

δ – Quasi Triple Operator of Order n

Arwa Nazar Mustafa¹ , Rafah Alaa Abdulrazzaq² and Wafa Y. Yahya³

¹Department of Mathematics, College of science, Mustansiriyah University, Baghdad, Iraq

²Al-Karkh University of science, Baghdad, Iraq

³Department of Mathematics, College of Education for Pure sciences, Al-Hamdaniya University, Mosul, Iraq

Email: dr.arwanazar@gmail.com¹, rafa.alaa@kus.edu.iq² and rwa1993@uohamdaniya.edu.iq³

Article information

Article history:

Received 23 April, 2025

Revised 26 May, 2025

Accepted 26 June, 2025

Published 15 December, 2025

Keywords:

Quasi operator,
Quasi-triple operator (qt-operator),

Triple operator,

δ – quasi-triple operator

Correspondence:

Arwa Nazar Mustafa

Email:dr.arwanazar@gmail.com

Abstract

In this study, two new classes of operators on a complex Hilbert space H were presented and referred to as the Quasi-triple operator and δ -quasi-triple operator. Quasi-triple operator is denoted as qt-operator, and the δ -quasi-triple operator is denoted as δ -qt-operator where δ is a linear bounded operator on H . The generalization of the above concepts is Quasi-triple operator of order n and δ -quasi-triple operator of order n . Some results of these two types of operators including sum, product, direct sum and tensor product operations have been discussed. We also presented some results and theorems and supported the discussion with some illustrative examples.

DOI: 10.33899/csmj.2025.158473.1180, ©Authors, 2025, College of Computer Science and Mathematics, University of Mosul, Iraq.

This is an open access article under the CC BY 4.0 license (<http://creativecommons.org/licenses/by/4.0/>).

1. Introduction

In this paper, $\Psi(H)$ is denoted as the algebra of all bounded linear operators on complex Hilbert space H . T is called normal if $TT^* = T^*T$ where T^* is the adjoint operator of T , see [17, 16, 18] and we say that T is unitary if $TT^* = T^*T = I$ [20, 8], also two operators T and S are considered unitarily equivalent when a unitary operator U exists with the property that $T = USU^*$, see [13, 19, 15]. In 2015, [12] defined a quasi-normed operator with order n if $T(T^{*n}T^n) = (T^nT^n)T$. In 2016, [5] introduced a new definition of operator called triple operator as $T(TT^*) = (TT^*)T$, and in 2018, [6] defined a new definition of operator called triple operator of order n if $T(T^nT^*) = (T^nT^*)T$, $n \geq 2$, and in 2023, [7] defined a new class of operators called quasi triple operator as $T[(TT^*)T] = [T(TT^*)]T$, and called θ – quasi triple operator as $T[(TT^*)T] = \theta[T(TT^*)]T$ where θ is an operator on H . This study aims to extend these definitions of operator as quasi triple operator with order n if $T[(T^nT^*)T] = [(T^nT^*)T]T$, where $n \geq 2$ and where T is

quasi triple operator if $T[(TT^*)T] = [(TT^*)T]T$, also we give a new definition of operators called δ – quasi triple operator with order n as $T[(T^nT^*)T] = \delta[(T^nT^*)T]T$, where δ is a linear bounded operator on H . Also, we introduced the direct sum and the tensor product of n times of quasi triple operator with order n , see [3, 1, 11, 9].

2. Quasi triple operator of order n

Definition 2.1: The operator $\mathfrak{z} \in \Psi(H)$ defined on the Complex Hilbert space H , is designated as Quasi-triple operator denoted by(qt-operator) if and only if $\mathfrak{z}[(33^*)\mathfrak{z}] = [(33^*)\mathfrak{z}]\mathfrak{z}$.

Definition 2.2: The operator $\mathfrak{z} \in \Psi(H)$ on a Hilbert space H is called Quasi-triple operators of orders n , denoted by (qt-operator of orders n), iff $\mathfrak{z}[(3^n3^*)\mathfrak{z}] = [(3^n3^*)\mathfrak{z}]\mathfrak{z}$, where $n \geq 1$. when $n = 1$, we get the first definition.

Example 2.3: Let $\mathbf{z} = \begin{bmatrix} -1 & -1 \\ 1 & -1 \end{bmatrix}$ be an operator on a two-dimensional Hilbert space \mathcal{C}^2 , it follows that

$$\begin{aligned} \mathbf{z}[(\mathbf{z}^2 \mathbf{z}^*) \mathbf{z}] &= \begin{bmatrix} -1 & -1 \\ 1 & -1 \end{bmatrix} \left[\left(\begin{bmatrix} -1 & -1 \\ 1 & -1 \end{bmatrix}^2 \begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix} \right) \begin{bmatrix} -1 & -1 \\ 1 & -1 \end{bmatrix} \right] \\ &= \begin{bmatrix} -1 & -1 \\ 1 & -1 \end{bmatrix} \left[\left(\begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix} \right) \begin{bmatrix} -1 & -1 \\ 1 & -1 \end{bmatrix} \right] \\ &= \begin{bmatrix} -1 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 4 \\ -4 & 0 \end{bmatrix} = \begin{bmatrix} 4 & -4 \\ 4 & 4 \end{bmatrix} = [(\mathbf{z}^2 \mathbf{z}^*) \mathbf{z}] \mathbf{z} = \begin{bmatrix} 4 & -4 \\ 4 & 4 \end{bmatrix} \end{aligned}$$

Thus \mathbf{z} is a quasi-triple operator with order 2.

Example 2.4: Let $\mathbf{z} = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 2 & 1 \\ 4 & 2 & 0 \end{bmatrix}$ be an operator of three-dimensional Hilbert space \mathcal{C}^3 , then

$$\begin{aligned} \mathbf{z}[(\mathbf{z}^3 \mathbf{z}^*) \mathbf{z}] &= \begin{bmatrix} 1 & 2 & 0 \\ 3 & 2 & 1 \\ 4 & 2 & 0 \end{bmatrix} \left[\left(\begin{bmatrix} 1 & 2 & 0 \\ 3 & 2 & 1 \\ 4 & 2 & 0 \end{bmatrix}^3 \begin{bmatrix} 1 & 2 & 0 \\ 3 & 2 & 1 \\ 4 & 2 & 0 \end{bmatrix}^* \right) \begin{bmatrix} 1 & 2 & 0 \\ 3 & 2 & 1 \\ 4 & 2 & 0 \end{bmatrix} \right] \\ &= \begin{bmatrix} 1 & 2 & 0 \\ 3 & 2 & 1 \\ 4 & 2 & 0 \end{bmatrix} \left[\left(\begin{bmatrix} 33 & 30 & 6 \\ 57 & 54 & 12 \\ 54 & 48 & 12 \end{bmatrix} \begin{bmatrix} 1 & 3 & 4 \\ 2 & 2 & 2 \\ 0 & 1 & 0 \end{bmatrix} \right) \begin{bmatrix} 1 & 2 & 0 \\ 3 & 2 & 1 \\ 4 & 2 & 0 \end{bmatrix} \right] \\ &= \begin{bmatrix} 1 & 2 & 0 \\ 3 & 2 & 1 \\ 4 & 2 & 0 \end{bmatrix} \left[\left(\begin{bmatrix} 33 & 30 & 6 \\ 57 & 54 & 12 \\ 54 & 48 & 12 \end{bmatrix} \begin{bmatrix} 1 & 3 & 4 \\ 2 & 2 & 2 \\ 0 & 1 & 0 \end{bmatrix} \right) \begin{bmatrix} 1 & 2 & 0 \\ 3 & 2 & 1 \\ 4 & 2 & 0 \end{bmatrix} \right] \\ &= \begin{bmatrix} 6120 & 4068 & 747 \\ 11040 & 7332 & 1347 \\ 10188 & 6768 & 1242 \end{bmatrix} \\ \neq \mathbf{z}[(\mathbf{z}^3 \mathbf{z}^*) \mathbf{z}] &= \begin{bmatrix} 4716 & 4842 & 900 \\ 8298 & 8514 & 1584 \\ 2880 & 7884 & 1464 \end{bmatrix} \end{aligned}$$

Thus \mathbf{z} is not a qt-operator with order 3.

Remark (2.5): Every Triple operator of order n is qt-operator of order n but the convers is not true as shown in the next example:

Let $\mathbf{z} = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$ be an operator on a two-dimensional Hilbert space \mathcal{C}^2 , it follows that

$$\begin{aligned} (\mathbf{z}^2 \mathbf{z}^*) \mathbf{z} &= \left[\left(\begin{bmatrix} 3 & -5 \\ 5 & 8 \end{bmatrix}^2 \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} \right) \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} \right] = \begin{bmatrix} 10 & -47 \\ 33 & 85 \end{bmatrix} \\ \neq \mathbf{z}(\mathbf{z}^2 \mathbf{z}^*) &= \begin{bmatrix} 20 & -53 \\ 17 & 75 \end{bmatrix} \end{aligned}$$

So \mathbf{z} is not Triple operator of order 2, but

$$\begin{aligned} \mathbf{z}[(\mathbf{z}^2 \mathbf{z}^*) \mathbf{z}] &= \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} \left[\left(\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}^2 \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} \right) \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} \right] \\ &= \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} \left[\left(\begin{bmatrix} 3 & -5 \\ 5 & 8 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} \right) \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} \right] \end{aligned}$$

$$\begin{aligned} &= \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 34 & -25 \\ -25 & 89 \end{bmatrix} = \begin{bmatrix} 43 & 39 \\ -109 & 292 \end{bmatrix} \\ &= [3(\mathbf{z}^2 \mathbf{z}^*)] \mathbf{z} = \left[\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} \left(\begin{bmatrix} 3 & -5 \\ 5 & 8 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} \right) \right] \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} = \\ &= \left(\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 11 & -12 \\ 2 & 29 \end{bmatrix} \right) \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 24 & 5 \\ -5 & 99 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} = \\ &= \begin{bmatrix} 43 & 39 \\ -109 & 292 \end{bmatrix} \end{aligned}$$

So \mathbf{z} is qt-operator with order 2.

Proposition 2.6: If η is a qt-operator with order n acting within a Hilbert space H , thus

- 1- $p\eta$ is qt-operators with orders n , for all complex numbers p .
- 2- Given that \mathcal{L} is a closed subspace of H , it holds that $\eta|_{\mathcal{L}}$ is qt-operators with orders n .
- 3- If L is unitary equivalent to η then L is qt-operators with orders n .

Proof:

- 1- $(p\eta)[((p\eta)^n(p\eta)^*)(p\eta)] = (p\eta)[(p^n\eta^n)(\bar{p}\eta^*)](p\eta) = pp^n\bar{p}p(\eta[(\eta^n\eta^*)\eta])$, since η is qt-operator of order n , then $pp^n\bar{p}p([(n^n\eta^*)\eta]\eta) = [(p^n\eta^n)(\bar{p}\eta^*)](p\eta)(p\eta) = [((p\eta)^n)(p\eta)^*](p\eta)(p\eta)$ so $(p\eta)$ is qt-operator with order n .
- 2- $(\eta|_{\mathcal{L}})[((\eta|_{\mathcal{L}})^n(\eta|_{\mathcal{L}})^*)(\eta|_{\mathcal{L}})] = (\eta|_{\mathcal{L}})[(\eta^n|_{\mathcal{L}}\eta^*|_{\mathcal{L}})(\eta|_{\mathcal{L}})] = \eta[(\eta^n\eta^*)\eta]|_{\mathcal{L}}$ since η is qt-operators with orders n $= [(\eta^n\eta^*)\eta]|_{\mathcal{L}}$ $= [(\eta^n|_{\mathcal{L}})(\eta^*|_{\mathcal{L}})(\eta|_{\mathcal{L}})](\eta|_{\mathcal{L}})$ $= [((\eta|_{\mathcal{L}})^n(\eta|_{\mathcal{L}})^*)\eta]|_{\mathcal{L}}$ Thus $\eta|_{\mathcal{L}}$ is qt-operator with order n .

- 3- L is related to η by unitary equivalence, therefore, a unitary operator U can be found such that $L = U\eta U^*$ so $L^* = (U\eta U^*)^*$, $L^* = U^{**}\eta^*U^*$ then $L^* = U\eta^*U^*$ $L^n = U\eta^nU^*$, so $L[(L^n L^*)L] = [(U\eta U^*)((U\eta^n U^*)(U\eta^* U^*))(U\eta U^*)]$ $[(U\eta U^*)[(U\eta^n\eta^*)U^*]] = (U\eta\eta^n\eta^*U^*)(U\eta U^*) = U\eta\eta^n\eta^*\eta U^*$ $= U\eta(\eta^n\eta^*)U^*$, since η is qt-operator with order n $= U[(\eta^n\eta^*)\eta]U^*$ (1)

On the other hand,

$$\begin{aligned} [(L^n L^*)L] &= [((U\eta^n U^*)(U\eta^* U^*))(U\eta U^*)](U\eta SU^*) \\ &= (U\eta^n U^*)(U\eta^* U^*)(U\eta U^*) \\ &= (U\eta^n\eta^*U^*)(U\eta U^*) \\ &= U\eta^n\eta^*\eta U^* \\ &= U((\eta^n\eta^*)\eta)U^* \end{aligned} \quad \dots \dots (2)$$

From equations (1) and (2), we get...

$L[(L^n L^*)L] = [(L^n L^*)L]L$, thus L is qt-operator with order n .

Remark 2.7: The sum of two qt-operator with order n is not necessarily qt-operator of order n , as evidenced by the example below.

Theorem 2.14: If z_1, z_2, \dots, z_l are qt-operator of order n , then the direct sum $(z_1 \oplus z_2 \dots \oplus z_l)$ is qt-operator of order n ...

Proof:

$$\begin{aligned}
 & (z_1 \oplus z_2 \dots \oplus z_l) [((z_1 \oplus z_2 \dots \oplus z_l)^n (z_1 \oplus z_2 \dots \oplus z_l)^*)] \oplus \\
 & (z_1 \oplus z_2 \dots \oplus z_l) \\
 & = (z_1 \oplus z_2 \dots \oplus z_l) [((z_1^n \oplus z_2^n \dots \oplus z_l^n) (z_1^* \oplus z_2^* \dots \oplus z_l^*)) (z_1 \oplus z_2 \dots \oplus z_l)] \\
 & = (z_1 \oplus z_2 \dots \oplus z_l) [(z_1^n z_1^*) z_1 \\
 & \quad \oplus (z_2^n z_2^*) z_2 \dots \oplus (z_l^n z_l^*) z_l] \\
 & = z_1 [(z_1^n z_1^*) z_1] \oplus z_2 [(z_2^n z_2^*) z_2] \oplus \dots \oplus z_l [(z_l^n z_l^*) z_l] \\
 & \text{Since } z_1, z_2, \dots, z_l \text{ are qt-operator with orders } n, \text{ then} \\
 & = [(z_1^n z_1^*) z_1] z_1 \oplus [(z_2^n z_2^*) z_2] z_2 \dots \oplus [(z_l^n z_l^*) z_l] z_l \\
 & = [(z_1^n z_1^*) z_1 \oplus (z_2^n z_2^*) z_2 \dots \oplus (z_l^n z_l^*) z_l] (z_1 \oplus z_2 \dots \oplus z_l) \\
 & = [((z_1^n z_1^*) \oplus (z_2^n z_2^*) \dots \oplus (z_l^n z_l^*)) (z_1 \oplus z_2 \dots \oplus z_l)] \\
 & \quad (z_1 \oplus z_2 \dots \oplus z_l) \\
 & = [((z_1^n \oplus z_2^n \dots \oplus z_l^n) (z_1^* \oplus z_2^* \dots \oplus z_l^*)) \\
 & \quad (z_1 \oplus z_2 \dots \oplus z_l)] \\
 & = [((z_1 \oplus z_2 \dots \oplus z_l)^n (z_1 \oplus z_2 \dots \oplus z_l)^*) (z_1 \oplus z_2 \dots \oplus z_l)] \\
 & \quad (z_1 \oplus z_2 \dots \oplus z_l) \\
 & \text{Thus } z_1 \oplus z_2 \dots \oplus z_l \text{ is qt-operator with order } n
 \end{aligned}$$

Theorem 2.15: If z_1, z_2, \dots, z_l are qt-operator with order n , then the tensor product $(z_1 \otimes \dots \otimes z_l)$ is qt-operator with order n .

Proof:

$$\begin{aligned}
 & (z_1 \otimes \dots \otimes z_l) [((z_1 \otimes \dots \otimes z_l)^n (z_1 \otimes \dots \otimes z_l)^*)] \\
 & (z_1 \otimes \dots \otimes z_l) \\
 & = (z_1 \otimes \dots \otimes z_l) [((z_1^n \otimes \dots \otimes z_l^n) (z_1^* \otimes \dots \otimes z_l^*))] \\
 & \quad (z_1 \otimes \dots \otimes z_l) \\
 & = (z_1 \otimes \dots \otimes z_l) [(z_1^n z_1^*) \otimes \dots \otimes (z_l^n z_l^*) (z_1 \otimes \dots \otimes z_l)] \\
 & = (z_1 \otimes \dots \otimes z_l) [(z_1^n z_1^*) z_1 \otimes \dots \otimes (z_l^n z_l^*) z_l] \\
 & = z_1 [(z_1^n z_1^*) z_1] \otimes \dots \otimes z_l [(z_l^n z_l^*) z_l] \\
 & \text{Since } z_1, z_2, \dots, z_l \text{ are qt-operator with order } n, \text{ then} \\
 & [z_1 [(z_1^n z_1^*) z_1] \otimes \dots \otimes z_l [(z_l^n z_l^*) z_l]] \\
 & = [(z_1^n z_1^*) z_1] z_1 \otimes \dots \otimes [(z_l^n z_l^*) z_l] z_l \\
 & = [(z_1^n z_1^*) z_1 \otimes \dots \otimes (z_l^n z_l^*) z_l] (z_1 \otimes \dots \otimes z_l) \\
 & = [((z_1^n \otimes \dots \otimes z_l^n) (z_1^* \otimes \dots \otimes z_l^*)) (z_1 \otimes \dots \otimes z_l)] \\
 & \quad (z_1 \otimes \dots \otimes z_l) \\
 & = [((z_1 \otimes \dots \otimes z_l)^n (z_1 \otimes \dots \otimes z_l)^*) (z_1 \otimes \dots \otimes z_l)] \\
 & \quad (z_1 \otimes \dots \otimes z_l)
 \end{aligned}$$

Therefore, $z_1 \otimes \dots \otimes z_l$ is qt-operator with order n

3. δ -quasi triple operator with order n

Definition 3.1: The operator z within the Hilbert space H is known as δ -quasi triple operator with order n denoted by $(\delta$ -qt-operator with order n) if $z[(z^n z^*) z] = \delta[(z^n z^*) z] z$, where δ is a linear bounded operator on H .

Remark 3.2: Every qt-operator with order n is δ -qt-operator with order n when $\delta = I$ but the opposite is not true, as an example:

Example 3.3: Let $z = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ be an operator on C^2 , then

$$z[(z^2 z^*) z] = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \left[\left(\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}^2 \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} \right) \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \right] = \begin{bmatrix} 53 & 340 \\ 54 & 351 \end{bmatrix}$$

$$\begin{aligned}
 & [(z^n z^*) z] z = \left[\left(\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}^2 \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} \right) \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \right] \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = \\
 & \begin{bmatrix} 17 & 352 \\ 18 & 387 \end{bmatrix}, \text{ so } z \text{ is not qt-operator with order 2.}
 \end{aligned}$$

But if we take $\delta = \begin{bmatrix} 53/17 & 340/352 \\ 54/18 & 351/387 \end{bmatrix}$, this will be

$$\begin{aligned}
 & [(z^n z^*) z] z = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \left[\left(\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}^2 \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} \right) \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \right] = \\
 & \begin{bmatrix} 53 & 340 \\ 54 & 351 \end{bmatrix}
 \end{aligned}$$

On the other hand, $\delta[(z^n z^*) z] z =$

$$\begin{aligned}
 & \begin{bmatrix} 53/17 & 340/352 \\ 54/18 & 351/387 \end{bmatrix} \left[\left(\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}^2 \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} \right) \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \right] \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \\
 & = \begin{bmatrix} 53 & 340 \\ 54 & 351 \end{bmatrix}, \text{ thus } [(z^n z^*) z] z = \delta[(z^n z^*) z] z, \text{ so } z \text{ is} \\
 & \delta\text{-qt-operator with order 2.}
 \end{aligned}$$

Theorem 3.4 If z and η be two δ -qt-operators with order n on Hilbert space H such that $\eta^n z^* = z^n \eta^* = z^* \eta = \eta^* z = 0$ then $\eta + z$ is also δ -qt-operator with order n .

Proof: Let z and η be δ -qt-operators with order n , let $(\eta + z)[((\eta + z)^n (\eta + z)^*) (\eta + z)] = (\eta + z)[(\eta^n + z^n)(\eta^* + z^*) (\eta + z)]$

$$\begin{aligned}
 & = (\eta + z)[(\eta^n \eta^* + \eta^n z^* + z^n \eta^* + z^n z^*) (\eta + z)] \\
 & = (\eta + z)[(\eta^n \eta^* \eta + \eta^n z^* \eta + z^n \eta^* \eta + z^n z^* \eta + \eta^n \eta^* z \\
 & \quad + \eta^n z^* z + z^n \eta^* z + z^n z^* z + 3\eta^n \eta^* \eta + 3\eta^n z^* \eta + \\
 & \quad 33\eta^n \eta^* \eta + 33\eta^n z^* \eta + 3\eta^n \eta^* z + 3\eta^n z^* z + 33\eta^n \eta^* z + \\
 & \quad 33\eta^n z^* z, \text{ since } \eta^n z^* = z^n \eta^* = \eta^* z = z^n \eta^* = 0
 \end{aligned}$$

$$\begin{aligned}
 & \text{Then, } (\eta + z)[((\eta + z)^n (\eta + z)^*) (\eta + z)] = \eta \eta^n \eta^* \eta + \\
 & \quad 33\eta^n z^* z = \eta[(\eta^n \eta^*) \eta] + z[(z^n z^*) z]
 \end{aligned}$$

Since η and z are δ -qt-operators with order n , thus

$$= \eta[(\eta^n \eta^*) \eta] + z[(z^n z^*) z] = \delta[(\eta^n \eta^*) \eta] \eta + \delta[(z^n z^*) z] z$$

$$= \delta[((\eta^n + z^n)(\eta + z)^*) (\eta + z)] (\eta + z)$$

Therefore, $(\eta + z)$ is δ -qt-operator with order n

Remark (3.5): In Theorem (3.4), if the condition $\eta^n z^* = z^n \eta^* = z^* \eta = \eta^* z = 0$ is achieved, then η and z doesn't need to be zero as in the following example...

Let $z = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $\eta = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, z, η be δ -qt-operators of order 2, when $\delta = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

$$\begin{aligned} \eta^n z^* &= z^n \eta^* = z^* \eta = \eta^* z = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \\ (\eta + z)[((\eta + z)^2(\eta + z)^*)(\eta + z)] &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ &= \delta[((\eta + z)^2(\eta + z)^*)(\eta + z)](\eta + z) \\ \text{So } (\eta + z) \text{ is } \delta\text{-qt-operator of order 2} \end{aligned}$$

Theorem 3.6: If z_1, z_2, \dots, z_l are δ -qt-operators with order n , then the direct sum $(z_1 \oplus z_2 \dots \oplus z_l)$ is δ -qt-operator of order n .

Proof:

$$\begin{aligned} &(z_1 \oplus z_2 \dots \oplus z_l) \\ &[[((z_1 \oplus z_2 \dots \oplus z_l)^n(z_1 \oplus z_2 \dots \oplus z_l)^*)(z_1 \oplus z_2 \dots \oplus z_l)] \\ &= (z_1 \oplus z_2 \dots \oplus z_l) \\ &[[((z_1 \oplus z_2 \dots \oplus z_l)^n(z_1 \oplus z_2 \dots \oplus z_l)^*)(z_1 \oplus z_2 \dots \oplus z_l)] \\ &= (z_1 \oplus z_2 \dots \oplus z_l)[((z_1^n \oplus z_2^n \dots \oplus z_l^n)(z_1^* \oplus z_2^* \dots \oplus z_l^*))z_1 \oplus z_2 \dots \oplus z_l] \\ &= z_1 \oplus z_2 \dots \oplus z_l[(z_1^n z_1^*)z_1 \oplus (z_2^n z_2^*)z_2 \dots \oplus (z_l^n z_l^*)z_l] \\ &= z_1[(z_1^n z_1^*)z_1] \oplus z_2[(z_2^n z_2^*)z_2] \dots \oplus z_l[(z_l^n z_l^*)z_l] \\ \text{Since } z_1, z_2, \dots, z_l \text{ are } \delta\text{-qt-operators with order } n, \text{ then} \\ &= \delta[(z_1^n z_1^*)z_1]z_1 \oplus \delta[(z_2^n z_2^*)z_2]z_2 \dots \oplus \delta[(z_l^n z_l^*)z_l]z_l \\ &= \delta[((z_1^n z_1^*)z_1)z_1 \oplus ((z_2^n z_2^*)z_2)z_2 \dots \oplus ((z_l^n z_l^*)z_l)z_l] \\ &= \delta[((z_1^n z_1^*)z_1 \oplus (z_2^n z_2^*)z_2 \dots \oplus (z_l^n z_l^*)z_l)(z_1 \oplus z_2 \dots \oplus z_l)] \\ &= \delta[((((z_1 \oplus z_2 \dots \oplus z_l)^n(z_1 \oplus z_2 \dots \oplus z_l)^*)(z_1 \oplus z_2 \dots \oplus z_l)] \\ &\quad (z_1 \oplus z_2 \dots \oplus z_l)] \\ \text{Hence } z_1 \oplus z_2 \dots \oplus z_l \text{ is } \delta\text{-qt-operator with order } n. \end{aligned}$$

Theorem 3.7: If z_1, z_2, \dots, z_l are δ -qt-operators with order n , then the tensor product $(z_1 \otimes \dots \otimes z_l)$ is δ -qt-operator of order n .

Proof:

$$\begin{aligned} &(z_1 \otimes \dots \otimes z_l)[((z_1 \otimes \dots \otimes z_l)^n(z_1 \otimes \dots \otimes z_l)^*)(z_1 \otimes \dots \otimes z_l)] \\ &= (z_1 \otimes \dots \otimes z_l)[((z_1^n \otimes \dots \otimes z_l^n)(z_1^* \otimes \dots \otimes z_l^*))z_1 \otimes \dots \otimes z_l] \\ &= (z_1 \otimes \dots \otimes z_l)[[(z_1^n z_1^*) \otimes \dots \otimes (z_l^n z_l^*)] \\ &\quad (z_1 \otimes \dots \otimes z_l)] \\ &= (z_1 \otimes \dots \otimes z_l)[(z_1^n z_1^*)z_1 \dots \otimes (z_l^n z_l^*)z_l] \end{aligned}$$

$$= z_1[(z_1^n z_1^*)z_1] \otimes \dots \otimes z_l[(z_l^n z_l^*)z_l]$$

Since z_1, z_2, \dots, z_l are δ -qt-operators with order n , then

$$\begin{aligned} &[z_1[(z_1^n z_1^*)z_1] \otimes \dots \otimes z_l[(z_l^n z_l^*)z_l]] \\ &= \delta[(z_1^n z_1^*)z_1]z_1 \otimes \dots \otimes \delta[(z_l^n z_l^*)z_l]z_l \\ &= \delta[((z_1^n z_1^*)z_1)z_1 \otimes \dots \otimes ((z_l^n z_l^*)z_l)z_l] \\ &= \delta[((z_1^n \otimes \dots \otimes z_l^n)(z_1^* \otimes \dots \otimes z_l^*))z_1 \otimes \dots \otimes z_l] \\ &= \delta[((z_1 \otimes \dots \otimes z_l)^n(z_1 \otimes \dots \otimes z_l)^*)(z_1 \otimes \dots \otimes z_l)] \\ &= ((z_1 \otimes \dots \otimes z_l)^n(z_1 \otimes \dots \otimes z_l)^*)(z_1 \otimes \dots \otimes z_l) \end{aligned}$$

Then, $(z_1 \otimes \dots \otimes z_l)$ is δ -qt-operator with order n .

Conclusion

In this work, we introduced the definition of a quasi-triple operator for a complex Hilbert space and generalized this definition to quasi triple operator of the n th order and δ -quasi triple operator with order n ($n \geq 1$), and gave some examples and properties about it as well as proving some facts about these operators.

Acknowledgement

The authors would like to express their sincere thanks to the College of Computer Science and Mathematics, University of Mosul, for their valuable support of this research.

Conflict of interest

None.

References

- [1] A. Kavruk, "Tensor products of operator systems," Journal of Functional Analysis, vol. 261, no. 2, pp. 267-299, 2011.
- [2] C. R. Putnam, "On normal operators in Hilbert space," American Journal of Mathematics, vol. 73, no. 2, pp. 357-362, 1951.
- [3] D. P. Blecher and V. I. Paulsen, "Tensor products of operator spaces," Journal of Functional Analysis, vol. 99, no. 2, pp. 262-292, 1991.
- [4] E. Kreyszig, Introductory functional analysis with applications, vol. 17, John Wiley & Sons, 1991.
- [5] E. S. A. Rijab, "Triple operators," AL-Qadisiyah Journal For Science, vol. 21, no. 2, pp. 93-98, 2016.
- [6] E. S. A. Rijab, "Triple Operators of Order n on a Hilbert Space," Tikrit Journal of Pure Science, vol. 23, no. 3, pp. 151-153, 2018.
- [7] E. S. A. Rijab, " θ - quasi triple operator on Hilbert space," Journal of advanced in mathematics, vol. 22, pp. 17-22, 2023.
- [8] G. H. Esslamzadeh and F. Taleghani, "Structure of quasi operator systems," Linear algebra and its applications, vol. 438, no. 3, pp. 1372-1392, 2013.
- [9] J. B. Conway, "The direct sum of normal operators," Indiana University Mathematics Journal, vol. 26, no. 2, pp. 277-289, 1977.
- [10] J. B. Conway, A course in Functional Analysis, vol. 96, Springer, 1985.

- [11] L. A. Fialkow, "A note on direct sums of quasinilpotent operators," *Proceedings of the American Mathematical Society*, vol. 48, no. 1, pp. 125-131, 1975.
- [12] L. K. Shaakir and S. S. Marai, "Quasi normal operator of order n," *Tikrit Journal of Pure Science*, vol. 20, no. 4, pp. 1662-1813, 2010.
- [13] N. C. Phillips, "Approximate unitary equivalence of homomorphisms from odd Cuntz algebras," *Operator Algebras and their Applications*, pp. 243-255, 1997.
- [14] N. Faried, M. Ali and H. Sakr, "A note on FS isometry operators," *Math. Sci. Lett.*, vol. 10, no. 1, pp. 1-3, 2021.
- [15] R. W. Carey and J. D. Pincus, "An invariant for certain operator algebras," *Proceedings of the National Academy of Sciences*, vol. 71, no. 5, pp. 1952-1956, 1974.
- [16] S. D. Mohsen, "On (n,D)-quasi Operators," *Iraqi Journal for Computer Science and Mathematics*, vol. 5, no. 1, pp. 175-180, 2024.
- [17] S. K. Berberian, *Introduction to Hilbert space*, vol. 287, American Mathematical Soc, 1999.
- [18] S. S. A. Hussein and H. A. Shubber, "Spectral theory of (n, m)-normal operators on Hilbert space," *Journal of Interdisciplinary Mathematics*, vol. 24, no. 7, pp. 1907-1915, 2021.
- [19] S. W. Luketero and J. M. Khalagai, "On unitary equivalence of some classes of operators in Hilbert spaces," *International Journal of Statistics and Applied Mathematics*, vol. 5, no. 2, pp. 35-37, 2020.
- [20] S. W. Musundi, B. M. Nzimbi and K. W. Dennis, "A Note On Quasi-Similarity of Operators in Hilbert Spaces," in *Research Conference held at the Main Campus, Kenya*, 2015.