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In this study, two new classes of operators on a complex Hilbert space H were presented and
referred to as the Quasi-triple operator and §-quasi-triple operator. Quasi-triple operator is denoted
as qt-operator, and the d-quasi-triple operator is denoted as d-qt-operator where o is a linear
bounded operator on H. The generalization of the above concepts is Quasi-triple operator of order
n and 8-quasi-triple operator of order n. Some results of these two types of operators including
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some results and theorems and supported the discussion with some illustrative examples.
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1. Introduction

In this paper, w(H) is denoted as the algebra of all bounded
linear operators on complex Hilbert space H. T is called
normal if TT* = T*T where T" is the adjoint operator of T,
see [17, 16, 18] and we say that T is unitary if TT* = T*T =
I [20, 8], also two operators T and S are considered unitarily
equivalent when a unitary operator U exists with the property
that T = USU*, see [13, 19, 15]. In 2015, [12] defined a
quasi-normed operator with order n if T(T™'T™") =
(T*™*T™)T. In 2016, [5] introduced a new definition of
operator called triple operator as T(TT*) = (TT*)T, and in
2018, [6] defined a new definition of operator called triple
operator of order n if T(T"T*) = (T"T*)T, n = 2, and in
2023, [7] defined a new class of operators called quasi triple
operator as T[(TT*)T] = [T(TT*)]T, and called 6 —quasi
triple operator as T[(TT*)T] = @[T(TT*)]T where 6 is an
operator on H. This study aims to extend these definitions of
operator as quasi triple operator with order n if
TI(T™T*)T] = [(T"T*)T]T, where n =2 and where T is

quasi triple operator if T[(TT*)T] = [(TT*)T]T, also we
give a new definition of operators called § —quasi triple
operator with ordernas T[(T"T*)T] = §[(T™T*)T]T, where
é is a linear bounded operator on H .Also, we introduced the
direct sum and the tensor product of n times of quasi triple
operator with order n, see [3, 1, 11, 9].

2. Quasi triple operator of order n

Definition 2.1: The operator3 € w(H) defined on the
Complex Hilbert space H, is designated as Quasi-triple
operator denoted by(qt-operator) if and only if3[(33")3] =

[(337)3]3.

Definition 2.2: The operator 3 € w(H) on a Hilbert space
H is called Quasi-triple operators of ordersn, denoted by
(qt-operator of orders n), iff 3[(3"3")3] = [(3"3")3]3, where
n =1. when n = 1, we get the first definition.
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Example 2.3: Let 3 = [_11 :ﬂ be an operator on a two-

dimensional Hilbert space C?, it follows that

3[(323*)3] =
B [ [ |

(i
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Thus 3 is a quasi-triple operator with order 2.

1 2 0
Example 2.4: Let 3 = [3 2 1] be an operator of three-
4 2 0
dimensional Hilbert space C3, then
3[(3°37)3] =
1 2 0 1 2 1 2 0T 2 0
3 2 1 3 2 3 2 1 2 1
4 2 0 4 2 4 2 0 4- 2 0
1 2 33 3 4\[1 2 O]
=13 2 1 57 54 2 2 3 2 1
14 2 0 48 1 0 4 2 0_
[1 2 0 30 3 4 1 2 0
=13 2 1 (57 54 12 2 2 2) 3 2 1
14 2 0 ] 54 48 12110 1 O 4 2 O_
[ 6120 4068 747
=111040 7332 1347
110188 6768 1242

# 3[(3%3)3] = 8298 8514 1584

2880 7884 1464
Thus 3 is not a qt-operator with order 3.

716 4842 900]

Remark (2.5): Every Triple operator of order n is qt-
operator of order n but the convers is not true as shown in
the next example:

Let 3= [i _31] be an operator on a two-dimensional

[2 —1]] [ —47

Hilbert space €2, it follows that
2o (13 —=51%[ 2
(33)3—[([5 8] [_1

20 53

#3(3°3") = 17 75

So 3 is not Triple operator of order 2, but
GO | [( A ||

£ JE JE DE |

:[i _3,1][3;5 _25] [109 292
=[3(323*)]3=[[2 . ]([3 _5”2 )]ﬁ _3,1]=
([i3 _31]3[:21] 2 31=0% sl 5=

So 7 is qt-operator with order 2.

Proposition 2.6: If ny is a qt-operator with order n acting

within a Hilbert space H, thus

1- pn s qt-operators with orders n, for all complex
numbers p.

2- Given that £ is a closed subspace of H, it holds that n|
is qt-operators with orders n.

3- If L is unitary equivalent to n then L is qt-operators with
orders n.

Proof:

1- (p)[((pr)" (pr)") (p)] =
(P [(™nM @) (W] = pp"ppI(™*n)Inl), since
n is qt-operator of order n, then pp™pp([(N™*n)nIn) =
[(P"n™) (")) (prO] (P10
=[((pr)™) (pr0™) (prV] (prV so (pn) is qt-operator with
order n .

2- (D™D Il = @I ) ()] =
n[(m™n)n]l,
since 1 is qt-operators with orders n
= [(™ )]l ()
=[]l

= [((l )"l InlcInle
Thus 1| is qt-operator with order n.
3- Lis related to n by unitary equivalence, therefore, a
unitary operator U can be found such that L = UnU" so
L* = UnU**, L' =U*"n*U* then L* = Un*U*
L = Un™U% soL[(L"L*)L] =
[(UnuH) (U U)Un'U?))(Unu9)]
(UnUH[UN™U)(UnUM)] =
(Unn"U")(UnU")=Unn"n'nU"
= Un(n™n'n)U*, since n is qt-operator with order n
=U[@")nInv” . €Y)
On the other hand,
[(L*L)LIL = [(Un*U) (UnU™))(UnU)](UnSU)
(Un* U")(Un'nUM)](UnU")
= (Un™*n'nnU")(UnU")
= Un"n'nnU"
=U((("n U™ . )
From equations (1) and (2), we get...
LI(L"L*)L] = [(L"L*)L]L, thus L is qt-operator with order
n.
Remark 2.7: The sum of two gt-operator with order n is
not necessarily qt-operator of order n, as evidenced by the
example below.
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Example 2.8: The operator n = [(3; Z] and
7= [_11 :ﬂ operating within a two-dimensional Hilbert
space C? are qt-operator with order 2.
since nf(n)n) = %% | = [@'mn
4 O4 1024
and 3 [(3"37)3] = [4 4 ] = [(3"3")3]3, but the sum

n+3= [i _31] is not qt-operators with orders 2, since

(Lt DU+ 3+ 90+ DI =105 00
[((n+3)?(M+23))(+3)](n+3) = 15217 —212521

Thus (n + 3) is not qt-operators with orders 2.

Theorem 2.9: If n, 3 represent qt-operator with order n for
whichn ,3 are commuting normal-operator, such
thatn™3" = 0 for n = 2, then (n+3) is qt-operatorwith
order n.

Proof: Since n, 3 are commuting normal operator
n3 =73n .. (1)
and by (Putnam -Fuglede theorem) [10, 2], we have
n3* =13n..(2), and
3 =n"3..03)
Now, (n+3)[(n+3)"(n+3) ) +3)] =0+
(@™ +3)M +3)) (M +3)]
=M+3)[@""+n"3" + 3" +3"37)(n+ 3)]
=M+3)[@"'n+n"3'n+3"M'n+3"3'n+n"n'3+
n"3'3+3"n"3+ 3"3°3)]
=nn"'n'n+nn"3'n+n3"n'n+n3"T '+ nn"n’3 +
"33 + 3"’ + n3"3"3 + 3 n + 303" n +
33"+ 33"3 n + 30" "3 + 3033 + 3373 + 33"3°3
From the equations (1), (2) and (3), and since n, 3 are quasi-
triple operator with order n, we have
=n"n'nn+n"3'nn +3"n'nn + 3”3’ + n"n'ng +
n"3'n3+ 3™ '3 +3"3'n3 + n'"n'3n + 030 +
3"z + 37373 + 0’33 + N353 + 3'n33 +
n,x*x
33733
=@"n'n+n"3'n+3"n'n+3"3 n+n"n"3+n"33+
3'3+3"3"3)n+ ("'n'n+ "3+ 3"'n+3"3'n +
n'n’3+n"3'3+ 33+ 3"3°3)3
=[(M"'n+n"3'n+3"'n+ 33+ "3+ 033+
3''3+3"3"3)](n+3)
[((M"n" + 3" + 3" +3"3)n+ (""" + n""3" +
3'n" +3"3)3](n+ 3)
(™" +n"3" +3™"n" +3"3) (M +3)](n+3)
(™ +3M" +3)(M+ D]+ 3)
[(n+ 3"+ " (n+3)](+3)
So (n + 3) is qt-operator with order n

Remark 2.10: The product of two qt-operator doesn’t need
to be gt-operator with order n, as seen in the example below

Example 2.11: Let 3 = [g 2] and n = [_11 :ﬂ n3

are qt-operator of order n

[(™ )nIn + [(3"37)3]3] = [(n3)" (n3)") (n3)] (n3)
Since [((13)2(13) YD) = P09 3308

rory 20 = (")) ).

Then, (n3) is not qt-operator of order 2.

Theorem 2.12: If 3is defined as a qt-operator with order n
while n_ is an isometry operator for which

l-n3 =13n,

2-n"z =3n"
3-3"n = n3" then (n3) is classified as a qt-operator of the
nth order.

Proof:

Given that n3 = 31, thus n*3 = 3" and

73'n = n3" by (Putnam -Fuglede theorem),

and because 1 is an isometry operator, it follows that n*n =
I from [4, 14]

(MD[((M3)"(3)") (n3)]

=M [M*3M)GEN)H(13))]

= (M3)[("3"3" N ) (3))]

= (M3)(n"3"3"3)
=n3n"3"3'3
=nn"[3(3"3)3l,
=nn"[(3"3)3]3
= (nn"3"3"33)n'n n'n=
= ("n3"3"33)n'n
= ("3"n3"33)n'n
= M"3"3' n33)n'n
=n"3"3" 3030,
= (n3)"3 330, ' =1
= (n3)"3" n'n33n,

= (n3)"3" n'n3n3

= [(M3)"(3) ") (3] (n3)

n3is qt-operators with orders n.

3 is qt-operators with orders n

Theorem 2.13: If 3, are operators, and 3 and n are
unitary-equivalent and n is normal, then 3 is qt-operator.

Proof: Given that 3 is unitary-equivalent to n, it follows that
3=UnU

To prove that 3 is qt-operator with order n
3[(337)3] = UM [(U ) (U ")) (U nU)]
= UV nn"U))(U V)]

= U*(n[(nn*)n]U, since n is normal

therefore, U"(n[(nn")n]U = U*(n[(n"'ryn]U

= U [((an)mnHU

= U [((nUU)N"(UU))nUU))NDHU

= [(Un)U N U))(UnUN]U V)

= [(337)3]3.

Therefore, 3 is qt-operator with order n
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Theorem 2.14: If 34, 3,, ..., 3; are qt-operator of order n,
then the direct sum (3, @3, ... B73;) is qt-operator of order
n...

Proof:
(31032 . ®3)[((3:D3; .. B3)"(3:D3; ... D3)")) D
(3183, .. D3]
= (31032 - ®3)[((3" B 3" ... D3 (3" B

3" @3)) (3193, ... B3]
= (393 - ©3)[(31"31)%1

D (3273232 - D(3,"3,)31]

=31[(31"31") 31] D 32[(32"32)321® ... B3 [(3"37)31]
Since 34,,3,, ..., %; are qt-operator with orders n, then
= [(31"317)31131 D [(32""327)32132 - OL(3"3:) %)%
= [(3:"317)31 D (32"32")32 - B (33 %] (3 D3 - D31)
= [((31“31*) @D (327327 - 9(31n31*))(31®32 @31)]

(39032 - D31)
=[(3"® %" . @G B3 .. ®3))

(31932 - B3)](3: D32 - D31)
=[((31 D 32 - B3)"(3:D3 - D3) ) (3:D3 - B3]

(3932 - ©31)
Thus 3, @ 3, ... ®3; is qt-operator with order n

Theorem 2.15: 1f3,, 3,, ... 3; are qt-operatorwith order n,
then the tensor product (3; & ....& 3;) is qt-operator with
order n.

Proof:

31 ® .33 ® .0 3)"(3: ® ....0 3,)]

(31 ® ....Q 3]

=3 .. 0 3)3"R...Q03M(E"R... & 3]
(31 ® ....Q 3]

=3 ® ..Q3)[[3:"3" ® .8 33,131 ® ....Q 3,)]

=31 .0 3)[(3:"3:)% & .. ® (3:"%)31]

=31[(31"31)%1] ® .. ® 2[(3,"3,)31]

Since %4,73,, ..., 3 are qt-operator with order n, then

[3:[(3:"3:)31] @ ... ® 3[(3"3:)3]

= [(31"317)31131 ® .. ® [(3:."3:7)31]3:

=[(3."3:)31 ® . ® (3"3)3](3: ® ... 31)

=[((3"® .. ®3ME " ®..03NGE R ..Q
30](31 ® ...Q 3)

=3 ®.03)"3:® .0 3))(% Q ... Q 3]
(3 ®..03)

Therefore,3; & ....Q 3is qt-operator with order n

3. 8-quasi triple operator with order n

Definition 3.1: The operator 3 within the Hilbert space H is
known as §-quasi triple operator with order n denoted by (6-
qt-operator with order n) if 3[(3"3*)3] = §[(3"3*)3]3, where
4 is a linear bounded operator on H.

Remark 3.2: Every qt-operator with order n is §-qt-operator
with order n when § = I but the opposite is not true, as an
example:

Example 3.3: Let 3 = [(1) ;] be an operator on C2, then

3[(323*)3]=[(1) é][([(l) ;]ZB (3)>[(1) ;]]:

[53 340
54 351

was=|((5 36 DG 316 31-

17 352

18 387/ 80 3 is not qt-operator with order 2.

4
53/17 3 0/352
4 1
> /18 33 /387

[(3"3*)3]3=[(1) 5[([3 é]z[é (3)])[(1) §]=

[53 340
54 351

On the other hand, §[(3"3*)3]3 =

53/17 340/, [({1 2]2[1 OD[l 2]][1 2]
54/18 351/387 0 3112 3110 31fL0 3
_[3 3w

Nog* — n, * .
54 351]»thu5 [(3"3")3]3 = 6[(3"3)3]3, s0 3 is
§-qt-operator with order 2.

But if we take § = [ l, this will be

Theorem 3.4 If 3 and nbe twod —qt-operatorswith order n
on Hilbert space H such thatn®3* = 3"'n" =3'n=n"3=10
then n + 3is also § —qt- operator with order n.

Proof: Let 3 and n be §-qt-operators with order n, let
M+ D[((+3)"+D)M+3)] = (n+ D[+
M +3))M+3)]
=+ [ +n"3" +3™n" +3"3)(n+ 3)]
= (n+ [N+ "3 +3"n'n+3"3'n+n"N"3
+ "33+ 3™"3 +3"3°3)]
=n"'n'n+ "3 n+n3"n'n+n3"3’n + n'n'z +
"33+ n3"n'3 + n3"3"3 + 3'n'n + 3n'3'n +
33" + 3373+ 30" 3 + 30373 + 33703 +
33"3"3,
sincen"3" = 3" = N'3=n"3=3""=0
Then, (n+3)[((n+3)"(n+3))(+3)]=nn"n'n +
33"3"3 = n[(™n")n] + 3[(3"37)3]
Since n and 3 are §-qt-operators with order n, thus
=n[(™n)n] +3[(3"37)3] = S[(*n)nin + 6[(3"37)3]3]
= s[[(Inin + [(3*3)313] = 8 [((* + 3 +

3))(+ 3] +3)

= 5[[((+3)"(+3) )+ D] +3)]
Therefore, (n + 3 ) is §-qt-operator with order n

Remark (3.5): In Theorem (3.4), if the condition n"*3" =
3'n" =3'n =1n"% =0 is achieved, then n and 7doesn’t
need to be zero as in the following example...
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1o 0 0 _
Let 3 = [0 0] andlrl —0[0 1]r1,3 be § —qt-operators of
order 2, when § = [0 1

n,* N q* * * O 0

n3 =3n =3r1=r13=[0 0]

. 1 0

M+ )+’ +3))+3)] = [0 1
=6[((n+3)2(+ 3 +3)]M+3)
So (1, + 3) is 6 —qt-operator of order 2

Theorem 3.6: If 3,,73,, ..., 3; are § —qt-operators with order
n, then the direct sum (3,®3, ... ®73;) is § —qt-operator of
order n.

Proof:
(3103, ... ©3)

[[(3:D3; ... ®3)" (3:D3; ... ©3)")](3:D32 - B3]
= (3,03, .. ©3)

[[(3:1DB32 - ©3)"(31D32 - ©3))](3:D3; ... B3]
= (3:D3; - @31)[((31n D 3" .. 033 D

3" ©3,7))3:D3; . B3]
= 5103 - ®3[(31"317)31 D (3232732 - B (3" %31
= 31[(3:"317)31] @ 32[(32"32)32] - ©3:[(3"317)%1]

Since 34,735, ...,3; are § —qt-operators with order n, then

= 68[(31™317)31131 D 6[(32"32)32132 - DS [(3."3:)3:]%
= 6[[(3:"317)31131 D [(32"32")32132 - ®[(3:"3:)3:)3:]

=0[[(3:"3:7)3: D
(32""32")32 . ©(3,"3,)%1(3:D3; ... B3]

=6[[((3"3:.) @

(32"32") - @(31n31*))(31®32 6931)](31@32 - ©3)]
=5[[(G" B 3" .. 03 B3 ... ©37))5E D

32 . ©3)](3:93; ... ®3))]

= 0[[((3:D3; ... ®3)" (3:D32 ... ©3)") (3:D3; ... B3]

(3:D3; ... ©31)]
Hence 3,3, ... ®3,; is §-qt-operator with order n.

Theorem 3.7: If 34,35, ..., 3; are §—qt-operators with
order n, then the tensor product (3; @ ...® 3;) is § -qt-
operator of order n.

Proof:

(3&)@) )] Q33 ..®3)"(5Q..03)1(3 ®

3[

= (3 .03)[3"Q..83M%E"Q .0
71131 R ... 3]

=(3Q - ®3)[[3"3:" ® ... 3,"3,]
(31 ® ....Q 3]

= (3 Q . ®3)[(3:"317)31 - ® ("53]

= 31[(31"31)3:] ® ... ® 3:[(3"%)31]

Since 34,735, ...,3; are § -qt-operators with order n, then

[3:[(3:"3:)3:] ® ... ® 3 [(3,"3:)31]

=6[(31"31)31131 ® - ® 8[(3,"3,)3]3:

=6[[(31"31)3113:1 ® - @ [(3."3:)3:]31]

=0[[(31"31)%31 ® .. ® (3,"3:)%](51 ® ... ® 3]

=5[((3"® .. ®3MG ®..®3))(3: Q.0
31)]( 31 Q..03%)

=[((31®..®3)"(3:® .03 N Q.0
(3 Q.0 3)

Then, (3; @ ... ® 3,;) is §-qt-operator with order n.

Conclusion

In this work, we introduced the definition of a quasi-triple
operator for a complex Hilbert space and generalized this
definition to quasi triple operator of the nth order and &-
quasi triple operator with order n (n > 1), and gave some
examples and properties about it as well as proving some
facts about these operators.
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