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Low contrast, noise, and low visual detail are major medical image problems that pose a
negative effect on diagnostic accuracy. This paper suggests a more developed model using deep
generative networks (GANS) to enhance the quality of medical iris images. The framework has a
sequence of preprocessing steps that include contrast enhancement (CLAHE), noise removal
(Bilateral Filter), and edge enhancement (Unsharp Masking), and then the stage of enhanced
generation with an attention-assisted generator (Adam) with fine-tuned parameters. SSIM, PSNR
and LPIPS measures were used to evaluate the performance of the model. The findings revealed
that there were significant visual and perceptual structure of images as results showed that,
average SSIM was improved by 0.9383 to 0.9783, LPIPS was reduced by 0.0137 to 0.0078 and
PSNR had increased by 28.62 to 32.23 than the default parameters. These results confirm the
usefulness of fine-tuning at enhancing perceptual and structural image measures. This model
improves the diagnosis abilities in the medical field and minimizes the use of costly refined
imaging methods, hence it can be applied in large scale clinical setting.
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1. Introduction

Healthcare professionals heavily rely on medical
imaging for diagnosis and treatment planning in various
medical fields, and an adequate amount of image data from
multiple and diverse devices contributes to patient safety
and diagnostic accuracy [1]. Medical image acquisition
devices use imaging sensors to transform non-visible
texture features, such as density, contrast, and reflection,
into digital intensity values, recorded to create a diagnostic
image [2].

The advancement of imaging technologies has opened
new horizons in visualizing the human body in bizarre ways.
Nowadays, imaging plays an indispensable role across all
fields of healthcare, including nuclear imaging, computed
tomography, magnetic resonance imaging, and more. All of
these different types of imaging techniques produce
different modalities of images and must be viewed and
reconstructed in a proper way for optimal results. [3]. Better
and more accurate software is a key component of a
comprehensive data analysis and assessment tool.

Due to the unavailability of image enhancement
technologies in the medical field, diagnostic images often
suffer from reduced brightness, contrast, and clarity, which
impairs the quality of medical imaging and makes diagnosis
difficult, especially in complex medical cases. [4] [5].

Image enhancement is a procedure of improving the
quality of an image; sometimes, this refers to restoration or
reconstruction [6]. Enhancement consists of both image
sharpening (via a Laplace filter) and image smoothing (using
a Gaussian blur filter) to enhance contrast while preserving
edge details and minimizing noise [7]. Image smoothing
generally is an operation that reduces the prominence of the
variation of tone concerning the local average [8]. Most
smoothing operations act to suppress high frequencies,
which correspond to detail, so the operation is sometimes
referred to as low-pass filtering. In image processing, an
image may be degraded or corrupted, or too much noise may
be added. Many existing restoration techniques fail to give
satisfactory results in the presence of noise [9]. Simple
schemes such as averaging filters, Wiener filters, or Kalman
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filters can be very effective when designed to work with
low, wide-band Gaussian noise. However, they all fail in the
presence of heavy noise and other non-Gaussian noise
distributions [10].

Image enhancement algorithms are a crucial tool in
enhancing the efficiency and accuracy of medical image
analysis. They improve image characteristics, making it
easier for physicians to detect pathological details,
increasing the reliability of clinical assessment and
decision-making effectiveness [11]. The enhancement
algorithms for digital images have been studied earlier to
improve their quality. However, most of the methods are
based on classical approaches such as histogram
equalization, contrast stretching, etc. [12]. They usually
focus on enhancing their contrast and brightness.

Recently, with the blooming of artificial intelligence
research interests, as skill gaps have been reduced between
humans and computers [13], It has been observed that there
has been a rapid development of image enhancement
algorithms based on neural networks. Currently, deep neural
networks have been widely used in numerous applications
ranging from natural image processing to all optical,
acoustic, and radar-systems related inverse-scatterings and
reconstructions [14]. Among the neural network
architectures, Generative Adversarial Networks (GANS)
have shown exceptional promise in medical image
enhancement tasks. GANs consist of two competing
networks—a generator and a discriminator—that learn
through adversarial training to produce high-fidelity images
[5]. Despite their success, many existing models rely on
default training parameters.

Based on the above challenges in medical image quality
and visual detail accuracy, this research aims to develop an
advanced framework based on deep generative networks
(GANS5) to enhance medical iris images in terms of contrast,
noise reduction, and fine detail enhancement. A series of
preprocessing steps is adopted, followed by an improved
generation model that incorporates spectral normalization in
the discriminator to address instability during training our
model, which helps control gradient magnitudes and
stabilizes the adversarial learning process. This is supported
by the Adam initialization algorithm and hyperparameters,
to achieve a balance between visual accuracy and
computational efficiency. This study addresses this gap by
evaluating the effect of hyperparameter optimization on the
quality of GAN-generated medical images. It focuses on
demonstrating the effectiveness of the proposed model
through quantitative evaluation using SSIM, PSNR, and
LPIPS metrics, which reflect the level of improvement in
the quality of the resulting images.

2. Related Work

In recent years, deep generative networks (GANs) have
emerged as a promising tool in medical image enhancement,
due to their effective contribution to restoring fine visual
details and enhancing the quality of images that suffer from

low resolution or noise, which are often caused by limitations
in imaging equipment or reduced radiation dose. Among the
notable works: In a study by Mahboubisarighieh et al. [15],
Researchers developed a GAN-based model to improve the
quality of medical radiographic images. The model was based
on a perceptual learning algorithm and was applied to dental
radiographs, where it demonstrated a significant improvement
in image quality. The evaluation results were: SSIM ~ 0.848,
PSNR ~25.46 dB, and LPIPS = 0.152. These results reflect the
effectiveness of the model compared to traditional methods, but
they are still below optimal levels for high-quality diagnostic
images. Abdusalomov et al. [16] presented a proposal based on
the SRGAN model to enhance medical images in low-light
conditions, focusing on restoring fine details and improving
image quality. The study evaluated the model's performance
using objective metrics, including PSNR and SSIM, with values
of 28.45 dB and 0.8423, respectively. These results indicate
acceptable effectiveness of the model, but they still fall short of
the ideal performance required for high-resolution medical
images.

3. Technical Background

3.1. Image Preprocessing Techniques

Noises often distort images. Noise is an unwanted
disturbance that generally occurs while capturing photos or
when the image is transmitted from one channel to another.
[17]. The atmosphere of the image affects it due to various
reasons, such as blurriness, pixelization, brightness, etc. To
eliminate this noise, add some distortion to itself, which is
generally termed as noise, and the removal of this noise is a
crucial task, and it depends on the noisy image; with this
original image, it can be regenerated [18].

Image Denoising. Depending on the application, an image
filter may need to enhance features of interest and/or reduce
those that contain noise. Such applications are particularly
useful in medical imaging, remote sensing, photographic
display, and archiving [19]. Several filtering techniques have
been proposed for this purpose. These schemes may be
categorized as either linear or nonlinear procedures. Linearity
refers to operations in which the output pixel, such as an
arithmetic mean, can be computed directly as a linear view of a
subset of pixel values centered about the target pixel. With
linear filters, such as Gaussian filters, the gray values of filtered
images are a linear combination of the original quantities. The
constraints of linearity are such that the output of an input
function is a function only of a linear combination of its
components. Nonlinear methods represent pixel values in terms
of a nonlinear function [20] [21].

3.2. CLAHE

Contrast is an essential feature of an image. An image will
appear more natural, more stunning, and transmit more detail
and information if the contrast in the photo is more reasonable
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or optimal. Contrast enhancement for enhancing the visual
appearance of a distorted image is one of the leading research
problems in digital image processing [22]. A widely adopted
example is contrasting limited adaptive histogram equalization
(CLAHE), which performs local adjustments in image contrast
with low noise amplification [23]. These contrast adjustments
are interpolated between patches of neighboring images called
kernels. CLAHE achieves spatial adaptivity through the
selection of kernel size. The intensity range of the kernel
histogram, set by a clip limit, restrains noise amplification [24]
[25].

3.3. Bilateral filtering noise reduction

A bilateral filter is a nonlinear filtering technique for
image processing. It is a noniterative and edge-preserving filter
that replaces the value of a pixel, which is only what it makes
of itself and the surrounding pixels, with a weighted average
of its spatial neighbors [6] [26]. It has been used in image
denoising to eliminate noise while preserving edges in
photographs, and in computer graphics to maintain sharpness
in 2D and 3D images [27] [28].

3.4. Sharpening via unsharp masking

The unsharp masking technique is a popular image
processing technique for enhancing sharpness in photographic
images [29]. The method employs a technique in which an
enhanced frame is obtained by superimposing a blurred image
and an enhanced image that are derived from a reference image
[30]. Mathematical models of the information loss in a
Gaussian blurring process, as well as the ringing artifacts
produced in the unsharp masking method, have been
formulated [31].

3.5. Generative Adversarial Networks (GANSs)

Generative Adversarial Networks (GANs) are now very
famous in the machine learning community and are a very
popular model for image generation tasks. In its early stage,
GANSs were adapted to the medical imaging area to generate
medical images for a moderately sized dataset [32]. The key
idea of GANSs is to train a generator and a discriminator; the
generator creates fake images to confuse the discriminator. In
contrast, the discriminator attempts to tell apart which images
have real labels and which ones are fake. The two networks
confront each other, and their performances improve with each
iteration. Eventually, when the generator is sufficiently
improved, it can generate realistic images that are
indistinguishable from real ones [33], As in Figure 1. GANs
are appropriate for cases when insufficient real data is a
problem, as they generate additional fake data. Besides, GANs
have an advantage over other image synthesis approaches
since GANs explicitly learn distributions of the underlying
training sample data rather than explicitly modeling the image
signal formation process [34] [35].

Real [mages F \
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Random Noise

Figure 1. Schematic Block Diagram of Generative
Adversarial Network (GAN) [33].

3.6. Evaluation Metrics

To maintain and control the quality of an image using image
compression systems or to enhance the quality of the image
using image enhancement systems, it is essential to assess the
image's quality. Since quality assessment is directly related to
the ability of the observer to discriminate between signal and
noise, an accurate quality assessment is generally required to be
subjectively measured. [36]. The Human Visual System (HVS)
is the final recipient of any visual information, and its
knowledge plays a vital role in constructing accurate models for
measuring image quality.

Structural Similarity Index Measure (SSIM): Structural
Similarity Index (SSIM) is a perceptually motivated measure of
the quality of a visual signal, where the range is between -1 and
1, and it is equal to 1 if the two images are the same [37]. The
mathematical formulation for the standard implementation
mode of SSIM is given together with theoretical proofs of the
definition of the quality index and the constants used to prevent
divisions by zero [38].

Learned Perceptual Image Patch Similarity (LPIPS): There
are several thorough investigations into the flaws of existing
deep perceptual similarity metrics and the properties of human
perception [39]. The perceptual similarity of image patches is
tightly linked to their semantic similarity [40]. Dimensions
perceptually judged by humans can be challenging to learn from
simple data reduction techniques. (LPIPS) It is a
neural-network-based perceptual metric that compares deep
feature activations across image patches. It correlates more
closely with human judgments of similarity compared to
traditional pixel-level metrics [41].

Peak Signal-to-Noise Ratio (PSNR): Peak Signal-to-Noise
Ratio (PSNR) is a widely used metric in image processing,
particularly for assessing image coding algorithms. PSNR is a
widely used metric to measure the quality of reconstructed
images by comparing the peak signal value of the ground truth
image with the super-resolution algorithm's error. PSNR is
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commonly used to assess the performance of SR algorithms
due to its computational efficiency and ease of implementation
[42].

4. Methodology

Our methodology, as shown in Figure 1, it illustrates the
sequential stages of the proposed system, starting from the
initial setup to the final evaluation and saving of results. The
pre-processing phase incorporates three enhancement
techniques Contrast Limited Adaptive Histogram
Equalization (CLAHE), Bilateral Filtering, and Unsharp
Masking — to improve image clarity before passing the data
to the Model and training phase and then to the evaluation and
saving phase.

Start

System Setup

i

4.1. Pre-processing phase: began with a comprehensive
preprocessing phase aimed at preparing the medical iris images
for deep learning enhancement. Each image was first converted
to grayscale and resized to ensure compatibility with
convolutional architectures. To improve local contrast while
preserving fine details, we applied adaptive CLAHE. Noise
reduction was handled using a brilliant bilateral filtering
technique, which effectively removed noise without sacrificing
important structural features. To further highlight critical
details, a sharpening filter was applied, resulting in more
transparent and more diagnostic images.

A
Unsharp

Masking

Pre-Processing

]

phase
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i

Training - deep learning phase

y
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Save Results

Figure 2. Flowchart of the proposed medical image enhancement framework.

4.2. Model and training phase: In this phase, the pre-
processed medical images are fed into a custom-designed deep
learning model built upon a generative architecture integrated
with spectral normalization to stabilize the training of the
discriminator and prevent exploding gradients, we applied
spectral normalization to all convolutional layers within the
discriminator network, by doing so, the discriminator's learning
becomes more stable and the GAN training process converges
more reliably [43], whereas, an attention mechanism that is
integrated into the generator to help the network focus on
anatomically relevant regions, enhancing detail preservation in
critical areas of medical images. Figure 2 showing the training
pipeline begins by loading image batches, followed by
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generating enhanced images and calculating both L1 loss and
VGG perceptual loss, which are then combined.
Backpropagation is performed, and the model parameters are
updated using the Adam optimizer, which was configured
with custom hyperparameters (learning rate = 0.0003, f: = 0.7,
B2 = 0.999) to improve convergence stability and training
efficiency. The process iterates through multiple epochs, with
early stopping applied to prevent overfitting. Once optimal
performance is reached, the best-performing model is saved
automatically. This setup enables the generator to learn how to
enhance image quality while preserving structural integrity and
minimizing artifacts or distortions.
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Figure 3. Overview of the Deep Learning Training Workflow Using GAN-Based Generator.

Optimizer Configuration in Deep Learning: Adam with
Custom Hyperparameters

The model was trained using the Adam (Adaptive Moment
Estimation) optimization algorithm, and adopted early
stopping to prevent overfitting. Adam was configured with a
learning rate (Ir) of 0.0003 and momentum parameters (B: and
B2) set to 0.7 and 0.999, respectively. The learning rate of
0.0003 is intentionally kept small to ensure gradual and stable
weight updates, minimizing the risk of divergence during
training. The first momentum term (B:=0.7) controls the
exponential decay rate for the gradient mean, effectively
reducing the influence of past gradients to prevent
overshooting local minima. Meanwhile, the second
momentum term (P2=0.999) governs the decay rate for the
squared gradients, allowing the optimizer to scale learning
rates for each parameter adaptively. This high value ensures
robust handling of sparse or noisy gradients, which is
particularly beneficial in tasks requiring fine-grained
adjustments.

11

4.3. Evaluation and Saving Phase: Once training is complete,
the model’s performance is rigorously evaluated using standard
objective metrics, including Structural Similarity Index
(SSIM), Peak Signal-to-Noise Ratio (PSNR), and Learned
Perceptual Image Patch Similarity (LPIPS). These metrics
quantitatively assess the visual and structural fidelity of the
enhanced images compared to the original inputs. In addition to
numerical evaluation, visual comparisons are saved for
qualitative analysis. Each stage of the image enhancement
process is also archived, offering a complete visual record of
the transformation pipeline for transparency and
reproducibility.

This research is based on the publicly available "Iris
Database" by M. Dobes and L. Machala (2002) [44], which was
obtained from an online source and consists of 384 iris images
taken from 64 individuals. Three images were taken of the right
eye and three of the left eye of each individual at different times
to provide a variety of lighting and image capture conditions.
The original images are in color, high resolution, and in JPEG
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format. They were converted to grayscale and resized to 256 x
256 pixels before being fed into the optimization model. Figure
3 represents a raw sample of the human iris, serving as the
initial input in the proposed image enhancement pipeline. It
reflects the typical quality and structural detail encountered in
medical imaging before preprocessing. It shows the normal
distribution of texture within the iris, making it suitable for
training and testing the effectiveness of the optimization
algorithms studied. These images were employed in this study
to develop and evaluate advanced image enhancement
algorithms aimed at improving the quality and diagnostic value
of ophthalmic medical photos.

Figure 4. High-Resolution Image of the Human Iris Used
as Input for Preprocessing and Enhancement.

5. Result and discussion:

In this work, a series of preprocessing steps was
implemented to improve the quality of iris images before
entering them into the generative model. As shown in Figure
1, we began by initializing the system setup and preparing the
data through the pre-processing phase.

5.1. Pre-processing phase: During this phase, the images
underwent a calculated sequence of operations aimed at
improving the image's visual properties in terms of contrast,
reducing noise, and enhancing details. As shown in Figure 4
This sequence of preprocessing steps, illustrated with a single
image, shows how each stage contributes to progressively
improving image quality, starting with visual preparation and
leading to the sharper image that is later used within the
generative model.

The original image, as shown in Figure 4 (A) was first
converted to grayscale to ensure processing consistency and
facilitate handling of image properties in the deep learning
phases, aiming to simplify the visual representation and focus
on the textural details within the iris, as shown in Figure 4 (B)
Next, the CLAHE algorithm was applied to improve local
contrast, which helped highlight fine features in areas that were
low in comparison in the original image. This effect is shown
in Figure 4 (C).

This was followed by applying a Bilateral filter to remove
noise while preserving edge detail. This smoothed the image, as
shown in Figure 4 (D). In the final processing step, the Unsharp
Masking technique was used to enhance sharpness in fine edges
and increase the clarity of details, producing a visually more
transparent image that is more ready for analysis, as shown in
Figure 4 (E).

It is important to note that the name "Unsharp Masking" can
be misunderstood as referring to reducing sharpness. In reality,
this method is used to highlight edges and clarify the image.
This name comes from traditional photographic techniques,
where an unsharp mask was used to enhance the localized edge
contrast of the original image [45]. Therefore, despite the name,
the final output is a sharpened image, which justifies its
software designation in this work.

A B D
Original Image Gray image CLHE Denoised (Bilateral Sharpened (Unsharp
The original image The result of contrast Filter) Masking)
after converting to enhancement using the The result of noise The result of edge
grayscale. CLAHE algorithm. removal using the sharpening using the
Bilateral filter. Unsharp Masking
technique.

Figure 5. Sequence of preprocessing steps for a single image from the iris database.

The processed image is then fed into the training phase, as
shown in the Figure 1.
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5.2. Model and training phase: After completing the
preprocessing phase, we moved to the generative enhancement
phase using a Generative Adversarial Network (GAN)-based
framework. As illustrated in Figure 2, the training design
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combines pixel-level (L1) and perceptual (VGG) losses, stability in GANs and other architectures sensitive to

helping the generator produce outputs that are both structurally hyperparameter tuning. However, they may require longer
accurate and visually consistent. The integration of the Adam training times due to the conservative learning rate. This Adam
optimizer and early stopping mechanism proved effective in variant strikes a balance between momentum-driven
stabilizing training and avoiding overfitting. These strategies acceleration and adaptive gradient scaling, making it a
contributed directly to the high-quality enhancement results, as pragmatic choice for generative and high-precision
observed in the visual outputs and supported by the obtained discriminative tasks. Data augmentation techniques, such as
evaluation metrics. random rotations and horizontal flips, were also applied.

An enhanced generator was designed with attention blocks Figure 5 provides a visual comparison between the original
to support the medical image enhancement process by grayscale iris image (left) and the output produced by the
enhancing fine details while preserving the original visual proposed enhancement framework (right). As is evident, the
structure. This generator was trained using the Adam enhanced image displays improved structural clarity and finer
initialization algorithm, with hyperparameters (Ir = 0.0003, B texture details, particularly in the central and peripheral regions
=0.7, B2=0.999), which accelerated convergence and reduced of the iris. This qualitative improvement aligns with the
loss value. This initialization helped achieve adequate training quantitative results obtained using standard evaluation metrics,
stability, which positively impacted the quality of the resulting where the enhanced images achieved an average SSIM of
images and supports the efficiency of the framework proposed 0.9783, LPIPS of 0.00776, and PSNR of 32.22 dB. These
in this research. metrics confirm that the enhancement process preserved

perceptual and structural features while reducing noise and
improving contrast—critical factors for subsequent diagnostic
or biometric tasks.

Compared to the default Adam settings (typically Ir=0.001,
Bi=0.9, B-=0.999), this configuration prioritizes cautious
updates over aggressive convergence, making it well-suited for
complex, non-convex optimization landscapes. The reduced f: 5.3. Evaluation and Saving Phase: the enhanced images were
value (0.5 instead of 0.9) further mitigates oscillations, while evaluated quantitatively using SSIM, LPIPS, and PSNR metrics
retaining the adaptive benefits of B2 near its default. Empirical to assess both structural fidelity and perceptual quality
evidence suggests that such hyperparameters enhance training comprehensively.

Enhanced

Original

100 100

200 200
300 300
400 400

500 500

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600
Figure 6. Original vs. enhanced Iris image.

According to the obtained metric values, the framework reduction in STD from 0.004752 to 0.002139, suggesting
using tuned hyperparameters outperformed the default reduced fluctuation in perceptual quality. For PSNR, the STD
configuration across all three key image quality metrics— decreased from 3.587311 to 2.429014, reinforcing the
SSIM, LPIPS, and PSNR—as detailed in Table 1. The average consistency in noise suppression and image clarity. These
SSIM improved from 0.938347 (default) to 0.978272 (tuned). findings confirm that the tuned configuration not only improves
At the same time, the LPIPS score decreased from 0.013732 to average performance but also ensures reliable, repeatable
0.007760, and the PSNR increased from 28.6244 dB to enhancement quality—an essential requirement for medical
32.2296 dB, indicating superior structural fidelity, perceptual imaging applications.
similarity, and noise resilience, respectively. Furthermore, the
standard deviation values reveal an essential aspect of
consistency in the output quality. The STD for SSIM decreased
from 0.044672 to 0.015213, indicating more stable structural
similarity across enhanced images, which is essential for
maintaining diagnostic reliability. Similarly, LPIPS showed a

To compare the overall values (SSIM, LPIPS, and PSNR)
of the dataset images, Figure 6 shows the Dominance in mostly
results of hyper-parameter over default parameter, where the
values for SSIM are close to 1, values of LPIPS are achieved at

13
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higher values, and PSNR are close to zero, more than the

default parameter.

Table (1): Quantitative Evaluation Results: Standard Deviation and Average of SSIM, LPIPS, and PSNR for
Enhanced Medical Images Using Tuned vs. Default Parameters.

Hyper parameter

Default parameter

SSIM LPIPS PSNR SSIM LPIPS PSNR
STD 0.015213 0.002139 2.429014 0.044672 0.004752 3.587311
AVERAGE 0.978272 0.00776 32.22958 0.938347 0.013732 28.6244
a.55IM
1.7
1 | i
(A=}
o
.
0 g — 0 DEFALULT
b.LPIPS C PSNR

Figure 7. Quantitative comparison of three image quality metrics between default and optimized hyperparameter
configurations in medical image enhancement. (a) Structural Similarity Index (SSIM): Evaluates how well the enhanced
image preserves the structural information of the original. (b) Learned Perceptual Image Patch Similarity (LPIPS):
Measures perceptual differences between original and enhanced images; lower values indicate better visual quality. (c) Peak
Signal-to-Noise Ratio (PSNR): Estimates the clarity of the image after enhancement; higher values suggest reduced noise

and better quality.

Comparing the results obtained in this research with those
of previous studies, it is clear that the proposed model has
achieved advanced performance. For example, the average
SSIM in this work was 0.978, compared to 0.848 in
Mahboubisarighieh et al.'s [15]and 0.8423 in Abdusalomov
et al.'s [16], reflecting the current model's ability to recover
the image texture to a higher degree. The PSNR also
showed a significant increase to 32.22 dB, exceeding the
values recorded in the two previous studies (25.46 and

14

28.45 dB, respectively), indicating a further reduction in
information loss. Furthermore, the LPIPS value in the
current model was 0.00776, which is significantly lower
than the value of 0.152 recorded in Mahboubisarighieh et
al.'s study, demonstrating a significant improvement in the
quality of visual perception. These comparisons indicate
that the proposed model excels in terms of optical and
structural efficiency, enhancing its potential for practical
use in precision medicine applications.
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Conclusion

This study presented an advanced GAN-based
framework for medical image enhancement, focusing on
improving diagnostic image quality through a carefully
designed preprocessing pipeline and customized training
strategy. The systematic processing sequence has
contributed to improving the quality of medical images
used, enhancing the accuracy of disease diagnosis based on
image analysis.

The results demonstrated that hyperparameter tuning
significantly improved performance across key evaluation
metrics—achieving an average SSIM of 0.9783, LPIPS of
0.00776, and PSNR of 32.22 dB—compared to default
settings and other state-of-the-art methods. Furthermore,
the reduced standard deviations (SSIM STD = 0.0152,
LPIPS STD = 0.0021, PSNR STD = 2.4290) reflect
enhanced consistency and robustness in output quality.
These findings highlight the importance of proper
hyperparameter optimization and targeted loss functions in
achieving reliable, high-fidelity = medical image
enhancement suitable for clinical applications.

Future research may focus on enhancing the capabilities
of deep learning methods to achieve comprehensive
coverage that can be generalized to all medical images, and
artificial intelligence networks can be incorporated into the
preprocessing stage.
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