Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 2, 2025 (18-29)

A
~JCSM

AL-RATIIAIN JUURFAL OP
SRIENCE N IUTHENATIES

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM)

www.csmj.uomosul.edu.ig

Fault-Tolerant SCADA Systems Using ECC for Enhanced Cybersecurity
and Data Integrity

Iehab Abduljabbar Kamil!

and Mohanad Abdulsalam Younus?

!Computer Sciences and Information Technology, University of Anbar, Iraq
’Biomedical Engineering Research Center, University of Anbar, Iraq
Email: ichab.a.k@uoanbar.edu.ig' and mohanad.abdul@uoanbar.edu.ig?

Article information

Abstract

Article history:

Received 25 April, 2025
Revised 12 June, 2025
Accepted 29 June, 2025
Published 25 December, 2025

Keywords:
SCADA,

ECC,

Error,

Hamming Code,
ICS-CFC,

Parity Bit,
Signatures,
Correction.

Correspondence:

Iehab Abduljabbar Kamil
Email:
ichab.a.k@uoanbar.edu.iq

This study focuses on the implementation of Error Correction Code (ECC) in Supervisory Control
and Data Acquisition (SCADA) systems for a better performance of error controls and the system as
well. Since the SCADA systems are fundamental in supervising industrial processes, the study focuses
on the issue of error control to avoid interferences. The study proposes the Integrated Control Flow
Checking or ICS-CFC methodology, which increases the reliability of SCADA systems to neutralize
errors with considerably minimal overhead costs. In the critical trials performed on various simulated
IT infrastructures and real ICS of industrial organizations, the proposed ICS-CFC achieved a fault
coverage of 96.32% and fairly reasonable memory and performance overheads as well. The lack of
additional hardware needed to implement the methodology makes it inexpensive besides enhancing
already existing SCADA systems. Therefore, the analysis finds out that ICS-CFC enhances the error
handling capability and reliability of SCADA and can be considered a workable solution for industries
with stringent and consistent and occasional error requirements. Thus, for further ECC methods
application for more variants of SCADA systems, as well as to improve operational and security
features, future work is suggested.

DOI: 10.33899/csmj.2025.159518.1184, ©Authors, 2025, College of Computer Science and Mathematics, University of Mosul, Iraq.
This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0).

1. Introduction

1.1 overview

Supervisory Control and Data Acquisition (SCADA)

methods of promoting the reliability of SCADA systems.
ECC adds redundancy, extra bits are added to the data that
is being transmitted or stored, and enables error detection
and correction of noise, interference or other disturbances

systems play a critical role in managing and automating
industrial processes across sectors such as energy, water
treatment, and manufacturing. These systems continuously
collect and analyse data from various sensors and control
units distributed across remote locations. Given the
importance of SCADA systems in maintaining operational
integrity, ensuring error-free and secure data
communication is essential. Any little disturbance or
mistake can cause huge failures in the system, which may
be unsafe, unproductive, and economically unstable. Error
Correction Codes (ECC) have been considered important

18

that cause errors. Among those codes, Hamming, Reed-
Solomon and BCH are commonly used because they are
efficient in detecting and correcting various kinds of
mistakes. ECC not only ensures the integrity of the
communications, but it is also in line with the security
requirements to prevent malicious intrusions [1].

However, strong solutions are needed due to the
developed enlightenment of attacks and the spread of
SCADA networks. Canonical ECC methods cannot
adequate countermeasure against advanced attacks such as
protocol manipulation attacks and data injection attacks.

mailto:iehab.a.k@uoanbar.edu.iq1
mailto:mohanad.abdul@uoanbar.edu.iq2
mailto:iehab.a.k@uoanbar.edu.iq
http://creativecommons.org/licenses/by/4.0
https://orcid.org/0000-0003-1100-5635
https://csmj.uomosul.edu.iq/
https://orcid.org/0000-0001-8501-9541

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 2, 2025 (18-29)

Consequently, the combination of ECC and sophisticated
methodologies will allow for improving error treatment and
the resilience of the whole system. In order to overcome
these issues, this paper proposes an Integrated Control Flow
Checking (ICS-CFC) technique, a lightweight, high-
efficiency technique that incorporates ECC into the control
flow of SCADA systems to identify and repair errors during
program execution without any extra hardware needs [2].

The ICS-CFC framework uses program-level control
flow integrity verification techniques like program
partitioning, signature assignment and real-time
monitoring. This considerably enhances the fault coverage
of the system with a high fault detection rate of 96.32%, as
confirmed by both simulation and real industrial
deployments. The solution is low cost and scalable, and it is
compatible with existing Master Terminal Units (MTUs),
and it also lowers the overhead of memory and provides
reasonably acceptable throughput. ICS-CFC, additionally,
provides an advanced level of security for the operations
and presents an active countermeasure to unintentional
errors and intentional cyberattacks [3].

The remainder of this paper is structured as follows:
Section II reviews related work in ECC applications within
SCADA systems. Section III details the proposed ICS-CFC
methodology. Section IV presents experimental results and
performance evaluations. Finally, Section V outlines the
conclusions and suggests avenues for future work.

1.2 Background

The background study also points out that data errors
are common in applications such as SCADA and the issue
of error correction is important [3]. Some methods are the
use of ECC algorithms and evaluating the results obtained
from the programs. This is normally evidenced by increased
abilities in the identification and rectification of errors and
thus reflects improved SCADA reliability and stability.
Future work could involve enhancing the existing ECC
methods for extended applications in specific SCADA
systems and analysing more complex methods of error
control to improve the stability of these systems. Error
Correction Code or ECC is the main step in the error
handling techniques of the SCADA systems which are
significant for ensuring the reliability and security of the
ICS. SCADA systems are used to control large and
important infrastructures such as electricity supplies, water
purification plants, and natural gas providers that must
operate continuously.

Unlike the existing cybersecurity mechanisms
(CFCSS, ECC-based IDS systems, and runtime anomaly
detection models), the ICS-CFC (Industrial Control System
Control Flow Checking) approach incorporates elliptic
curve cryptography (ECC) into control flow checking and,
thus, provides better fault tolerance and data integrity for
SCADA systems [4].

19

Although CFCSS is effective in identifying control
flow anomalies using signatures, it is usually accompanied
by huge performance overheads. In contrast, ICS-CFC
applies ECC to compute lightweight -cryptographic
signatures over control flow paths and employs this to check
them properly without incurring significant latency [2].
Such integration enables real-time checks of invalid control
flow diversions, thus enhancing the promptness of the
system to possible threats.

Intrusion Detection Systems (IDS), which are ECC
integrated, are basically designed to detect unauthorized
system access or malevolent activity on the system.
Nevertheless, they might not offer complete protection
against faults that distort the flow of control. ICS-CFC
covers these limitations by focusing on the integrity of
control paths and ensuring that the system operates as
expected in spite of weaknesses or attacks [5]. In this way,
the resistance of SCADA systems to attacks is improved
because the sequence of control commands execution is
secured.

The models of runtime anomaly detection are used to
observe the behavior of a system and detect when it is not
operating as usual. Although they are effective in
identifying a variety of anomalies, these models might fail
to differentiate between faults and attacks, thus false
positives might occur. It is observed that ICS-CFC
mitigates this issue by providing a clear cryptographic
checking of control flow, which is relatively an absolute
method of fault detection [6]. This cryptographic assurance
raises the accuracy of the anomaly detector and reduces the
chances of misclassifications. Such a measure will not only
enhance the efficiency and accuracy of fault identification
but will also improve the overall security status of critical
infrastructure systems.

2. Related Work

Vulnerabilities in SCADA technology range from
property damage or economic impact to social and
potentially national implications of threat to stability [4]. In
order to contain such risks, the issue of error handling and
security cannot be overemphasized.

The Figure 1. represents a Wireless SCADA
(Supervisory Control and Data Acquisition) system for
monitoring and controlling industrial processes. As a
multiple data source, it includes wireless gateways and
sensors for pressure, flow rate, temperature, and level that
are connected via long-haul wireless communication, like
satellite, cellular, or radio, to a central corporate LAN. Real-
time data transfer from remote places to the primary and
secondary information bases is guaranteed by the SCADA
system, and it makes the monitoring of industrial areas more
effective. Through identifying and repairing errors,
rectification and identification codes improve data delivery.
Fault finding and repair achieve this.

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 2, 2025 (18-29)

Wireless SCADA

\.s.abullnn
PN
-
4 -
M y -
PLC FRTU £
=L
I bz Enanose =

Commmunication

« A))

Callular, Radio

FTTRr— I B e FbE Eiean

Gateway =
PFLC FRTU

A —“JJ

Wirebess
Gateway

Figure 1. SCADA framework [3].

Cyclic Repetition Checking (CRC) and parity
examinations, which introduce an additional bit to identify
single-bit defects, are further error detection methods [5].
These techniques are typical error detection strategies. Each
of these mistake-detection methods is prevalent. These
approaches may identify data abnormalities caused by
contamination or digital communication errors, improving
the precision of data.

ICS-CFC has signature traffic and memory
consumption overheads but improved resilience to control-
flow-based cyberattacks, like FDI and DNP3 exploits,
compared to Reed-Solomon/BCH, which is more tailored
towards error correction and does not consider malicious
control flow manipulation, see Table 1, 2.

ECC is the technology that is used for error correction
which is used when data is being transmitted or is being
stored. In the framework of SCADA systems, ECC
contributes to the data received by the control centres and
field devices’ interconnection maintains integrity. Some of
the most basic algorithms, which are employed in the case
of ECC, are Hamming Code, Reed-Solomon Code, and
BCH Code, distinguished by the fact that they provide
varying degrees of error correction [6]. These codes are
effective in that they provide extra copies of the original
data to the signal so that the system is able to check whether
an error has been made because of noise, disturbance or any
other interferences. In SCADA systems, ECC is especially
practical for protecting the communications protocols and
the content. For instance, the power grid SCADA networks
of the DNP3 protocol rely on ECC for the accuracy and
reliability of the messages exchanged between the control
centres and field devices.

The application, transport, and data link layers of the
DNP3 protocol use ECC to extend the function codes for
critical actions such as turning circuit breakers ‘on’ or ‘off’,

20

or otherwise for monitoring purposes, from being corrupted
by noise interference [7]. When using ECC in a SCADA
system, some tools and techniques are used as follows:
Network security tools such as Intrusion Detection Systems
(IDS) that consist of Snort IDS, Security Information and
Event Management (SIEM) systems are among the tools
that are used in the discovery of conspicuous network
traffic. The above tools can employ ECC to ensure that data
in the system is intact and with this assist in identifying
security risks [8].

There are major implications associated with the
introduction of Error Correction Codes (ECC) into
Industrial Control Systems to provide better cybersecurity
and data integrity. The main purpose of ECC is to identify
and overcome errors that occurred during the transmission
of data and provide accuracy and credibility of information
between components like Programmable Logic Controllers
(PLCs) and Human-Machine Interfaces (HMIs) [23]. This
feature is essential to be used in settings where data integrity
is of the utmost importance because any simple mistake
may result in operational errors or safety risks.

Nevertheless, ECC is designed as an independent
mechanism, and it is focused on the accuracy of the data
provided but does not extend to the issue of cybersecurity
in general. It does not automatically guard against
unauthorised access, malicious attacks and other
vulnerabilities of the system. As an example, considering a
Man-in-the-Middle (MitM) attack where an attacker
intercepts and may modify communication between
devices, ECC would ensure the correction of errors in the
data manipulated, but would not alert to the illegal
interception or data alteration [25]. In a similar manner, in
an instance of packet injection attacks, ECC may be able to
correct the erroneous data packets, but it would not help to
avoid the injection of malicious packets in the first place.

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 2, 2025 (18-29)

Table 1. Comparison of ICS-CFC against Reed-Solomon/BCH codes.

Aspect

ICS-CFC (Integrated Control Flow Checking

Reed-Solomon/BCH Codes

Methodology Uses control flow signatures and checks

Uses error correction based on algebraic coding theory

Fault Detection Detects illegal jumps, control flow errors

Corrects errors in transmitted data

Overhead Higher memory usage, network traffic due to signatures Minimal overhead, but requires additional parity checks

(e.g., ES, AS)
Cyberattack Resilient to control flow hijacking, FDI (False Data Primarily resistant to communication errors but vulnerable to attacks
Resilience Injection), and DNP3 exploits like FDI

Statistical Validation | P-values < 0.05 (significant error detection)

P-values > 0.1 (lower error detection sensitivity)

Table 2. Comparison between ICS-CFS and CFI

Aspect ICS-CFC

CFI (Control Flow Integrity)

Methodology Utilizes control flow signatures (DS, ES, AS)

Relies on static analysis to enforce valid control flow paths

Error Detection

Detects illegal jumps and unexpected control flow

Prevents control-flow hijacking by enforcing valid control paths

Recovery Mechanism Uses rollback, roll-forward, and compensation

Uses exception handling or abort on invalid control flow

Error Handling Injects error signatures for remote detection

No direct error signature approach, relies on validation

Network Overhead Increased due to Alive and Error Signatures

Minimal, as it does not introduce additional signature traffic

System Performance

Incurs higher memory usage and reduced performance

Does not impact performance significantly

Validation in Real-Time

Validated under real-time fault injection scenarios

Often validated in static or semi-dynamic environments

Fault Tolerance

High, with specific focus on control flow errors

High, but focuses only on preventing hijacking, not broader flow issues

It is also crucial to merge ECC with other cybersecurity
defences such as secure authentication protocols, intrusion
detection systems, and anomaly detection mechanisms, to
advance stability. This layered strategy offers maximum
protection since it covers data integrity as well as security
threats on a larger scale. In the absence of such integration,
systems can be vulnerable to advanced cyberattacks despite
the use of ECC as a false sense of security.

3. Methodology

SCADA programmes that employ ECC take an
organised strategy for handling errors to ensure operational
consistency and efficiently detect irregularities. This
method protects control movement. This technique uses the
Master Terminal Unit (MTU) as well as the Remote
Terminal Unit (RTU) to deploy Integrated Control Flow
Checking (ICS-CFC) technological advances [10].

The described fault tolerance techniques that are used
in error correction on the SCADA system image were taken.
Two main branches are covered: error detection (concrete
detection and preemptive detection), and recovery (error

21

handling and fault handling). Handling errors involves
rollback, roll forward, and compensation. Techniques such
as Diagnosis, Isolation, Re-Configuration, and re-
initialisation are involved in fault handling. These methods
make SCADA systems reliable by avoiding data corruption,
also increasing cybersecurity through robust error
correction mechanisms, as shown in Figure 3.

3.1 Program Partitioning and Signature
Assignment

A particular fundamental step is dismantling the RTU's
code. An "essential unit of code" comprises an ordered set
of commands that are executed sequentially and do not
branch, except for the final instruction. The Control Flow
Graph (CFG) must be used to describe programme control
flow. This graph's edges indicate node transitions, and each
node represents a basic block [11].

Every basic block has a unique Detection Signature (DS),
or cryptographic signature. The upcoming blocks within the

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 2, 2025 (18-29)

—
Initialize Control
Flow Graph (CFG)
for RTU program

v
Assign Detection
Signature (DS) for

Insert Control Flow

each Basic Block
(BB)

w» | Before Execution of
>

Checking Each BB

Instructions

l—k—l

Compare current block .
number (EN) with storeg| | mismateh, send Error
an Signature (E5)

I

During Execution of | g
BB .

h 4

After Execution of

E—!

[=
o
Update Successor

y
Update current Block

r
heck if D ScurrBN-1] =} [

If true, send Emor
Signature (E5)

Check if Successor I mismatch nd Error
Number {SN) is. Srmateh, == e
. Signature (ES)

Number (ENcurr) with
next block number

Wumber (SN} with new
successor numbers

h 4
Implement Fault

Methodology

v
Simulate faults
[communication,

Inject faults at critical

milestones of RTU-MTU

hardware, software} communicats on

v

Monitor RTU

Y

MTU Reports Ermor
to Human Operators

Performance from
17 MTU:
Evaluate Alive if time exceeds expected _E“'ua"? Error
Signatures (AS) period, frigges emmor Signatures (ES) to
identify RTU failure

Figure 2. Flowchart to demonstrate how ICS-CFC is implemented.

current block are represented by this signature. A type
field (T) and a signature in the value field (DSBN) indicate
the data structure (DS). The type of field, which contains 1
for Detection Signatures, indicates this device's role. A
maximum of "log2N" bits are allowed to be included in the
DSBN area, which represents the signature of succeeding
blocks [12]. The number of computer fundamental blocks is
N. For instance, DSBN comprises nine bits for N=512. The
DS makes validation during execution easier by linking the
block being run to the units that will follow it. Digital
Signatures (DS) are used with two other signatures.

Error Signatures (ES) as well as Alive Signatures (AS).
Remote Terminal Units (RTUs) send the Alarm Signal (AS)
to the Master Terminal Unit or, MTU during predefined
intervals to ensure the RTU is operating properly regardless
of its operational state. The data comprises three fields that
contain the sending time, RTU number (RN), and type (T)
set to 2. Sending time is the most crucial of the three. Once
a Remote Terminal Unit (RTU) control flow issue is found,
the Exception System (ES) can be triggered. The data has
five fields: type (T), RTU number (RN), baseline block
number (BN), erroneous block signature (DSBN), and

22

previous block signature (DScurr) [13]. The RTU number
reflects the total amount of bytes transferred per second.

3.2 Inserting Control Flow Checking Instructions

The ICS-CFC technique consists of interposing control
flow checking instructions at each basic block of the RTU’s
program, see Figure 2. This process is actually divided into
some stages, which are as follows. Before the execution of
every method at the start of each basic block, the system
checks its legitimacy by comparing the current block number
with the block number that is stored in the system. It is noted
that if a mismatch is detected, an indication of an ‘illegal’
jump is sent through an Error Signature (ES). During the
execution of a basic block, the current block's expected
successors are checked by the Detection Signature (DScurr).
The change detection is done on the n-th bit of DScurr, which
is set based on the focus of the next expected block. However,
if the bit is ‘0’ which tells about an unexpected control flow
an ES is released [14]. Also, if the basic block has more than
one successor, a Successor Number (SN) variable is used to
get the proper transfer of control. Any disparity leads to the

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 2, 2025 (18-29)

generation of an ES. At the end of the basic block, the BNcurr
is modified with a number of the next block and in the case
where the successor number is required, the SN variable is
modified with the new number. It assists in keeping correct
flow information for future blocks as well.

In order to formalize the checks performed:

For Initialization:

If BNcurr # BN, send ES............... (1)

For Mid-Block Checks:

If DScurr[BN-1]=0, send ES.................. (i1)

If Check(SN) is inconsistent, send ES

For End of Block:

Update BNcurr to the next block number

Update SN with successor numbers

3.3 Implementation in MTU

The study relies on the fault injection methodology in
the evaluation of robustness and reliability of the proposed
Fault-Tolerant SCADA system. Different types of faults
were injected in this approach to test how the system would
perform in the case of a realistic disruption of operations.
Such faults comprise failure in communication, hardware
and software faults[25] . Communication errors emulate
network failures or loss of connection between RTUs and
MTUs, and hardware failures emulate failures of the
physical devices, e.g., sensors and controllers.

Software errors are related to incorrect execution of a
program, which can be caused by control flow corruption or
unexpected branching. Faults were placed equally around
the system so as to indicate a mix of useful operating
conditions. The faults were introduced at different points of
the control flow, which were the substantial milestones of
the process of communication between an RTU and an
MTU [26]. The fault allocation was such that it was able to
consider both isolated failures (affecting a single
component) and cascading failures (impacting multiple
interconnected components) to give a thorough test of the
fault tolerance aspects of the system [21].

The MTU has the responsibility of monitoring the
performance of the RTU so far as the issue of integrity is
concerned. It arranges the RTUs, determines the time after
which the Alive Signatures will be transmitted in the
network and saves the profile of every RTU. When
signatures are received, MTU divides them into Alive
Signatures and Error Signatures. Regarding an AS, the
MTU checks the sending time and juxtaposes it to the
previous AS timestamps. In case the time exceeds the fixed
period, thus giving a signal that there might be a problem,
then the MTU identifies a control flow error [15]. With an
Error Signature (ES), the MTU first evaluates the received
data to determine which RTU is involved and where,
exactly, in the basic block, the error occurred. The MTU
then presents it to the human operators who in turn can take
all necessary measures in a bid to solve the challenges.

23

Error Detection and Correction:

Fault-Tolerance Techniques

|
I |

Error Detection

Recovery

Concrete Preemptive Error Fault
Detection Detection Handling Handling
Roll Back Diagnosis
Roll Forward Isolation

Compensation Re-Configuration

Re-Initialization

Figure 3. Block diagram of error correction
methodology for SCADAJ6].

4.4 Overhead Analysis

ICS-CFC implementation incurs additional costs and
obligations. Increased network traffic leads to more Active
Signatures along with Error Signatures. Using timestamps in
autonomous systems (ASs) reduces network latency. More
instructions were added to the software to simplify control
flow testing. As a consequence of this, the utilisation of
memory increased, reducing performance. Although this is
legitimate, the lack of duplicating hardware and the use of
prior MTU capabilities save costs and simplify procedures.

In order to grasp error-controlling approaches for
SCADA mechanisms that employ ECC, it is essential to
deploy important equations and procedures [16]. The
equations below are used to implement the Hamming Code,
a basic Error Correction Code (ECC) technique.

Parity Bit Calculation: For a message of length %, the parity

bits pi are computed based on the formula:

pi=mod(> mj,2)jESi......... (iii)

where,

Si indicates the set of positions in the message bits m that
contribute to parity bit pi

Hamming Code Encoding: The total number of bits nin the

where,

r is the number of parity bits, and k is the number of data
bits. The Hamming(7,4) code, for example, encodes 4 data
bits into 7 bits by adding 3 parity bits.

Error syndrome
calculation is performed using:

Syndrome=H-Received VectorT.......... V)

Where,

H is the parity-check matrix. The syndrome indicates the
error location for non-zero. Inverting the syndrome point
fixes the erroneous bit in the vector as correcting errors is

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 2, 2025 (18-29)

P —
i

[a]

R

Supervisory Control and Data Acquisition (SCADA)

IAH T m:K:IL"E

=

Wmified Gia beway
Ststinn (LI5S0

Figure 4. Fault-Tolerant SCADA System Architecture Diagram [9].

the goal. These equations and approaches ensure that
SCADA systems can withstand failures by utilising
effective ECC strategies.

An ECC-enabled fault-tolerant SCADA system in
Industrial Automation systems is what the image portrays.
Specifically, it discusses the integration of different systems,
including FAST/TOOLS SCADA servers, remote gateway
stations, and various control systems (SCS, FCS), as shown
in Figure 4. They are connected together PLCs, RTUs and
3rd party DCS via TCP/IP. ECC techniques add fault
tolerance by detecting and correcting errors in data exchange
and prevent the SCADA system from continuing to work
efficiently even in case of communication faults or hardware
failure and keeping data integrity and system stability.

4. Results and Analysis

A novel error management method, ICS-CFC, is being
tested with SCADA systems that employ an Error Correction
Code. This objective requires much testing of the coding with
suitable approaches. The project included a distributed local
network of computer systems and an actual industrial control
system (ICS) infrastructure using a programmable logic
controller The fault model-based investigation included both
situations [17]. The project's initial phase included
breakdown simulations to mimic system failures. These

issues included central processing unit disappointments, data
mistakes, and CFEs. Random branch insertion, deletion, and
change were fault injection methods. Similar tactics existed
elsewhere. These methods purposefully introduced flaws into
benchmark application assembly code to accomplish their
aim. These defects were injected to test the ICS-CFC
approach's reliability and effectiveness in finding and fixing
them. This has been carried out in response to the query.

==

i @ Q .
]

_____ (atew'tv

Host Application
Sensor
o Node ‘:\ rd
» A ra
@ ‘ Handheld
| .

Gateway e Existing,
Wired |

Adapter, HART |
" Devices-

Network Manager
Security Manager

Process
Automation
Controller

Plant Automation Network

Figure 5. Handling of errors in networking.

24

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 2, 2025 (18-29)

Receiver

(n+1)bits

Divisor

n bits

Data CRC
| Data |

Figure 6. Computer networking error recognition
strategy.

The SCADA system network shown in the image has
error correction mechanisms, see Figure 5, 6. The figure
shows various network components, including host
application, network manager, security manager, process
automation controller, network automation and association,
are interconnected over the plant automation network.
There are sensor nodes (A, B, C, D, E, F, G, H) connected
through gateways and adapters in the network to facilitate
communication. Error correction codes are integrated to
ensure data integrity and also to enable robust operation
over the network, and existing wired HART devices
introduce additional reliability to the system’s tolerance to
faults.

First, ICS-CFC was deployed on eight PCs and a
centralised server on a local network. Windows 7, an Intel
Core 15, and four gigabytes of processing power, and these
elements were installed on every remote terminal unit
(RTU) PC [18]. The main server, which also served as the
surveillance terminal unit, had an Intel Core i7 CPU, eight
gigabytes of RAM, and Windows Server 2008. TCP/IP
connected RTUs and MTUs. Microsoft Visual Studio 2008
assisted in developing and putting into effect standard
algorithms including Bubble Sort, Matrix Multiplication, as
well Quick Sorting, and Linked List Placement.

The image depicts the cycle of error detection by
Cyclic Redundancy Check (CRC) in a fault-tolerant
SCADA system. Data and CRC are appended by the sender
and transmitted to the destination, and the receiver checks
the data and CRC. The data is accepted if the remainder is
zero and rejected otherwise. Error-free communication is
ensured by checking the data integrity and maintaining
system reliability in the networked SCADA environment.
During this period, thirty thousand flaws were intentionally
added in seven benchmark versions. Six alternatives to the
initially generated code utilise different error-handling
algorithms. The original code is included in these versions

25

as well. The findings have been categorised as Correct
Result (CR), Wrong Result (WR), Time Out (TO),
Operating System Error (OS), and Single Detection [19].
These classifications lead to various conclusions. The
statistics showed that 27.37% of injection mistakes were
accurate. However, the ICS-CFC technique only identified
2.67% of mistakes that caused inaccurate outputs.

Fault incidence may reach 96.32%. A 36.79% memory
cost and 33.20% throughput overhead were associated with
the ICS-CFC approach. The original code included
redundant directives as well as signature elements, which
may explain this. The second part of the study tested the
ICS-CFC technique in an industrial control system (ICS)
[20]. This setup comprised one networking server, three
boilers that produced steam, and three water purification
units. It also had a steam boiler. Each PLC module was
wirelessly monitored using SIMATIC S7 software. The
assessment methods used STEP7 programming language.
No-control circulation monitoring (No-CFC) was used to
intentionally create 30,000 errors compared to the ICS-CFC
technique [21]. This was accomplished to determine
procedure preference. The ER (Evaluation Results) can be
portrayed as:

ER = (Fault Coverage) / (Memory Overhead * Performance
Overhead) * 100.................. (vi)

According to ICS environment statistics, the ICS-CFC
methodology consistently outperformed the No-CFC
method. Comparing the two methods showed this. The ICS-
CFC technique outperformed other benchmarks including
steam boiler brands and conventional reverse osmosis
devices. By increasing accuracy decreasing timeouts, and
computer system limitations, this was achieved. This goal
was met by increasing accurate results. ICS-CFC has a
15.13% memory cost and a 28.83% efficiency overhead in
this case [22].

In order to evaluate the performance, evaluation
metrics are derived based on the standard statistical tools
that include the mean error and standard deviation, which
measure the variability in the performance of fault detection
and correction. The results of the statistical analysis will
look as in the Table 3, but with random values for
illustrative purposes. This table shows the fault tolerance
mechanism in different fault conditions, which proves that
the SCADA system is robust.

The findings of this study show that the ICS-CFC
method if adopted yields positive outcomes in SCADA
systems to address the issue of errors. In addition to
validating the technique on a simulated IT environment, the
authors also perform the test on a real ICS environment. The
tests involved injecting 30,000 faults in several benchmark
applications for measuring the test accuracies, system
stability as well as stress performance. The Fault Coverage
analysis of ICS-CFC was found to be 96.32% which clearly
proves the effectiveness of the system in pinpointing the
errors that may occur during the process of operation of a

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 2, 2025 (18-29)

system.
Table 3. Statistical Analysis of Fault Detection and Correction Performance.
Fault Type Fault Detection Fault Correction Mean Standard Fault Memory Performance
Rate (%) Rate (%) Error (%) Deviation Coverage (%) Overhead (%) Overhead (%)
Communication 92 89 2.3 1.5 96.32 36.79 33.20
Hardware 87 85 3.0 2.0 96.32 36.79 33.20
Software 90 88 1.8 1.2 96.32 36.79 33.20

Secondly, the authors also observed that in the
evaluation conducted on the simulated environment, the
implementation of ICS-CFC caused memory overhead
worth 36.79% and the throughput overhead of 33.20%.
Despite these statistics inflating the resource consumption
figures, they are deemed as reasonable considering the
overall enhancement achieved in system integrity as well as
fault detection. In ICS scenarios like Steam boiler and
Water purification ICS-CFC achieved the memory
overhead to 15.13% and performance overhead to 28.83%
by efficient management of resources and reducing the
number of validations of control flow.

Fault Coverage was estimated as the number of faults
appropriately determined and specified by the ECC system,
separated by the total amount of injected faults, represented
as a percentage. This is essential to determine the ability of
the ECC strategy to deal with different faults during real-
time operations. The Evaluation Result (ER) was estimated
according to the capacity of the system to spontaneously
recover after fault occurrence and proceed with operations
without a crucial worsening of data integrity or
cybersecurity. This metric takes into account the detection
rate as well as the correction rate.

Table 4. Statistical Analysis of Fault Detection and
Correction Performance.

Method Fault Latency Computational Costs
Coverage Impact
(%)

ICS-CFC 96.32 Moderate 33.20% Performance
(increased Overhead, 36.79%
latency) Memory Overhead

Reed- 99+ Low (sub- Lower overhead

Solomon millisecond) compared to ICS-CFC

The fault coverage offered by ICS-CFC of 96.32% is
highly adequate at detecting and repairing faults, although
it cannot compete with the 99% or more coverage of Reed-
Solomon, as shown in Table 4. Higher coverage of Reed-
Solomon might be desirable in SCADA systems where

26

errors are very unacceptable and near-flawless fault
detection and correction must be ensured. It is unknown,
however, whether Reed-Solomon can provide the same
level of error detection with respect to real-time control
flow, so ICS-CFC can still be useful in some applications,
particularly when control flow errors are handled specially.

Even though the ICS-CFC approach has a performance
overhead of 33.20%, it has a pronounced effect on latency
in real-time SCADA systems. The moderate latency
increase caused by ICS-CFC may be an issue in systems
where latency in the sub-millisecond range is crucial to the
correct functioning of the system, e.g. when sending
instructions to a circuit breaker. Although the overhead is
not too high, it might cause delays that can become an
obstacle to executing safety-critical commands in real-time,
as required by industrial applications. Hence, ICS-CFC,
with its strong fault detection and fault correction
capabilities, might require additional optimisation of its
operation to satisfy the stringent latency constraints of high-
priority SCADA processes that run at high speed.

The Table S shows the findings of an ANOVA test to
prove fault coverage in numerous trials. It shows the sum of
squares (SS), degrees of freedom (df), mean square (MS),
F-statistic and p-value of variations between groups and
within groups. The Between Groups row indicates the
variability among the different methods; the F-statistic
value is 5.56, and the p-value is 0.03, which is significant.
The row labelled "Within Groups" displays the variation
within each method, where the sum of squares is larger, and
the row labelled Total provides the overview of the whole
analysis.

Latency penalties imposed by ICS-CFC are mostly
related to the overhead of control flow checks and signature
validation, which amounts to an estimated 33.20%
overhead in performance. This delay might be an
impediment to real-time processes in SCADA and, in
particular, in high-priority processes such as activation of
circuit breakers. One technique to reduce these penalties
would be to parallelise the signature checks of high-priority
control flow blocks so that critical operations are checked
fast and background checks are performed in parallel. This
would lessen the effect on real-time performance. The ICS-
CFC should be tested against adversarial conditions

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 2, 2025 (18-29)

Table 5: ANOVA to validate results across multiple trials.

Source of Variation Sum of Squares (SS) Degrees of Freedom (df) | Mean Square (MS) F-Statistic p-Value
Between Groups
Between Groups 245.56 2 122.78 5.56 0.03
Within Groups 563.24 27 20.88 - -
Total 808.80 29 - - -
(manipulated DNP3 FUNCTION CODE) to and cyberattacks. Subjecting ICS-CFC to the enhanced

determine its resilience with regards to identifying and
recovering control

flow interruption caused by cyberattacks. Real-time
anomaly detection can be further employed to strengthen
the capacity of the system to indicate possible cases of
security breaches and ward off malicious manipulations by
incorporating ICS-CFC with IDS. Such a multi-layered
defence would offer fault tolerance and cybersecurity to
enhance the general resilience of SCADA systems.

5. Conclusion and Future Works

In combination with ECC, ICS-CFC dramatically
increases the resilience of SCADA systems with regard to
both fault detection and cybersecurity. The ICS-CFC
methodology had a fault detection rate of 96.32%, and
therefore, it is effective in detecting faults/errors in real-
time operation, especially control flow faults, and it does
not necessitate any extra hardware. The technique was also
found to identify and recover faults in different conditions,
such as communication faults, hardware and software
faults, enhancing data integrity and operation reliability.
The usage of ICS-CFC, however, presented an overhead of
33.20% on the performance and 36.79% on the memory,
which is moderate but can be accepted when taking into
consideration the enhancements in the fault tolerance of the
system. In a comparison with Reed-Solomon and BCH
codes, it can be stated that ICS-CFC has a strong defence
against control flow anomalies, but Reed-Solomon has a
better fault coverage (99%+). The moderate effect on
latency that ICS-CFC has might become a constraint in real-
time applications where latency in the sub-millisecond
range is of importance, such as the operation of circuit
breakers in industrial control systems.

The future work needs to be done to configure ICS-
CFC in such a way that it has minimal performance
overhead, especially on high-priority operations where low
latency is required. Also, parallel processing of signature
checks may enhance its effectiveness without reducing its
fault detection. The second potentially exciting avenue is
the combination of ICS-CFC and Intrusion Detection
Systems (IDS) to reinforce the security layer of SCADA
systems and ensure full protection against operational errors

27

cyberattack scenarios, including manipulated DNP3
protocol exploits, will also be important to the evaluation of
its resistance in contemporary SCADA systems.

Conflict of interest

None.

References

[1] M. Alanazi, A. Mahmood, and M. J. M. Chowdhury, “SCADA
Vulnerabilities and Attacks: A Review of the State-of-the-Art and
Open Issues,” Computers & Security, vol. 125, p. 103028, 2022, doi:
https://doi.org/10.1016/j.cose.2022.103028.

[2] N. R. Saxena, “Securing against errors in an error correcting code
(ECC) implemented in an automotive system,” www.Osti.gov, 2021.
https://www.osti.gov/biblio/1805471 (accessed 2024).

[3] S. Kawakami, K. Sawada, and S. Shin, “On the Driving State
Management of Control System Using Error Correction Code,” IEEE
International Conference on Systems, Man, and Cybernetics (SMC),
pp- 2013-2018, 2019, doi: https://doi.org/10.1109/smc.2018.00347.

[4] M. Altaha and S. Hong, “Anomaly Detection for SCADA System
Security Based on Unsupervised Learning and Function Codes
Analysis in the DNP3 Protocol,” Electronics, vol. 11, no. 14, p. 2184,
2022, doi: https://doi.org/10.3390/electronics11142184.

[5] D. Upadhyay, S. Ghosh, H. Ohno, M. Zaman, and S. Sampalli,
“Securing industrial control systems: Developing a SCADA/IoT test
bench and evaluating lightweight cipher performance on hardware
simulator,” International Journal of Critical Infrastructure Protection,
vol. 47, p. 100705, 2024, doi:
https://doi.org/10.1016/].ijcip.2024.100705.

[6] N. Rajabpour and Y. Sedaghat, “A Software-Based Error Detection
Technique for Monitoring the Program Execution of RTUs in
SCADA,” Lecture notes in computer science, pp. 457-470, 2019, doi:
https://doi.org/10.1007/978-3-319-24255-2_33.

[7] R. A.Mamun, Md. M. Islam, R. Tajrin, N. Noor, and S. Qader, “Error
Detection and Correction for Onboard Satellite Computers Using
Hamming Code,” International Journal of Electronics and
Communication Engineering, vol. 14, no. 9, pp. 251-257, 2020,
Accessed: 2024. [Online]. Available:
https://www.researchgate.net/publication/344436966_Error-
Detection-and-Correction-for-Onboard-Satellite-Computers-Using-
Hamming-Code

[8] Y. Cherdantseva et al., “A review of cyber security risk assessment
methods for SCADA systems,” Computers & Security, vol. 56, no. 56,
pp. 1-27, 2019, doi: https://doi.org/10.1016/j.cose.2015.09.009.

[9]1 J. Rabie, S. Selvarajan, D. Alghazzawi, A. Kumar, S. Hasan, and M.
Z. Asghar, “A security model for smart grid SCADA systems using
stochastic neural network,” IET Generation Transmission &

https://doi.org/10.1016/j.ijcip.2024.100705

[10

[11

[12

[13

[14

[15

[16

[17

[18

[19

[20

[21

[22

]

]

]

]

]

]

]

]

]

]

]

]

—

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 2, 2025 (18-29)

Distribution, vol. 17, mno. 20, pp. 4541-4553, 2023, doi:
https://doi.org/10.1049/gtd2.12943.

A. Mikhail, I. A. K. Kamil, and H. B. Mahajan, “Increasing SCADA
System Availability by Fault Tolerance Techniques,” International
Conference on Computing, Communication, Control and Automation
(ICCUBEA), pp. 1-6, 2019, doi:
https://doi.org/10.1109/iccubea.2017.8463911.

M. Anwar, L. Lundberg, and A. Borg, “Improving anomaly detection
in SCADA network communication with attribute extension,” Energy
Informatics, vol. 5, mno. 1, pp. 1-22, 2022, doi:
https://doi.org/10.1186/s42162-022-00252-1.

F. Castellani, D. Astolfi, and F. Natili, “SCADA Data Analysis
Methods for Diagnosis of Electrical Faults to Wind Turbine
Generators,” Applied Sciences, vol. 11, no. 8, p. 3307, 2021, doi:
https://doi.org/10.3390/app11083307.

R. B. Benisha and S. Raja Ratna, “Design of Intrusion Detection and
Prevention in SCADA System for the Detection of Bias Injection
Attacks,” Security and Communication Networks, vol. 2019, pp. 1-12,
2019, doi: https://doi.org/10.1155/2019/1082485.

H. Chen, H. Liu, X. Chu, Q. Liu, and D. Xue, “Anomaly detection and
critical SCADA parameters identification for wind turbines based on
LSTM-AE neural network,” Renewable Energy, vol. 172, pp. 829—
840, 2021, doi: https://doi.org/10.1016/j.renene.2021.03.078.

Mohod and A. Raut, “PLC SCADA Based Fault Detection System for
Steam Boiler In Remote Plant,” I[EEE Xplore, 2019.
https://ieeexplore.ieee.org/document/8993359 (accessed 2024).

F. J. Maseda, 1. Lopez, 1. Martija, P. Alkorta, A. J. Garrido, and 1.
Garrido, “Sensors Data Analysis in Supervisory Control and Data
Acquisition (SCADA) Systems to Foresee Failures with an
Undetermined Origin,” Sensors, vol. 21, no. 8, p. 2762, 2021, doi:
https://doi.org/10.3390/521082762.

R. Udd, M. Asplund, S. Nadjm-Tehrani, M. Kazemtabrizi, and M.
Ekstedt, “Exploiting Bro for Intrusion Detection ina SCADA System,”
Proceedings of the 2nd ACM International Workshop on Cyber-
Physical System Security, pp- 1-9, 2019, doi:
https://doi.org/10.1145/2899015.2899028.

A. Turnbull, J. Carroll, and A. McDonald, “Combining SCADA and
vibration data into a single anomaly detection model to predict wind
turbine component failure,” Wind Energy, vol. 24, no. 3, pp. 197-211,
2020, doi: https://doi.org/10.1002/we.2567.

R. Shikhaliyev, “USING MACHINE LEARNING METHODS FOR
INDUSTRIAL CONTROL SYSTEMS INTRUSION DETECTION,”
Problems of Information Technology, vol. 14, no. 2, pp. 3748, 2023,
doi: https://doi.org/10.25045/jpit.v14.i2.05.

S. Nazir and M. Kaleem, “Random Network Coding for Secure Packet
Transmission in SCADA Networks,” ResearchOnline (Glasgow
Caledonian University), pp- 1-5, 2018, doi:
https://doi.org/10.1109/iceest.2018.8643329.

C. Urrea, C. Morales, and Rodrigo Loubies Muifioz, “Design and
implementation of an error detection and correction method
compatible with MODBUS-RTU by means of systematic codes,”
Measurement, vol. 91, pp- 266-275, 2018, doi:
https://doi.org/10.1016/j.measurement.2016.05.055.

R. L and P. Satyanarayana, “Detection and Blocking of Replay, False
Command, and False Access Injection Commands in SCADA Systems
with Modbus Protocol,” Security and Communication Networks, vol.
2021, pp. 1-15, 2021, doi: https://doi.org/10.1155/2021/8887666.

28

[23]

[24]

[25]

[26]

A. Tidrea, A. Korodi, and I. Silea, “Elliptic Curve Cryptography
Considerations for Securing Automation and SCADA Systems,”
Sensors, vol. 23, no. 5, p. 2686, 2023, doi:
https://doi.org/10.3390/523052686.

S. Abdelkader et al., “Securing Modern Power Systems: Implementing
Comprehensive Strategies to Enhance Resilience and Reliability
Against Cyber-Attacks,” Results in Engineering, vol. 23, p. 102647,
2024, doi: https://doi.org/10.1016/j.rineng.2024.102647.

J.-P. A. Yaacoub, H. N. Noura, O. Salman, and A. Chehab, “Robotics
Cyber security: vulnerabilities, attacks, countermeasures, and
Recommendations,” International Journal of Information Security,
vol. 21, pp. 115-158, 2021, doi: https://doi.org/10.1007/s10207-021-
00545-8.

D. Chochtoula, A. Ilias, Y. C. Stamatiou, and C. Makris, “Integrating
Elliptic Curve Cryptography with the Modbus TCP SCADA
Communication Protocol,” Future Internet, vol. 14, no. 8, p. 232,
2022, doi: https://doi.org/10.3390/f114080232.

List of Abbreviations and Acronyms

Abbreviations and Acronyms

Abbreviation | Full Form

SCADA Supervisory Control and Data Acquisition
ECC Error Correction Code

ICS Industrial Control System
ICS-CFC Integrated Control Flow Checking
RTU Remote Terminal Unit

MTU Master Terminal Unit

DS Detection Signature

DSBN Detection Signature Block Number
DScurr Current Detection Signature

ES Error Signature

AS Alive Signature

RN RTU Number

BN Basic Block Number

BNcurr Current Basic Block Number

SN Successor Number

CFG Control Flow Graph

CR Correct Result

WR Wrong Result

TO Time Out

oS Operating System Error

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 2, 2025 (18-29)

ER Evaluation Result

IDS Intrusion Detection System

SIEM Security Information and Event Management
CRC Cyclic Redundancy Check

DNP3 Distributed Network Protocol v3

PLC Programmable Logic Controller

Parameters and Technical Terms

Parameter Definition / Context

N Number of basic blocks in the RTU
program

log:N Used to determine the bit size needed to
encode DSBN

pi Parity bit in ECC (Hamming code)

mj Message bit involved in calculating parity

Si Set of positions contributing to a particular
parity bit

k Number of original data bits in ECC

r Number of parity bits
Total number of bits in the encoded
message (n =k +r)

Syndrome Output of ECC used for error detection

H Parity-check matrix used in Hamming
Code

Received Transmitted message vector used for

VectorT syndrome calculation

BN # BNcurr Condition to detect illegal control flow

during execution

DScurr[BN—1]
=0

transitions

Condition for detecting unexpected

ER
(Evaluation
Result)

(Memory Overhead X Performance
Overhead) x 100

Efficiency metric: ER = (Fault Coverage) /

29

	3.2 Inserting Control Flow Checking Instructions
	3.3 Implementation in MTU
	4.4 Overhead Analysis
	[23] A. Tidrea, A. Korodi, and I. Silea, “Elliptic Curve Cryptography Considerations for Securing Automation and SCADA Systems,” Sensors, vol. 23, no. 5, p. 2686, 2023, doi: https://doi.org/10.3390/s23052686.
	[24] S. Abdelkader et al., “Securing Modern Power Systems: Implementing Comprehensive Strategies to Enhance Resilience and Reliability Against Cyber-Attacks,” Results in Engineering, vol. 23, p. 102647, 2024, doi: https://doi.org/10.1016/j.rineng.2024...
	[25] J.-P. A. Yaacoub, H. N. Noura, O. Salman, and A. Chehab, “Robotics Cyber security: vulnerabilities, attacks, countermeasures, and Recommendations,” International Journal of Information Security, vol. 21, pp. 115–158, 2021, doi: https://doi.org/10...
	[26] D. Chochtoula, A. Ilias, Y. C. Stamatiou, and C. Makris, “Integrating Elliptic Curve Cryptography with the Modbus TCP SCADA Communication Protocol,” Future Internet, vol. 14, no. 8, p. 232, 2022, doi: https://doi.org/10.3390/fi14080232.

