Al-Rafidain Journal of Computer Sciences and Mathematics (RICSM), Vol. 19, No. 1, 2025 (178-186)

~—\
RJCM

~BAFTDAIN. L or
 COMPUTER SGIENCE AKD MATHEMATICS

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM)

www.csmj.uomosul.edu.ig

Improved Dai-Liao Conjugate Gradient Methods for Large-Scale

Unconstrained Optimization

Basim A. Hassan!

, Alaa Lugman Ibrahim?

and Mehamdia Abd Elhamid?

"Department of Mathematics, College of Computers Sciences and Mathematics, University of Mosul, Mosul, Iraq
’Department of Mathematics, College of Science, University of Zakho, Zakho, Kurdistan Region, Iraq
3Laboratory Informatics and Mathematics, Mohamed Cherif Messaadia University, Souk Ahras, Algeria

Email: basimah@uomosul.edu.iq', alaa.ibrahim@uoz.edu.krd’> and mehamdiaabdelhamid56@gmail.com?

Article information Abstract

Article history:
Received 03 May ,2025
Revised 17 June ,2025
Accepted 23 June ,2025
Published 26 June ,2025

Keywords:

Unconstrained Optimization,
Secant Condition,
Conjugate Gradient Method,
Dai-Liao Method,
Computational Efficiency.

Correspondence:

Basim A. Hassan

Email:
basimah@uomosul.edu.iq

This research introduces and evaluates two enhanced conjugate gradient methods for unconstrained
optimization, building upon the Dai—Liao conjugacy condition and further refined through the
application of Taylor series expansion. These novel methodologies were rigorously compared against
the classical Hestenes-Stiefel (HS) method using a diverse suite of benchmark test functions. The
numerical results obtained unequivocally demonstrate a significant improvement in computational
efficiency achieved by the proposed methods. Notably, our enhanced methods consistently
outperformed the HS method across several critical performance metrics, including a reduction in the
number of iterations required for convergence, a decrease in the total number of function evaluations,
and an overall faster computation time.

DOI: 10.33899/csm;j.2025.159774.1186, ©Authors, 2025, College of Computer Science and Mathematics, University of Mosul, Iraq.

This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0).

1. Introduction

In recent years, the field of unconstrained optimization
has experienced substantial progress, particularly in the
development of efficient algorithms tailored for solving
large-scale unconstrained optimization problems. This
study focuses on the unconstrained optimization problem
formulated as:

minf(x), x € R", (1

where f:R™ > R is assumed to be a continuously
differentiable function. Unconstrained optimization plays
an important role in practical applications. For example, it
is essential in machine learning, which is popular in many
fields. Recently, Jandaghiet al. [1] proposed a novel
machine learning approach to train a soft trunk robot model,
giving a more accurate model estimation. When the scale of
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(1) is not large, the Newton method and quasi-Newton
method are promising in solving it, and Javad Ebadi et al. [2]
proposed a new BFGS method based on modified secant
relations and verified its efficiency by applying it in solving
(1). However, when solving (1) in large scale, the conjugate
gradient (CG) method is more welcomesince it requires
lower memory in practical computation. Featured in its
efficiency, CG method has been applied by many researchers
in a substantial number of fields such as image restoration
problem [3,4], compressive signals problem [5], and signal
reconstruction problem [6]. machine learning and numerical
analysis [7,8,9]. In other practical fields, like disease model,
optimization methods are used to solve fractional-order
tuberculosis disease model [10] and fractional fascioliasis
disease model [11], where the CG method can be considered
to apply in the optimization problems appearing in the
models.
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Typically, CG methods iteratively update an initial
approximation X, € R" through the iterative formula:
Xk+1 = Xk + akdk, k> 0, (2)
where «a; denotes the step length, determined via a line
search technique. In this study, the strong Wolfe conditions
[12] are used to define the step length, ensuring that:

[+ ag dy) — f(xy) < pay gi; dy,
0 gk di < Ghvr di < —0gj, d,

©)
(4)

where 0 < p < 0 < 1. The search direction dj € R" is
updated using:

dis1 = —Grs1 + Brdi fork > 0. do = —go Q)

where g, = V f(x}), and the scalar 8, defines different CG
variants. Extensive research has been conducted to improve
CG methods by developing new formulas for f; that
enhance convergence behavior and numerical performance.

The classical CG methods are typically categorized based
on their convergence and numerical characteristics. The
first category, known for its global convergence, includes
the Fletcher—Reeves (FR) [13], Dai—Yuan (DY) [14], and
Conjugate Descent (CD) [15] methods:

T
FR _ 9k+19k+1 6
BiR = dergdns (©)
DY 9£+1gk+1
— Jk+19k+1 7
k dlYk > ( )
cD g£+1gk+1
= Jhes1des 8
k _gzdk > ( )

Although globally convergent, these methods may suffer
from performance degradation in practice due to issues such
as jamming. The second category includes methods such as
Polak—Ribiére-Polyak (PRP) [16,17], Hestenes—Stiefel
(HS) [18], and Liu—Storey (LS) [19], characterized by

T
PRP _ Yk+1Vk 9
k g]'[c‘gk 9 ( )
HS _ k1Y
=== 10

k dg)’k ) ( )

k1 Yk
IéS — Jk+1 (11)

T b
—9kdk
These methods generally yield better numerical results
but have more complex convergence analyses.

Motivated by the limitations of existing methods,
researchers have explored new CG variants that aim to
balance strong convergence properties with efficient
numerical behavior. Among these efforts are modified CG
algorithms [20-22] and three-term CG schemes [23,24].

One such advancement is the Dai—Liao (DL) method
[25], which modifies the traditional conjugacy condition
di vk = 0, typically valid under exact line search, to a

weaker condition:
dlI+1)’k = —tg,lek,t =0,

(12)
leading to the DL update formula:
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T T
DL _ Yk+1Yk Ik+1Vk
==t 13
k iy diyi’ (13)
When if t = 0, the DL formula reduces to the HS method.
To ensure global convergence for general (non-convex)
functions, a modified version is proposed:

[ (14)

While the DL method offers convergence under uniform
convexity, its global behavior relies heavily on the parameter
t, and it may not always generate sufficient descent
directions [26]. To address these concerns, Hager and Zhang
[27] proposed an alternative formula incorporating the
memoryless BFGS idea:

T T
— Ik+1Vk Ik+1Vk
= max {dT—' } - th—.
kVk kYk

Iyl
(afyk)

along with a restricted version ensuring descent:

T
BN — Jk+1Vk _
k Ay

(15)

T
z9k+1Vk

and showed that (15) satisfies the descent condition
grdl,, < gll Gr+11?. To show that the method is globally

convergence for general functions, Hager and Zhang [27]
presented the following restricted version of (15):

N+ _ N -1

¢+ = max{gl, ||dk||min{n,||gk||}}' (16)
Results from numerical computations has shown that the
method is efficient and promising. Furthermore, the DL-like
methods proposed in [28] and [29] happened to be globally
convergent and numerically stable, but like the method in
[30], they also fail to fulfil the sufficient descent condition.
To overcome the defect with DL CG versions; using singular
value study, Babaie-Kafaki and Ghanbari [31] and Andrei
[32] proposed an adaptive optimal choice for ¢, which
increased the numerical strength of the DL methods.
Numerical experiments show that these algorithms are robust
and more efficient than Hager and Zhang [33] CG method.
Despite the fact that different choices of the parameter ¢t have
been suggested in [34, 35], and for nice review on recent
advances on Dai-Liaomethods by Saman [37], the optimal
choice of t in DL-type methods still requires moreattention,
especially with hybrid CG methods.

More recently, based on the integration of DL and JHJ
techniques, Aminifard and Babaie-Kafaki [21] introduced
the EJHJ method with:

lowll }

Ilgkllz—max{

_1.0
BEIHI _ Tos_o [Pk 9275 IR Vi1

k max{llgk-1112.d5_1Yk-1} max{llgk-1112.d}_1Yk-1)
17)

and numerical experiments conducted on the EJHJ method
verified its promising performance. Other recent
contributions include a CG variant proposed by Alaa et al.
[38], defined as:

T T
_ 9k+1Yk _ ar ||dk||2.gk+1dk 18
ﬁk - dT dT 2 ( )
kYK (dyi)

Building upon these advancements, the present work
proposes a novel CG method for unconstrained optimization,

,t>0.
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inspired by the Dai-Liao conjugacy condition and further
refined using Taylor series expansion. The remainder of this
article is organized as follows: Section 2 introduces the
theoretical preliminaries and outlines the proposed hybrid
method. Section 3 presents implementation details and
computational considerations. Section 5 concludes the
paper with a summary of findings and future perspectives.

2. An Improved Dai-Liao Method and Its
Algorithm

Building upon the classical Dai—Liao framework, we
propose an enhanced class of CG methods derived through
arefined approximation of the secant equation. Specifically,
Basim et al. [39,40] extended the conventional secant
condition by employing Taylor series expansions to obtain
more accurate representations of the Hessian
approximation. Two alternative secant relations were
introduced:

E’gg(xk)vk = 5/6v5yi + (fi = fis1) — 1/395 Vi,
19

and

Eﬁfg(xk)vk = 6/5Vi Yk + 6/5(fic — fir1) + 2/59% Vi,
20

where Q(x;) denotes an approximation to the Hessian
matrix at iteration k, and v, = xp,q —X;. These
formulations incorporate both gradient and function value
information to improve the quality of the Hessian
approximation.

In parallel, Perry [41] proposed a modified conjugacy
condition, based on the second-order information:
d£+1Yk = —vzfgku, (21)

which provides a more flexible framework for updating the
search direction.

Motivated by the above, we incorporate relations (19),
(20), and (21) into a modified Dai—Liao update formula. The
proposed conjugate gradient parameter is defined as:

T T
DL _ 9k+1Yk tkIk+1Vk

k d%Yk > (22)

where the scalar t;, is adaptively computed based on one of
two strategies:

® Dai-Liao (BA1) method:

_ 5, (Fk—fre)=1/39kvk
fy = ¢ T, (23)
®  Dai-Liao (BA2) method:
te=S+ 6/5(fk—fk;1>+2/5g£vk_ (24)
5 dp Yk

These adaptive parameters enable the proposed methods
to better reflect the underlying curvature information,
enhancing the descent property and overall robustness of the

search direction.

The full procedure of the improved Dai-Liao methods is
outlined in the following algorithm.

ALGORITHM: IMPROVED DAI-LIAO METHODS (BA1
AND BA2)

Step 1 :

(Initialization) Given an initial point w, € R",
parameters 0 < p <o <1, and € > 0. Set d, =
—go,and k = 0.

Step2: If ||gill < € then stop.

Step 3 : Compute the step size a; by the weak Wolfe line
search,

Step 4 : Compute x,; by (2).

Step 5:  Compute the search direction by (5) and S from
(22), where t;, from (13), or (24).

Step 6 : Set k == k + 1 and go to Step 1.
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3. Numerical Results

This section presents a detailed numerical evaluation of
the proposed improved Dai—Liao methods for solving
unconstrained optimization problems. The performance of
the proposed methods is compared against the well-known
HS method, which is widely recognized in the optimization
literature for its robustness and efficiency.

To ensure fairness and comprehensiveness, a variety of
test problems were selected from the CUTE problem set [42]
and additional benchmark collections [43,44], covering a
broad spectrum of problem types and dimensions. All
experiments were implemented in MATLAB R2013b and
executed on a standard HP laptop.

To maintain consistency, identical line search parameters
and Wolfe condition settings were used across all methods.
Specifically, the line search parameters were set to p=0.01
and 0=0.3. The algorithm terminates under any of the
following conditions:

»  The gradient norm satisfies || g, < 1078,
=  The number of iterations exceeds 2000,
= Or the CPU time exceeds 500 seconds.

If the algorithm fails to meet the convergence criteria, the
outcome is recorded as NaN, indicating numerical instability
or divergence. The variable N denotes the dimensionality of
the problem under consideration.

To quantify performance, three key metrics were recorded
for each algorithm:

= NOI: Number of iterations,
=  NOF: Number of function evaluations,
= CUPT: CPU time in seconds.

A detailed comparison of these metrics is presented in
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Table 1. Table 2 presents a comparative evaluation of the
proposed Dai-Liao-based methods against the classical HS
method. In this comparison, the HS method is considered
the baseline, set at 100% for all metrics. The percentages
shown for BA1 and BA2 represent their computational costs
relative to HS. A lower percentage indicates improved
performance and higher efficiency. In addition, Figures 1—
3 depict the performance profiles of the tested algorithms
using the methodology proposed by Dolan and Mor¢ [45].
These performance profiles provide a graphical summary of
the relative efficiency of each method across the full set of
test problems.

PERFORMANCE PROFILE ANALYSIS

The performance ratio for problem p€P and algorithm
S€ES is defined as:

T, = —tp's
i min{t, s € S}

where t, ¢ represents a specific performance metric (e.g.,
NOI, NOF, or CUPT), and the denominator corresponds to
the best performance achieved by any method on problem p.

The cumulative performance of algorithm sss is captured by:
1
ps(T) = n—51ze {p EP:n < T},
P

where pg(7) indicates the proportion of test problems for
which the performance of algorithm s is within a factor t\taut
of the best possible performance.

As shown in Figures 1- 3, the proposed methods
consistently outperform the HS method across all measured

criteria.

Table 1. Comparison of the proposed improved (bal and ba2) methods with the hs.

Test N HS BA1 BA2
Function
NOI | NOF | CPUT | NOI | NOF | CPUT | NOI | NOF | crPUT
'cosine' 500 NaN | NaN NaN 55 231 0.02 52 195 0.02
'cosine’' 1000 43 114 0.02 31 169 0.03 25 138 0.02
'cosine' 5000 | NaN | NaN NaN 34 185 0.15 53 257 0.22
'cosine’' 10000 | NaN | NaN NaN 46 229 0.35 45 213 0.33

'dixmaana’ 1500 41 161 0.22

27 97 0.15 27 128 0.19

'dixmaana’ 3000 38 145 0.51

28 97 0.31 25 113 0.35

'dixmaana’ 15000 31 137 1.75

24 96 391 23 119 5.77

'dixmaana' | 30000 | 37 189 6.68

29 97 2.70 20 94 2.38

'dixmaanb' 1500 38 272 0.35

31 107 0.13 31 109 0.13

'dixmaanb’ 3000 38 190 0.58

22 100 0.30 26 111 0.33

'dixmaanb' 15000 | 38 262 3.46

31 120 1.57 21 114 1.44

'dixmaanb' | 30000 | 36 188 4.90

26 122 3.14 22 108 2.94

'dixmaanc' 1500 29 171 0.28

27 103 0.13 24 112 0.13

'dixmaanc’ 3000 31 157 0.46

28 98 0.30 33 158 0.47

'dixmaanc' 15000 | 45 229 3.23

27 118 1.52 25 138 1.90

'dixmaand' | 30000 | 44 207 5.40

37 122 3.03 28 136 3.66

'dixmaand' 1500 34 195 0.24

33 131 0.15 21 122 0.22

'dixmaand' 3000 40 185 0.55

23 95 0.27 26 126 0.41

‘edensch’ 500 47 163 0.05

51 243 0.05 67 356 0.08

'edensch’ 1000 47 144 0.06

49 204 0.08 45 185 0.07

‘edensch’ 5000 71 331 0.69

61 447 0.92 NaN | NaN | NaN

'edensch’

10000 | NaN | NaN NaN

75 440 1.83 102 768 3.19

'eg2' 4 45 192 0.01

38 86 0.00 38 91 0.00
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'fletcher’ 1000 | NaN | NaN | NaN 106 730 0.07 150 | 1039 0.10

'fletcher’ 5000 | NaN | NaN NaN 217 | 1857 0.81 297 | 2536 1.12

'fletcher’ 10000 | NaN | NaN | NaN 281 | 2553 2.15 199 | 1593 1.33

'fletcher’ 12000 | NaN | NaN NaN 313 | 2801 2.80 307 | 2712 2.69

'himmelbg' 500 7 25 0.01 3 15 0.00 3 15 0.00
'himmelbg' 1000 3 20 0.00 2 9 0.00 2 9 0.00
'himmelbg' 5000 4 27 0.02 3 21 0.01 3 21 0.01
'himmelbg' | 10000 8 33 0.05 3 14 0.03 3 14 0.03
'penaltyl’ 500 NaN | NaN NaN 26 130 0.16 28 160 0.20

‘penaltyl’ 1000 | NaN | NaN | NaN 19 102 0.37 17 110 0.40

'penalty1’ 4000 32 261 11.77 14 81 3.70 19 108 4.82

'penaltyl’ 10000 | NaN | NaN NaN 74 510 | 116.93 | 143 993 | 225.84

'quartc' 500 37 148 0.04 46 176 0.04 44 197 0.04
'quartc' 1000 69 248 0.09 49 173 0.06 54 214 0.07
'quartc' 5000 73 281 0.51 85 293 0.53 64 274 0.50
'quartc' 10000 | 80 275 0.99 75 233 0.84 96 345 1.25
'bdexp' 500 NaN | NaN NaN 3 14 0.00 3 14 0.00
'bdexp' 1000 | NaN | NaN | NaN 2 7 0.00 2 7 0.00
'bdexp' 5000 | NaN | NaN NaN 3 19 0.03 NaN | NaN NaN
'bdexp' 10000 | NaN | NaN | NaN 3 13 0.11 3 13 0.10

‘exdenschnf' 500 42 191 0.05 38 193 0.04 37 189 0.04

‘exdenschnf' | 1000 42 201 0.05 29 144 0.03 33 164 0.03

‘exdenschnf' | 5000 36 149 0.17 35 199 0.23 38 204 0.24

‘exdenschnf' | 10000 | 42 205 0.45 39 202 4.73 39 216 3.34

‘exdenschnb’ 500 32 200 0.03 22 102 0.01 26 106 0.02

‘exdenschnb’ | 1000 44 211 0.03 26 122 0.03 23 90 0.01

‘exdenschnb' | 5000 27 148 0.25 29 137 0.08 18 88 0.06

‘exdenschnb' | 10000 | 32 165 0.16 28 115 0.10 36 166 0.14

'genquartic’ 500 33 233 0.03 29 107 0.01 26 122 0.01

'genquartic' 1000 34 128 0.02 29 118 0.02 30 151 0.03

'genquartic’ 5000 48 150 0.58 30 146 0.17 29 127 0.07

'genquartic' | 10000 | 59 194 0.19 25 115 0.21 25 108 0.13

'biggsb1' 4 14 56 0.01 24 92 0.01 25 115 0.01

'biggsbl’ 10 66 125 0.01 87 179 0.01 68 132 0.01

‘nonscomp' 8000 97 247 0.17 86 277 0.17 152 398 0.25

'raydanl’ 4 23 95 0.01 26 69 0.00 22 60 0.00
'raydanl’ 50 71 128 0.01 62 120 0.00 63 120 0.00
'raydanl’ 100 99 164 0.01 131 277 0.01 132 | 298 0.01

'raydanl’ 5000 | NaN | NaN NaN | NaN | NaN NaN | NaN | NaN NaN

‘raydan2' 500 12 76 0.01 12 65 0.00 12 65 0.01

'raydan2' 1000 19 136 0.02 17 70 0.01 15 64 0.01

‘raydan2' 5000 | NaN | NaN | NaN 17 85 0.05 21 98 0.05
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'raydan2' 10000 21 163 0.16 20 92 0.10 20 92 0.10

'diagonal3’ 4 28 95 0.01 21 87 0.00 27 102 0.00

'diagonal3’ 10 48 98 0.01 44 152 0.01 49 181 0.01

'bv' 500 250 430 0.53 128 338 0.41 202 416 0.63

'ie! 10 21 89 0.01 15 60 0.01 16 77 0.01

'ie 100 26 112 0.49 24 138 0.58 25 132 0.60

'ie! 500 25 104 10.36 19 83 8.22 22 107 10.48

'lin' 10 37 198 0.96 13 56 0.24 15 93 0.38

'lin' 100 75 625 541 19 113 0.68 20 128 0.87

'lin' 500 47 345 4.16 17 80 0.95 16 98 1.43

'lin' 1000 32 158 135.20 19 118 92.00 19 118 98.02

'penl’ 5 NaN | NaN NaN 335 999 0.07 275 1041 0.06

'‘penl’ 10 NaN | NaN NaN 147 584 0.04 140 576 0.04

'penl’ 100 90 539 0.33 266 856 0.47 245 971 0.77

'‘penl’ 500 129 591 2.76 182 711 3.39 111 492 2.11
e BA2 performed slightly more evaluations than BA1
Table 2. Percentage improvement in performance of the but still required only 63.36%, resulting in a

proposed (bal and ba2) methods relative to the hs method 36.64% gain in efficiency.
across all test problems. e This reduction indicates that the proposed methods
TOOLS HS BA1 BA2 are more effective in minimizing the objective

NOL 100% 147 % 68.07% function with fewer evaluations.
NOF 100% 60.24 % 63.36% 3. CPU Time

CPUT 100% 5145% 83.68% e BAI significantly reduced CPU time usage to

From Table 2 the results highlight the efficiency and
effectiveness of the proposed methods.

1. Number of Iterations

The BA1 method reduced the number of iterations
to 67.47%, indicating a 32.53% improvement over
the HS method.

The BA2 method achieved a 31.93% reduction in
iterations, completing the tasks with only 68.07%
of the iterations required by HS.

These results demonstrate that both proposed
methods achieve faster convergence.

2. Number of Function Evaluations

BAl required only 60.24% of the
evaluations compared to HS, showing a 39.76%
improvement.

function
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57.45%, reflecting a 42.55% improvement over
HS.

BA2 also reduced the time consumption, achieving
83.68% of HS’s execution time, which corresponds
to a 16.32% improvement.

These improvements are particularly valuable in

large-scale ~ optimization where

computation time is critical.

problems

The data in Table 2 clearly highlights the superior
performance of the proposed BAl and BA2 methods
compared to the classical HS method. In particular:

e BAl shows the most substantial improvements
across all metrics, making it the most efficient

among the tested methods.

BA2 also demonstrates strong performance,
offering significant enhancements in convergence
speed and computational efficiency.

The consistent improvements validate the effectiveness of
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integrating modified secant conditions and enhanced
conjugate parameters in the optimization process. These
results confirm that the proposed Dai-Liao-based methods
are well-suited for solving large-scale unconstrained
optimization problems efficiently.
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Figure 1: Performance based on NOI.
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Figure 3: Performance based on CPU.
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Conclusion

In this paper, we present two new methods, called BA1 and
BA2, to solve large-scale optimization problems faster and
better. These methods build upon the Dai-Liao conjugacy
condition and are further refined through the application of
Taylor series expansion.

We tested them on a lot of tough, well-known test
optimization problems with different dimensions. We also
compared them to another well-known conjugate gradient
method across several critical performance metrics,
including a reduction in the number of iterations required for
convergence, a decrease in the total number of function
evaluations, and an overall faster computation time.

The results were clear: our new methods, BA1 and BA2,
were better than the HS method. They needed fewer steps to
find the answer, did fewer calculations overall, and even took
less time on the computer. What's even cooler is that the BA1
method was the best in everything we measured. These new
methods could be good alternatives to what's already out
there, and they also give us new ideas for making even better
methods in the future.
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