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     Low contrast, noise, and low visual detail are major medical image problems that pose a 
negative effect on diagnostic accuracy. This paper suggests a more developed model using deep 
generative networks (GANs) to enhance the quality of medical iris images. The framework has a 
sequence of preprocessing steps that include contrast enhancement (CLAHE), noise removal 
(Bilateral Filter), and edge enhancement (Unsharp Masking), and then the stage of enhanced 
generation with an attention-assisted generator (Adam) with fine-tuned parameters. SSIM, PSNR 
and LPIPS measures were used to evaluate the performance of the model. The findings revealed 
that there were significant visual and perceptual structure of images as results showed that, 
average SSIM was improved by 0.9383 to 0.9783, LPIPS was reduced by 0.0137 to 0.0078 and 
PSNR had increased by 28.62 to 32.23 than the default parameters. These results confirm the 
usefulness of fine-tuning at enhancing perceptual and structural image measures. This model 
improves the diagnosis abilities in the medical field and minimizes the use of costly refined 
imaging methods, hence it can be applied in large scale clinical setting. 
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1. Introduction 

Healthcare professionals heavily rely on medical 
imaging for diagnosis and treatment planning in various 
medical fields, and an adequate amount of image data from 
multiple and diverse devices contributes to patient safety 
and diagnostic accuracy [1]. Medical image acquisition 
devices use imaging sensors to transform non-visible 
texture features, such as density, contrast, and reflection, 
into digital intensity values, recorded to create a diagnostic 
image [2]. 

The advancement of imaging technologies has opened 
new horizons in visualizing the human body in bizarre ways. 
Nowadays, imaging plays an indispensable role across all 
fields of healthcare, including nuclear imaging, computed 
tomography, magnetic resonance imaging, and more. All of 
these different types of imaging techniques produce 
different modalities of images and must be viewed and 
reconstructed in a proper way for optimal results. [3]. Better 
and more accurate software is a key component of a 
comprehensive data analysis and assessment tool. 

Due to the unavailability of image enhancement 
technologies in the medical field, diagnostic images often 
suffer from reduced brightness, contrast, and clarity, which 
impairs the quality of medical imaging and makes diagnosis 
difficult, especially in complex medical cases. [4] [5].  

Image enhancement is a procedure of improving the 
quality of an image; sometimes, this refers to restoration or 
reconstruction [6]. Enhancement consists of both image 
sharpening (via a Laplace filter) and image smoothing (using 
a Gaussian blur filter) to enhance contrast while preserving 
edge details and minimizing noise [7]. Image smoothing 
generally is an operation that reduces the prominence of the 
variation of tone concerning the local average [8]. Most 
smoothing operations act to suppress high frequencies, 
which correspond to detail, so the operation is sometimes 
referred to as low-pass filtering. In image processing, an 
image may be degraded or corrupted, or too much noise may 
be added. Many existing restoration techniques fail to give 
satisfactory results in the presence of noise [9]. Simple 
schemes such as averaging filters, Wiener filters, or Kalman 
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filters can be very effective when designed to work with 
low, wide-band Gaussian noise. However, they all fail in the 
presence of heavy noise and other non-Gaussian noise 
distributions [10]. 

Image enhancement algorithms are a crucial tool in 
enhancing the efficiency and accuracy of medical image 
analysis. They improve image characteristics, making it 
easier for physicians to detect pathological details, 
increasing the reliability of clinical assessment and 
decision-making effectiveness [11]. The enhancement 
algorithms for digital images have been studied earlier to 
improve their quality. However, most of the methods are 
based on classical approaches such as histogram 
equalization, contrast stretching, etc. [12]. They usually 
focus on enhancing their contrast and brightness. 

Recently, with the blooming of artificial intelligence 
research interests, as skill gaps have been reduced between 
humans and computers [13], It has been observed that there 
has been a rapid development of image enhancement 
algorithms based on neural networks. Currently, deep neural 
networks have been widely used in numerous applications 
ranging from natural image processing to all optical, 
acoustic, and radar-systems related inverse-scatterings and 
reconstructions [14]. Among the neural network 
architectures, Generative Adversarial Networks (GANs) 
have shown exceptional promise in medical image 
enhancement tasks. GANs consist of two competing 
networks—a generator and a discriminator—that learn 
through adversarial training to produce high-fidelity images 
[5]. Despite their success, many existing models rely on 
default training parameters.  

Based on the above challenges in medical image quality 
and visual detail accuracy, this research aims to develop an 
advanced framework based on deep generative networks 
(GANs) to enhance medical iris images in terms of contrast, 
noise reduction, and fine detail enhancement. A series of 
preprocessing steps is adopted, followed by an improved 
generation model that incorporates spectral normalization in 
the discriminator to address instability during training our 
model, which helps control gradient magnitudes and 
stabilizes the adversarial learning process. This is supported 
by the Adam initialization algorithm and hyperparameters, 
to achieve a balance between visual accuracy and 
computational efficiency.  This study addresses this gap by 
evaluating the effect of hyperparameter optimization on the 
quality of GAN-generated medical images. It focuses on 
demonstrating the effectiveness of the proposed model 
through quantitative evaluation using SSIM, PSNR, and 
LPIPS metrics, which reflect the level of improvement in 
the quality of the resulting images.  

 
2. Related Work 

In recent years, deep generative networks (GANs) have 
emerged as a promising tool in medical image enhancement, 
due to their effective contribution to restoring fine visual 
details and enhancing the quality of images that suffer from 

low resolution or noise, which are often caused by limitations 
in imaging equipment or reduced radiation dose. Among the 
notable works: In a study by Mahboubisarighieh et al. [15], 
Researchers developed a GAN-based model to improve the 
quality of medical radiographic images. The model was based 
on a perceptual learning algorithm and was applied to dental 
radiographs, where it demonstrated a significant improvement 
in image quality. The evaluation results were: SSIM ≈ 0.848, 
PSNR ≈ 25.46 dB, and LPIPS = 0.152. These results reflect the 
effectiveness of the model compared to traditional methods, but 
they are still below optimal levels for high-quality diagnostic 
images. Abdusalomov et al. [16] presented a proposal based on 
the SRGAN model to enhance medical images in low-light 
conditions, focusing on restoring fine details and improving 
image quality. The study evaluated the model's performance 
using objective metrics, including PSNR and SSIM, with values 
of 28.45 dB and 0.8423, respectively. These results indicate 
acceptable effectiveness of the model, but they still fall short of 
the ideal performance required for high-resolution medical 
images. 

 
3. Technical Background 

3.1. Image Preprocessing Techniques  

Noises often distort images. Noise is an unwanted 
disturbance that generally occurs while capturing photos or 
when the image is transmitted from one channel to another. 
[17]. The atmosphere of the image affects it due to various 
reasons, such as blurriness, pixelization, brightness, etc. To 
eliminate this noise, add some distortion to itself, which is 
generally termed as noise, and the removal of this noise is a 
crucial task, and it depends on the noisy image; with this 
original image, it can be regenerated [18]. 

Image Denoising. Depending on the application, an image 
filter may need to enhance features of interest and/or reduce 
those that contain noise. Such applications are particularly 
useful in medical imaging, remote sensing, photographic 
display, and archiving [19]. Several filtering techniques have 
been proposed for this purpose. These schemes may be 
categorized as either linear or nonlinear procedures. Linearity 
refers to operations in which the output pixel, such as an 
arithmetic mean, can be computed directly as a linear view of a 
subset of pixel values centered about the target pixel. With 
linear filters, such as Gaussian filters, the gray values of filtered 
images are a linear combination of the original quantities. The 
constraints of linearity are such that the output of an input 
function is a function only of a linear combination of its 
components. Nonlinear methods represent pixel values in terms 
of a nonlinear function [20] [21]. 

3.2. CLAHE 

Contrast is an essential feature of an image. An image will 
appear more natural, more stunning, and transmit more detail 
and information if the contrast in the photo is more reasonable 
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or optimal. Contrast enhancement for enhancing the visual 
appearance of a distorted image is one of the leading research 
problems in digital image processing [22]. A widely adopted 
example is contrasting limited adaptive histogram equalization 
(CLAHE), which performs local adjustments in image contrast 
with low noise amplification [23]. These contrast adjustments 
are interpolated between patches of neighboring images called 
kernels. CLAHE achieves spatial adaptivity through the 
selection of kernel size. The intensity range of the kernel 
histogram, set by a clip limit, restrains noise amplification [24] 
[25]. 

3.3. Bilateral filtering noise reduction   

A bilateral filter is a nonlinear filtering technique for 
image processing. It is a noniterative and edge-preserving filter 
that replaces the value of a pixel, which is only what it makes 
of itself and the surrounding pixels, with a weighted average 
of its spatial neighbors [6] [26]. It has been used in image 
denoising to eliminate noise while preserving edges in 
photographs, and in computer graphics to maintain sharpness 
in 2D and 3D images [27] [28]. 

3.4. Sharpening via unsharp masking   

The unsharp masking technique is a popular image 
processing technique for enhancing sharpness in photographic 
images [29]. The method employs a technique in which an 
enhanced frame is obtained by superimposing a blurred image 
and an enhanced image that are derived from a reference image 
[30]. Mathematical models of the information loss in a 
Gaussian blurring process, as well as the ringing artifacts 
produced in the unsharp masking method, have been 
formulated [31]. 

3.5. Generative Adversarial Networks (GANs) 

Generative Adversarial Networks (GANs) are now very 
famous in the machine learning community and are a very 
popular model for image generation tasks. In its early stage, 
GANs were adapted to the medical imaging area to generate 
medical images for a moderately sized dataset [32]. The key 
idea of GANs is to train a generator and a discriminator; the 
generator creates fake images to confuse the discriminator. In 
contrast, the discriminator attempts to tell apart which images 
have real labels and which ones are fake. The two networks 
confront each other, and their performances improve with each 
iteration. Eventually, when the generator is sufficiently 
improved, it can generate realistic images that are 
indistinguishable from real ones [33], As in Figure 1. GANs 
are appropriate for cases when insufficient real data is a 
problem, as they generate additional fake data. Besides, GANs 
have an advantage over other image synthesis approaches 
since GANs explicitly learn distributions of the underlying 
training sample data rather than explicitly modeling the image 
signal formation process [34] [35]. 

 
Figure 1. Schematic Block Diagram of Generative 

Adversarial Network (GAN) [33]. 

3.6. Evaluation Metrics 

To maintain and control the quality of an image using image 
compression systems or to enhance the quality of the image 
using image enhancement systems, it is essential to assess the 
image's quality. Since quality assessment is directly related to 
the ability of the observer to discriminate between signal and 
noise, an accurate quality assessment is generally required to be 
subjectively measured. [36]. The Human Visual System (HVS) 
is the final recipient of any visual information, and its 
knowledge plays a vital role in constructing accurate models for 
measuring image quality. 

Structural Similarity Index Measure (SSIM): Structural 
Similarity Index (SSIM) is a perceptually motivated measure of 
the quality of a visual signal, where the range is between -1 and 
1, and it is equal to 1 if the two images are the same  [37]. The 
mathematical formulation for the standard implementation 
mode of SSIM is given together with theoretical proofs of the 
definition of the quality index and the constants used to prevent 
divisions by zero [38].  

Learned Perceptual Image Patch Similarity (LPIPS): There 
are several thorough investigations into the flaws of existing 
deep perceptual similarity metrics and the properties of human 
perception [39]. The perceptual similarity of image patches is 
tightly linked to their semantic similarity [40]. Dimensions 
perceptually judged by humans can be challenging to learn from 
simple data reduction techniques. (LPIPS) It is a 
neural-network-based perceptual metric that compares deep 
feature activations across image patches. It correlates more 
closely with human judgments of similarity compared to 
traditional pixel-level metrics [41]. 

Peak Signal-to-Noise Ratio (PSNR): Peak Signal-to-Noise 
Ratio (PSNR) is a widely used metric in image processing, 
particularly for assessing image coding algorithms. PSNR is a 
widely used metric to measure the quality of reconstructed 
images by comparing the peak signal value of the ground truth 
image with the super-resolution algorithm's error. PSNR is 
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commonly used to assess the performance of SR algorithms 
due to its computational efficiency and ease of implementation 
[42].  

4. Methodology 
Our methodology, as shown in Figure 1, it illustrates the 

sequential stages of the proposed system, starting from the 
initial setup to the final evaluation and saving of results. The 
pre-processing phase incorporates three enhancement 
techniques — Contrast Limited Adaptive Histogram 
Equalization (CLAHE), Bilateral Filtering, and Unsharp 
Masking — to improve image clarity before passing the data 
to the Model and training phase and then to the evaluation and 
saving phase. 

4.1. Pre-processing phase: began with a comprehensive 
preprocessing phase aimed at preparing the medical iris images 
for deep learning enhancement. Each image was first converted 
to grayscale and resized to ensure compatibility with 
convolutional architectures. To improve local contrast while 
preserving fine details, we applied adaptive CLAHE. Noise 
reduction was handled using a brilliant bilateral filtering 
technique, which effectively removed noise without sacrificing 
important structural features. To further highlight critical 
details, a sharpening filter was applied, resulting in more 
transparent and more diagnostic images. 

 

 
4.2. Model and training phase: In this phase, the pre-
processed medical images are fed into a custom-designed deep 
learning model built upon a generative architecture integrated 
with spectral normalization to stabilize the training of the 
discriminator and prevent exploding gradients, we applied 
spectral normalization to all convolutional layers within the 
discriminator network, by doing so, the discriminator's learning 
becomes more stable and the GAN training process converges 
more reliably [43], whereas, an attention mechanism that is 
integrated into the generator to help the network focus on 
anatomically relevant regions, enhancing detail preservation in 
critical areas of medical images. Figure 2 showing the training 
pipeline begins by loading image batches, followed by 

generating enhanced images and calculating both L1 loss and 
VGG perceptual loss, which are then combined. 
Backpropagation is performed, and the model parameters are 
updated using the Adam optimizer, which was configured 
with custom hyperparameters (learning rate = 0.0003, β₁ = 0.7, 
β₂ = 0.999) to improve convergence stability and training 
efficiency. The process iterates through multiple epochs, with 
early stopping applied to prevent overfitting. Once optimal 
performance is reached, the best-performing model is saved 
automatically. This setup enables the generator to learn how to 
enhance image quality while preserving structural integrity and 
minimizing artifacts or distortions.

 

Start 
  

System Setup 
  

Pre-Processing 
phase  

Model 
 

Training - deep learning phase 
  

Evaluation 

Save Results 
  

CLAH
 

Bilateral Filter 
  

Unsharp 
Masking 

  

Figure 2. Flowchart of the proposed medical image enhancement framework. 
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Optimizer Configuration in Deep Learning: Adam with 
Custom Hyperparameters 

The model was trained using the Adam (Adaptive Moment 
Estimation) optimization algorithm, and adopted early 
stopping to prevent overfitting. Adam was configured with a 
learning rate (lr) of 0.0003 and momentum parameters (β₁ and 
β₂) set to 0.7 and 0.999, respectively. The learning rate of 
0.0003 is intentionally kept small to ensure gradual and stable 
weight updates, minimizing the risk of divergence during 
training. The first momentum term (β₁=0.7) controls the 
exponential decay rate for the gradient mean, effectively 
reducing the influence of past gradients to prevent 
overshooting local minima. Meanwhile, the second 
momentum term (β₂=0.999) governs the decay rate for the 
squared gradients, allowing the optimizer to scale learning 
rates for each parameter adaptively. This high value ensures 
robust handling of sparse or noisy gradients, which is 
particularly beneficial in tasks requiring fine-grained 
adjustments. 

4.3. Evaluation and Saving Phase: Once training is complete, 
the model’s performance is rigorously evaluated using standard 
objective metrics, including Structural Similarity Index 
(SSIM), Peak Signal-to-Noise Ratio (PSNR), and Learned 
Perceptual Image Patch Similarity (LPIPS). These metrics 
quantitatively assess the visual and structural fidelity of the 
enhanced images compared to the original inputs. In addition to 
numerical evaluation, visual comparisons are saved for 
qualitative analysis. Each stage of the image enhancement 
process is also archived, offering a complete visual record of 
the transformation pipeline for transparency and 
reproducibility. 

This research is based on the publicly available "Iris 
Database" by M. Dobeš and L. Machala (2002) [44], which was 
obtained from an online source and consists of 384 iris images 
taken from 64 individuals. Three images were taken of the right 
eye and three of the left eye of each individual at different times 
to provide a variety of lighting and image capture conditions. 
The original images are in color, high resolution, and in JPEG 

Load Batch 

Generate Enhanced Image 

Calculate VGG Loss 
 

Calculate L1 Loss 
 

Combine Losses 

Backpropagation 

Update Generator with ADAM 

Early Stop 

Save Model 

YES 

NO 

Figure 3. Overview of the Deep Learning Training Workflow Using GAN-Based Generator. 
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format. They were converted to grayscale and resized to 256 x 
256 pixels before being fed into the optimization model. Figure 
3 represents a raw sample of the human iris, serving as the 
initial input in the proposed image enhancement pipeline. It 
reflects the typical quality and structural detail encountered in 
medical imaging before preprocessing. It shows the normal 
distribution of texture within the iris, making it suitable for 
training and testing the effectiveness of the optimization 
algorithms studied. These images were employed in this study 
to develop and evaluate advanced image enhancement 
algorithms aimed at improving the quality and diagnostic value 
of ophthalmic medical photos. 

 

 
Figure 4. High-Resolution Image of the Human Iris Used 

as Input for Preprocessing and Enhancement. 

5. Result and discussion: 
In this work, a series of preprocessing steps was 

implemented to improve the quality of iris images before 
entering them into the generative model. As shown in Figure 
1, we began by initializing the system setup and preparing the 
data through the pre-processing phase.  

5.1. Pre-processing phase: During this phase, the images 
underwent a calculated sequence of operations aimed at 
improving the image's visual properties in terms of contrast, 
reducing noise, and enhancing details. As shown in Figure 4 
This sequence of preprocessing steps, illustrated with a single 
image, shows how each stage contributes to progressively 
improving image quality, starting with visual preparation and 
leading to the sharper image that is later used within the 
generative model. 

The original image, as shown in Figure 4 (A) was first 
converted to grayscale to ensure processing consistency and 
facilitate handling of image properties in the deep learning 
phases, aiming to simplify the visual representation and focus 
on the textural details within the iris, as shown in Figure 4 (B) 
Next, the CLAHE algorithm was applied to improve local 
contrast, which helped highlight fine features in areas that were 
low in comparison in the original image. This effect is shown 
in Figure 4 (C). 

This was followed by applying a Bilateral filter to remove 
noise while preserving edge detail. This smoothed the image, as 
shown in Figure 4 (D). In the final processing step, the Unsharp 
Masking technique was used to enhance sharpness in fine edges 
and increase the clarity of details, producing a visually more 
transparent image that is more ready for analysis, as shown in 
Figure 4 (E). 

It is important to note that the name "Unsharp Masking" can 
be misunderstood as referring to reducing sharpness. In reality, 
this method is used to highlight edges and clarify the image. 
This name comes from traditional photographic techniques, 
where an unsharp mask was used to enhance the localized edge 
contrast of the original image [45]. Therefore, despite the name, 
the final output is a sharpened image, which justifies its 
software designation in this work. 

     
A 

Original Image 
B 

Gray image 
The original image 
after converting to 

grayscale. 

C 
CLHE 

The result of contrast 
enhancement using the 

CLAHE algorithm. 

D 
Denoised (Bilateral 

Filter) 
The result of noise 
removal using the 

Bilateral filter. 

E 
Sharpened (Unsharp 

Masking) 
The result of edge 

sharpening using the 
Unsharp Masking 

technique. 
Figure 5. Sequence of preprocessing steps for a single image from the iris database.

The processed image is then fed into the training phase, as 
shown in the Figure 1. 

5.2. Model and training phase: After completing the 
preprocessing phase, we moved to the generative enhancement 
phase using a Generative Adversarial Network (GAN)-based 
framework. As illustrated in Figure 2, the training design 
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combines pixel-level (L1) and perceptual (VGG) losses, 
helping the generator produce outputs that are both structurally 
accurate and visually consistent. The integration of the Adam 
optimizer and early stopping mechanism proved effective in 
stabilizing training and avoiding overfitting. These strategies 
contributed directly to the high-quality enhancement results, as 
observed in the visual outputs and supported by the obtained 
evaluation metrics. 

 An enhanced generator was designed with attention blocks 
to support the medical image enhancement process by 
enhancing fine details while preserving the original visual 
structure. This generator was trained using the Adam 
initialization algorithm, with hyperparameters (lr = 0.0003, β₁ 
= 0.7, β₂ = 0.999), which accelerated convergence and reduced 
loss value. This initialization helped achieve adequate training 
stability, which positively impacted the quality of the resulting 
images and supports the efficiency of the framework proposed 
in this research. 

Compared to the default Adam settings (typically lr=0.001, 
β₁=0.9, β₂=0.999), this configuration prioritizes cautious 
updates over aggressive convergence, making it well-suited for 
complex, non-convex optimization landscapes. The reduced β₁ 
value (0.5 instead of 0.9) further mitigates oscillations, while 
retaining the adaptive benefits of β₂ near its default. Empirical 
evidence suggests that such hyperparameters enhance training 

stability in GANs and other architectures sensitive to 
hyperparameter tuning. However, they may require longer 
training times due to the conservative learning rate. This Adam 
variant strikes a balance between momentum-driven 
acceleration and adaptive gradient scaling, making it a 
pragmatic choice for generative and high-precision 
discriminative tasks. Data augmentation techniques, such as 
random rotations and horizontal flips, were also applied.  

Figure 5 provides a visual comparison between the original 
grayscale iris image (left) and the output produced by the 
proposed enhancement framework (right). As is evident, the 
enhanced image displays improved structural clarity and finer 
texture details, particularly in the central and peripheral regions 
of the iris. This qualitative improvement aligns with the 
quantitative results obtained using standard evaluation metrics, 
where the enhanced images achieved an average SSIM of 
0.9783, LPIPS of 0.00776, and PSNR of 32.22 dB. These 
metrics confirm that the enhancement process preserved 
perceptual and structural features while reducing noise and 
improving contrast—critical factors for subsequent diagnostic 
or biometric tasks. 

5.3. Evaluation and Saving Phase: the enhanced images were 
evaluated quantitatively using SSIM, LPIPS, and PSNR metrics 
to assess both structural fidelity and perceptual quality 
comprehensively. 

 
Figure 6. Original vs. enhanced Iris image.

According to the obtained metric values, the framework 
using tuned hyperparameters outperformed the default 
configuration across all three key image quality metrics—
SSIM, LPIPS, and PSNR—as detailed in Table 1. The average 
SSIM improved from 0.938347 (default) to 0.978272 (tuned). 
At the same time, the LPIPS score decreased from 0.013732 to 
0.007760, and the PSNR increased from 28.6244 dB to 
32.2296 dB, indicating superior structural fidelity, perceptual 
similarity, and noise resilience, respectively. Furthermore, the 
standard deviation values reveal an essential aspect of 
consistency in the output quality. The STD for SSIM decreased 
from 0.044672 to 0.015213, indicating more stable structural 
similarity across enhanced images, which is essential for 
maintaining diagnostic reliability. Similarly, LPIPS showed a 

reduction in STD from 0.004752 to 0.002139, suggesting 
reduced fluctuation in perceptual quality. For PSNR, the STD 
decreased from 3.587311 to 2.429014, reinforcing the 
consistency in noise suppression and image clarity. These 
findings confirm that the tuned configuration not only improves 
average performance but also ensures reliable, repeatable 
enhancement quality—an essential requirement for medical 
imaging applications. 

To compare the overall values (SSIM, LPIPS, and PSNR) 
of the dataset images, Figure 6 shows the Dominance in mostly 
results of hyper-parameter over default parameter, where the 
values for SSIM are close to 1, values of LPIPS are achieved at 
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higher values, and PSNR are close to zero, more than the 
default parameter. 

Table (1): Quantitative Evaluation Results: Standard Deviation and Average of SSIM, LPIPS, and PSNR for 
Enhanced Medical Images Using Tuned vs. Default Parameters. 

 Hyper parameter  Default parameter 

 SSIM LPIPS PSNR  SSIM LPIPS PSNR 

STD 0.015213 0.002139 2.429014  0.044672 0.004752 3.587311 

AVERAGE 0.978272 0.00776 32.22958  0.938347 0.013732 28.6244 

 

 

 

 
Figure 7. Quantitative comparison of three image quality metrics between default and optimized hyperparameter 
configurations in medical image enhancement. (a) Structural Similarity Index (SSIM): Evaluates how well the enhanced 
image preserves the structural information of the original. (b) Learned Perceptual Image Patch Similarity (LPIPS): 
Measures perceptual differences between original and enhanced images; lower values indicate better visual quality. (c) Peak 
Signal-to-Noise Ratio (PSNR): Estimates the clarity of the image after enhancement; higher values suggest reduced noise 
and better quality. 

Comparing the results obtained in this research with those 
of previous studies, it is clear that the proposed model has 
achieved advanced performance. For example, the average 
SSIM in this work was 0.978, compared to 0.848 in 
Mahboubisarighieh et al.'s  [15]and 0.8423 in Abdusalomov 
et al.'s [16], reflecting the current model's ability to recover 
the image texture to a higher degree. The PSNR also 
showed a significant increase to 32.22 dB, exceeding the 
values recorded in the two previous studies (25.46 and 

28.45 dB, respectively), indicating a further reduction in 
information loss. Furthermore, the LPIPS value in the 
current model was 0.00776, which is significantly lower 
than the value of 0.152 recorded in Mahboubisarighieh et 
al.'s study, demonstrating a significant improvement in the 
quality of visual perception. These comparisons indicate 
that the proposed model excels in terms of optical and 
structural efficiency, enhancing its potential for practical 
use in precision medicine applications. 

a. 

b. c 
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Conclusion 
This study presented an advanced GAN-based 

framework for medical image enhancement, focusing on 
improving diagnostic image quality through a carefully 
designed preprocessing pipeline and customized training 
strategy. The systematic processing sequence has 
contributed to improving the quality of medical images 
used, enhancing the accuracy of disease diagnosis based on 
image analysis. 

The results demonstrated that hyperparameter tuning 
significantly improved performance across key evaluation 
metrics—achieving an average SSIM of 0.9783, LPIPS of 
0.00776, and PSNR of 32.22 dB—compared to default 
settings and other state-of-the-art methods. Furthermore, 
the reduced standard deviations (SSIM STD = 0.0152, 
LPIPS STD = 0.0021, PSNR STD = 2.4290) reflect 
enhanced consistency and robustness in output quality. 
These findings highlight the importance of proper 
hyperparameter optimization and targeted loss functions in 
achieving reliable, high-fidelity medical image 
enhancement suitable for clinical applications. 

Future research may focus on enhancing the capabilities 
of deep learning methods to achieve comprehensive 
coverage that can be generalized to all medical images, and 
artificial intelligence networks can be incorporated into the 
preprocessing stage.  
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