Agarwal, P., Mehrabi, S., Ebadi, M. J.,
& Dahaghin, M. S. (2023). An optimization method for studying
fractional-order tuberculosis disease model via generalized Laguerre
polynomials. Soft Computing, 27(14), 9519–9531.

[11] Avazzadeh, Z., Hassani, H., Agarwal, P., Mehrabi, S., Ebadi, M. J.,
& Hosseini Asl, M. K. (2023). Optimal study on fractional
fascioliasis disease model based on generalized Fibonacci
polynomials. Mathematical Methods in the Applied Sciences, 46(8),
9332–9350.

[12] Hanachi, S. B., Sellami, B., & Belloufi, M. (2024). A new family of
hybrid conjugate gradient methods for unconstrained optimization
and its application to regression analysis. RAIRO-Operations
Research, 58, 613–627. https://doi.org/10.1051/ro/2023196

[13] Fletcher, R., & Reeves, C. M. (1964). Function minimization by
conjugate gradients. The Computer Journal, 7(2), 149–154.

[14] Dai, Y. H., & Yuan, Y. (1999). A nonlinear conjugate gradient
method with a strong global convergence property. SIAM Journal on
Optimization, 10(1), 177–182.

[15] Fletcher, R. (2000). Practical Methods of Optimization. John Wiley
& Sons.

[16] Polak, E., & Ribiere, G. (1969). Note sur la convergence de méthodes
de directions conjuguées. Revue Française d'Information et de
Recherche Opérationnelle, Série Rouge, 3(16), 35–43.

[17] Polyak, B. T. (1969). The conjugate gradient method in extremal
problems. USSR Computational Mathematics and Mathematical
Physics, 9(4), 94–112.

[18] Hestenes, M. R., & Stiefel, E. (1952). Methods of conjugate gradients
for solving linear systems. Journal of Research of the National
Bureau of Standards, 49(6), 409–435.

[19] Liu, Y., & Storey, C. (1991). Efficient generalized conjugate gradient
algorithms, part 1: Theory. Journal of Optimization Theory and
Applications, 69, 129–137.

[20] Hassan, B. A. (2012). Development of a special conjugate gradient
algorithm for solving unconstrained minimization problems.
Rafidain Journal of Computer & Mathematical Sciences, 9, 73–84.

[21] Hassan, B. A., & Sadiq, H. M. (2013). A nonlinear conjugate gradient
method based on a modified secant condition. Iraqi Journal of
Statistical Sciences, 24, 1–16.

[22] Jahwar, B. H., Ibrahim, A. L., Ajeel, S. M., & Shareef, S. G. (2024).
Two new classes of conjugate gradient methods based on logistic
mapping. Telkomnika, 22(1), 86–94.
https://doi.org/10.12928/TELKOMNIKA.v22i1.25264

[23] Ibrahim, A. L., & Jahwar, B. H. (2022). A new version coefficient of
three-term conjugate gradient method to solve unconstrained
optimization. New Trends in Mathematical Science, 2022.
https://doi.org/10.20852/ntmsci.2022.483

[24] Ibrahim, A. L., Fathi, B. G., & Abdulrazzaq, M. B. (2025). Improving
three-term conjugate gradient methods for training artificial neural
networks in accurate heart disease prediction. Neural Computing and
Applications, 37, 10381–10405. https://doi.org/10.1007/s00521-
025-11121-9

[25] Dai, Y. H., & Liao, L. (2001). New conjugacy conditions and related
nonlinear conjugate gradient methods. Applied Mathematics and
Optimization, 43, 87–101.

[26] Babaie-Kafaki, S. (2015). On optimality of the parameters of self-
scaling memoryless quasi-Newton updating formulae. Journal of
Optimization Theory and Applications, 167(1), 91–101.

[27] Hager, W. W., & Zhang, H. (2006). Algorithm 851: CG descent, a
conjugate gradient method with guaranteed descent. ACM
Transactions on Mathematical Software, 32(1), 113–137.

[28] Arazm, M. R., Babaie-Kafaki, S., & Ghanbari, R. (2017). An
extended Dai-Liao conjugate gradient method with global
convergence for nonconvex functions. Glasnik Matematički, 52(2),
361–375.

[29] Narushima, Y., & Yabe, H. (2012). Conjugate gradient methods
based on secant conditions that generate descent search directions for
unconstrained optimization. Journal of Computational and Applied
Mathematics, 236(17), 4303–4317.

[30] Dai, Y. H., & Liao, L. Z. (2001). New conjugacy conditions and
related nonlinear conjugate gradient methods. Applied Mathematics
and Optimization, 43(1), 87–101.

[31] Babaie-Kafaki, S., & Ghanbari, R. (2015). Two optimal Dai–Liao
conjugate gradient methods. Optimization, 64(11), 2277–2287.

[32] Andrei, N. (2018). An adaptive scaled BFGS method for
unconstrained optimization. Numerical Algorithms, 77(2), 413–432.

[33] Andrei, N. (2018). A Dai-Liao conjugate gradient algorithm with
clustering of eigenvalues. Numerical Algorithms, 77(4), 1273–1282.

[34] Babaie-Kafaki, S., & Ghanbari, R. (2014). A descent family of Dai–
Liao conjugate gradient methods. Optimization Methods and
Software, 29(3), 583–591.

[35] Salihu, N., Odekunle, M. R., Saleh, A. M., & Salihu, S. (2021). A
Dai-Liao hybrid Hestenes-Stiefel and Fletcher-Reeves methods for
unconstrained optimization. International Journal of Industrial
Optimization, 2(1), 33–50.

[36] Babaie-Kafaki, S. (2023). A survey on the Dai-Liao family of
nonlinear conjugate gradient methods. RAIRO-Operations Research,
57(1), 43–58.

[37] Aminifard, Z., & Babaie-Kafaki, S. (2022). Dai–Liao extensions of
a descent hybrid nonlinear conjugate gradient method with
application in signal processing. Numerical Algorithms, 89(3),
1369–1387.

[38] Shareef, S. G., & Ibrahim, A. L. (2016). A new conjugate gradient
for unconstrained optimization based on step size of Barzilai and
Borwein. Science Journal of University of Zakho, 4(1), 104–114.

[39] Hassan, B. A., & Mohammed, M. I. (2022). Extra quasi-Newton
equation for unconstrained optimization. 8th International
Conference on Contemporary Information Technology and
Mathematics (ICCITM2022), Mosul University, Mosul-Iraq, 375–
379.

[40] Hassan, B. A., & Ayoob, A. R. (2022). On the new quasi-Newton
equation for unconstrained optimization. 8th International
Engineering Conference on Advances in Computer and Civil
Engineering Towards Engineering Innovations and Sustainability
(IEC-2022), Erbil-Iraq, 168–172.

[41] Perry, A. (1978). Technical note – A modified conjugate gradient
algorithm. Applied Mathematics Operations Research, 26(6), 1073–
1078.

[42] Gould, N. I. M., Orban, D., & Toint, P. L. (2003). CUTEr and

https://doi.org/10.1002/eng2.70019
https://doi.org/10.1007/s00521-025-11121-9
https://doi.org/10.29020/nybg.ejpam.v17i4.5354
https://doi.org/10.1007/s00521-025-11121-9
https://doi.org/10.1007/s00521-025-11121-9

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (178-186)

186

SIFDec: A constrained and unconstrained testing environment,
revisited. ACM Transactions on Mathematical Software, 29(4), 373–
394. https://doi.org/10.1145/962437.962439

[43] Moré, J. J., Garbow, B. S., & Hillstrom, K. E. (1981). Testing
unconstrained optimization software. ACM Transactions on
Mathematical Software (TOMS), 7(1), 17–41.
https://doi.org/10.1145/355934.355936

[44] Andrei, N. (2008). An unconstrained optimization test functions
collection. Advanced Modelling and Optimization, 10(1), 147–161.

[45] Dolan, E. D., & Moré, J. J. (2002). Benchmarking optimization
software with performance profiles. Mathematical Programming,
91(2), 201–213. https://doi.org/10.1007/s101070100263

https://doi.org/10.1007/s101070100263

