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This study focuses on the implementation of Error Correction Code (ECC) in Supervisory Control 
and Data Acquisition (SCADA) systems for a better performance of error controls and the system as 
well. Since the SCADA systems are fundamental in supervising industrial processes, the study focuses 
on the issue of error control to avoid interferences. The study proposes the Integrated Control Flow 
Checking or ICS-CFC methodology, which increases the reliability of SCADA systems to neutralize 
errors with considerably minimal overhead costs. In the critical trials performed on various simulated 
IT infrastructures and real ICS of industrial organizations, the proposed ICS-CFC achieved a fault 
coverage of 96.32% and fairly reasonable memory and performance overheads as well. The lack of 
additional hardware needed to implement the methodology makes it inexpensive besides enhancing 
already existing SCADA systems. Therefore, the analysis finds out that ICS-CFC enhances the error 
handling capability and reliability of SCADA and can be considered a workable solution for industries 
with stringent and consistent and occasional error requirements. Thus, for further ECC methods 
application for more variants of SCADA systems, as well as to improve operational and security 
features, future work is suggested. 
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1. Introduction 
1.1 overview 

Supervisory Control and Data Acquisition (SCADA) 
systems play a critical role in managing and automating 
industrial processes across sectors such as energy, water 
treatment, and manufacturing. These systems continuously 
collect and analyse data from various sensors and control 
units distributed across remote locations. Given the 
importance of SCADA systems in maintaining operational 
integrity, ensuring error-free and secure data 
communication is essential. Any little disturbance or 
mistake can cause huge failures in the system, which may 
be unsafe, unproductive, and economically unstable. Error 
Correction Codes (ECC) have been considered important 

methods of promoting the reliability of SCADA systems. 
ECC adds redundancy, extra bits are added to the data that 
is being transmitted or stored, and enables error detection 
and correction of noise, interference or other disturbances 
that cause errors. Among those codes, Hamming, Reed-
Solomon and BCH are commonly used because they are 
efficient in detecting and correcting various kinds of 
mistakes. ECC not only ensures the integrity of the 
communications, but it is also in line with the security 
requirements to prevent malicious intrusions [1]. 

However, strong solutions are needed due to the 
developed enlightenment of attacks and the spread of 
SCADA networks. Canonical ECC methods cannot 
adequate countermeasure against advanced attacks such as 
protocol manipulation attacks and data injection attacks. 
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Consequently, the combination of ECC and sophisticated 
methodologies will allow for improving error treatment and 
the resilience of the whole system. In order to overcome 
these issues, this paper proposes an Integrated Control Flow 
Checking (ICS-CFC) technique, a lightweight, high-
efficiency technique that incorporates ECC into the control 
flow of SCADA systems to identify and repair errors during 
program execution without any extra hardware needs [2]. 

The ICS-CFC framework uses program-level control 
flow integrity verification techniques like program 
partitioning, signature assignment and real-time 
monitoring. This considerably enhances the fault coverage 
of the system with a high fault detection rate of 96.32%, as 
confirmed by both simulation and real industrial 
deployments. The solution is low cost and scalable, and it is 
compatible with existing Master Terminal Units (MTUs), 
and it also lowers the overhead of memory and provides 
reasonably acceptable throughput. ICS-CFC, additionally, 
provides an advanced level of security for the operations 
and presents an active countermeasure to unintentional 
errors and intentional cyberattacks [3]. 

The remainder of this paper is structured as follows: 
Section II reviews related work in ECC applications within 
SCADA systems. Section III details the proposed ICS-CFC 
methodology. Section IV presents experimental results and 
performance evaluations. Finally, Section V outlines the 
conclusions and suggests avenues for future work. 
 

1.2 Background 
The background study also points out that data errors 

are common in applications such as SCADA and the issue 
of error correction is important [3]. Some methods are the 
use of ECC algorithms and evaluating the results obtained 
from the programs. This is normally evidenced by increased 
abilities in the identification and rectification of errors and 
thus reflects improved SCADA reliability and stability. 
Future work could involve enhancing the existing ECC 
methods for extended applications in specific SCADA 
systems and analysing more complex methods of error 
control to improve the stability of these systems. Error 
Correction Code or ECC is the main step in the error 
handling techniques of the SCADA systems which are 
significant for ensuring the reliability and security of the 
ICS. SCADA systems are used to control large and 
important infrastructures such as electricity supplies, water 
purification plants, and natural gas providers that must 
operate continuously.  

Unlike the existing cybersecurity mechanisms 
(CFCSS, ECC-based IDS systems, and runtime anomaly 
detection models), the ICS-CFC (Industrial Control System 
Control Flow Checking) approach incorporates elliptic 
curve cryptography (ECC) into control flow checking and, 
thus, provides better fault tolerance and data integrity for 
SCADA systems [4]. 

Although CFCSS is effective in identifying control 
flow anomalies using signatures, it is usually accompanied 
by huge performance overheads. In contrast, ICS-CFC 
applies ECC to compute lightweight cryptographic 
signatures over control flow paths and employs this to check 
them properly without incurring significant latency [2]. 
Such integration enables real-time checks of invalid control 
flow diversions, thus enhancing the promptness of the 
system to possible threats. 

Intrusion Detection Systems (IDS), which are ECC 
integrated, are basically designed to detect unauthorized 
system access or malevolent activity on the system. 
Nevertheless, they might not offer complete protection 
against faults that distort the flow of control. ICS-CFC 
covers these limitations by focusing on the integrity of 
control paths and ensuring that the system operates as 
expected in spite of weaknesses or attacks [5]. In this way, 
the resistance of SCADA systems to attacks is improved 
because the sequence of control commands execution is 
secured. 

The models of runtime anomaly detection are used to 
observe the behavior of a system and detect when it is not 
operating as usual. Although they are effective in 
identifying a variety of anomalies, these models might fail 
to differentiate between faults and attacks, thus false 
positives might occur. It is observed that ICS-CFC 
mitigates this issue by providing a clear cryptographic 
checking of control flow, which is relatively an absolute 
method of fault detection [6]. This cryptographic assurance 
raises the accuracy of the anomaly detector and reduces the 
chances of misclassifications. Such a measure will not only 
enhance the efficiency and accuracy of fault identification 
but will also improve the overall security status of critical 
infrastructure systems. 

 

2. Related Work 
Vulnerabilities in SCADA technology range from 

property damage or economic impact to social and 
potentially national implications of threat to stability [4]. In 
order to contain such risks, the issue of error handling and 
security cannot be overemphasized. 

The Figure 1. represents a Wireless SCADA 
(Supervisory Control and Data Acquisition) system for 
monitoring and controlling industrial processes. As a 
multiple data source, it includes wireless gateways and 
sensors for pressure, flow rate, temperature, and level that 
are connected via long-haul wireless communication, like 
satellite, cellular, or radio, to a central corporate LAN. Real-
time data transfer from remote places to the primary and 
secondary information bases is guaranteed by the SCADA 
system, and it makes the monitoring of industrial areas more 
effective. Through identifying and repairing errors, 
rectification and identification codes improve data delivery. 
Fault finding and repair achieve this.  
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Cyclic Repetition Checking (CRC) and parity 

examinations, which introduce an additional bit to identify 
single-bit defects, are further error detection methods [5]. 
These techniques are typical error detection strategies. Each 
of these mistake-detection methods is prevalent. These 
approaches may identify data abnormalities caused by 
contamination or digital communication errors, improving 
the precision of data. 

ICS-CFC has signature traffic and memory 
consumption overheads but improved resilience to control-
flow-based cyberattacks, like FDI and DNP3 exploits, 
compared to Reed-Solomon/BCH, which is more tailored 
towards error correction and does not consider malicious 
control flow manipulation, see Table 1, 2. 

ECC is the technology that is used for error correction 
which is used when data is being transmitted or is being 
stored. In the framework of SCADA systems, ECC 
contributes to the data received by the control centres and 
field devices’ interconnection maintains integrity. Some of 
the most basic algorithms, which are employed in the case 
of ECC, are Hamming Code, Reed-Solomon Code, and 
BCH Code, distinguished by the fact that they provide 
varying degrees of error correction [6]. These codes are 
effective in that they provide extra copies of the original 
data to the signal so that the system is able to check whether 
an error has been made because of noise, disturbance or any 
other interferences. In SCADA systems, ECC is especially 
practical for protecting the communications protocols and 
the content. For instance, the power grid SCADA networks 
of the DNP3 protocol rely on ECC for the accuracy and 
reliability of the messages exchanged between the control 
centres and field devices.  

The application, transport, and data link layers of the 
DNP3 protocol use ECC to extend the function codes for 
critical actions such as turning circuit breakers ‘on’ or ‘off’,  

 
or otherwise for monitoring purposes, from being corrupted 
by noise interference [7]. When using ECC in a SCADA 
system, some tools and techniques are used as follows: 
Network security tools such as Intrusion Detection Systems 
(IDS) that consist of Snort IDS, Security Information and 
Event Management (SIEM) systems are among the tools 
that are used in the discovery of conspicuous network 
traffic. The above tools can employ ECC to ensure that data 
in the system is intact and with this assist in identifying 
security risks [8].  

There are major implications associated with the 
introduction of Error Correction Codes (ECC) into 
Industrial Control Systems to provide better cybersecurity 
and data integrity. The main purpose of ECC is to identify 
and overcome errors that occurred during the transmission 
of data and provide accuracy and credibility of information 
between components like Programmable Logic Controllers 
(PLCs) and Human-Machine Interfaces (HMIs) [23]. This 
feature is essential to be used in settings where data integrity 
is of the utmost importance because any simple mistake 
may result in operational errors or safety risks. 

Nevertheless, ECC is designed as an independent 
mechanism, and it is focused on the accuracy of the data 
provided but does not extend to the issue of cybersecurity 
in general. It does not automatically guard against 
unauthorised access, malicious attacks and other 
vulnerabilities of the system. As an example, considering a 
Man-in-the-Middle (MitM) attack where an attacker 
intercepts and may modify communication between 
devices, ECC would ensure the correction of errors in the 
data manipulated, but would not alert to the illegal 
interception or data alteration [25]. In a similar manner, in 
an instance of packet injection attacks, ECC may be able to 
correct the erroneous data packets, but it would not help to 
avoid the injection of malicious packets in the first place. 

Figure 1. SCADA framework [3]. 
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Table 1. Comparison of ICS-CFC against Reed-Solomon/BCH codes. 

Aspect ICS-CFC (Integrated Control Flow Checking Reed-Solomon/BCH Codes 

Methodology Uses control flow signatures and checks Uses error correction based on algebraic coding theory 

Fault Detection Detects illegal jumps, control flow errors Corrects errors in transmitted data 

Overhead Higher memory usage, network traffic due to signatures 
(e.g., ES, AS) 

Minimal overhead, but requires additional parity checks 

Cyberattack 
Resilience 

Resilient to control flow hijacking, FDI (False Data 
Injection), and DNP3 exploits 

Primarily resistant to communication errors but vulnerable to attacks 
like FDI 

Statistical Validation P-values < 0.05 (significant error detection) P-values > 0.1 (lower error detection sensitivity) 

 
It is also crucial to merge ECC with other cybersecurity 
defences such as secure authentication protocols, intrusion 
detection systems, and anomaly detection mechanisms, to 
advance stability. This layered strategy offers maximum 
protection since it covers data integrity as well as security 
threats on a larger scale. In the absence of such integration, 
systems can be vulnerable to advanced cyberattacks despite 
the use of ECC as a false sense of security. 
 
3. Methodology 

SCADA programmes that employ ECC take an 
organised strategy for handling errors to ensure operational 
consistency and efficiently detect irregularities. This 
method protects control movement. This technique uses the 
Master Terminal Unit (MTU) as well as the Remote 
Terminal Unit (RTU) to deploy Integrated Control Flow 
Checking (ICS-CFC) technological advances [10]. 

The described fault tolerance techniques that are used 
in error correction on the SCADA system image were taken. 
Two main branches are covered: error detection (concrete 
detection and preemptive detection), and recovery (error  

 
handling and fault handling). Handling errors involves 
rollback, roll forward, and compensation. Techniques such 
as Diagnosis, Isolation, Re-Configuration, and re-
initialisation are involved in fault handling. These methods 
make SCADA systems reliable by avoiding data corruption, 
also increasing cybersecurity through robust error 
correction mechanisms, as shown in Figure 3. 
 

3.1 Program Partitioning and Signature 
Assignment 

A particular fundamental step is dismantling the RTU's 
code. An "essential unit of code" comprises an ordered set 
of commands that are executed sequentially and do not 
branch, except for the final instruction. The Control Flow 
Graph (CFG) must be used to describe programme control 
flow. This graph's edges indicate node transitions, and each 
node represents a basic block [11]. 
Every basic block has a unique Detection Signature (DS), 
or cryptographic signature. The upcoming blocks within the  
 

Table 2. Comparison between ICS-CFS and CFI 

Aspect ICS-CFC  CFI (Control Flow Integrity) 

Methodology Utilizes control flow signatures (DS, ES, AS) Relies on static analysis to enforce valid control flow paths 

Error Detection  Detects illegal jumps and unexpected control flow Prevents control-flow hijacking by enforcing valid control paths 

Recovery Mechanism Uses rollback, roll-forward, and compensation Uses exception handling or abort on invalid control flow 

Error Handling Injects error signatures for remote detection No direct error signature approach, relies on validation 

Network Overhead Increased due to Alive and Error Signatures Minimal, as it does not introduce additional signature traffic 

System Performance Incurs higher memory usage and reduced performance Does not impact performance significantly 

Validation in Real-Time Validated under real-time fault injection scenarios Often validated in static or semi-dynamic environments 

Fault Tolerance  High, with specific focus on control flow errors High, but focuses only on preventing hijacking, not broader flow issues 
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Figure 2. Flowchart to demonstrate how ICS-CFC is implemented.
 

current block are represented by this signature. A type 
field (T) and a signature in the value field (DSBN) indicate 
the data structure (DS). The type of field, which contains 1 
for Detection Signatures, indicates this device's role. A 
maximum of "log2N" bits are allowed to be included in the 
DSBN area, which represents the signature of succeeding 
blocks [12]. The number of computer fundamental blocks is 
N. For instance, DSBN comprises nine bits for N = 512. The 
DS makes validation during execution easier by linking the 
block being run to the units that will follow it. Digital 
Signatures (DS) are used with two other signatures.  

Error Signatures (ES) as well as Alive Signatures (AS). 
Remote Terminal Units (RTUs) send the Alarm Signal (AS) 
to the Master Terminal Unit or, MTU during predefined 
intervals to ensure the RTU is operating properly regardless 
of its operational state. The data comprises three fields that 
contain the sending time, RTU number (RN), and type (T) 
set to 2. Sending time is the most crucial of the three. Once 
a Remote Terminal Unit (RTU) control flow issue is found, 
the Exception System (ES) can be triggered. The data has 
five fields: type (T), RTU number (RN), baseline block 
number (BN), erroneous block signature (DSBN), and  

 
previous block signature (DScurr) [13]. The RTU number 
reflects the total amount of bytes transferred per second. 
 

3.2 Inserting Control Flow Checking Instructions 
The ICS-CFC technique consists of interposing control 

flow checking instructions at each basic block of the RTU’s 
program, see Figure 2. This process is actually divided into 
some stages, which are as follows. Before the execution of 
every method at the start of each basic block, the system 
checks its legitimacy by comparing the current block number 
with the block number that is stored in the system. It is noted 
that if a mismatch is detected, an indication of an ‘illegal’ 
jump is sent through an Error Signature (ES). During the 
execution of a basic block, the current block's expected 
successors are checked by the Detection Signature (DScurr). 
The change detection is done on the n-th bit of DScurr, which 
is set based on the focus of the next expected block. However, 
if the bit is ‘0’ which tells about an unexpected control flow 
an ES is released [14]. Also, if the basic block has more than 
one successor, a Successor Number (SN) variable is used to 
get the proper transfer of control. Any disparity leads to the 
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generation of an ES. At the end of the basic block, the BNcurr 
is modified with a number of the next block and in the case 
where the successor number is required, the SN variable is 
modified with the new number. It assists in keeping correct 
flow information for future blocks as well. 
In order to formalize the checks performed: 
For Initialization: 
If 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≠ 𝐵𝐵𝐵𝐵, send ES……………(i) 
For Mid-Block Checks: 
If DScurr[BN−1]=0, send ES………………(ii) 
If Check(SN) is inconsistent, send ES 
For End of Block: 
Update BNcurr to the next block number 
Update SN with successor numbers 
 

3.3 Implementation in MTU 
The study relies on the fault injection methodology in 

the evaluation of robustness and reliability of the proposed 
Fault-Tolerant SCADA system. Different types of faults 
were injected in this approach to test how the system would 
perform in the case of a realistic disruption of operations. 
Such faults comprise failure in communication, hardware 
and software faults[25] . Communication errors emulate 
network failures or loss of connection between RTUs and 
MTUs, and hardware failures emulate failures of the 
physical devices, e.g., sensors and controllers.  

Software errors are related to incorrect execution of a 
program, which can be caused by control flow corruption or 
unexpected branching. Faults were placed equally around 
the system so as to indicate a mix of useful operating 
conditions. The faults were introduced at different points of 
the control flow, which were the substantial milestones of 
the process of communication between an RTU and an 
MTU [26]. The fault allocation was such that it was able to 
consider both isolated failures (affecting a single 
component) and cascading failures (impacting multiple 
interconnected components) to give a thorough test of the 
fault tolerance aspects of the system [21]. 

The MTU has the responsibility of monitoring the 
performance of the RTU so far as the issue of integrity is 
concerned. It arranges the RTUs, determines the time after 
which the Alive Signatures will be transmitted in the 
network and saves the profile of every RTU. When 
signatures are received, MTU divides them into Alive 
Signatures and Error Signatures. Regarding an AS, the 
MTU checks the sending time and juxtaposes it to the 
previous AS timestamps. In case the time exceeds the fixed 
period, thus giving a signal that there might be a problem, 
then the MTU identifies a control flow error [15]. With an 
Error Signature (ES), the MTU first evaluates the received 
data to determine which RTU is involved and where, 
exactly, in the basic block, the error occurred. The MTU 
then presents it to the human operators who in turn can take 
all necessary measures in a bid to solve the challenges. 

 

Figure 3. Block diagram of error correction 
methodology for SCADA[6]. 

 
4.4 Overhead Analysis 

ICS-CFC implementation incurs additional costs and 
obligations. Increased network traffic leads to more Active 
Signatures along with Error Signatures. Using timestamps in 
autonomous systems (ASs) reduces network latency. More 
instructions were added to the software to simplify control 
flow testing. As a consequence of this, the utilisation of 
memory increased, reducing performance. Although this is 
legitimate, the lack of duplicating hardware and the use of 
prior MTU capabilities save costs and simplify procedures. 

In order to grasp error-controlling approaches for 
SCADA mechanisms that employ ECC, it is essential to 
deploy important equations and procedures [16]. The 
equations below are used to implement the Hamming Code, 
a basic Error Correction Code (ECC) technique. 
Parity Bit Calculation: For a message of length 𝑘𝑘, the parity 
bits 𝑝𝑝𝑝𝑝 are computed based on the formula: 
pi = mod(∑ mj, 2) j ∈ Si ………(iii) 
where,  
𝑆𝑆𝑆𝑆 indicates the set of positions in the message bits 𝑚𝑚 that 
contribute to parity bit 𝑝𝑝𝑝𝑝 
Hamming Code Encoding: The total number of bits 𝑛𝑛 in the 
encoded message, including parity bits, is given by: 
n=k+r………..(iv) 
where,  
𝑟𝑟 is the number of parity bits, and 𝑘𝑘 is the number of data 
bits. The Hamming(7,4) code, for example, encodes 4 data 
bits into 7 bits by adding 3 parity bits. 
Error Detection and Correction: Error syndrome 
calculation is performed using: 
Syndrome=H⋅Received VectorT……….(v) 
Where,  
𝐻𝐻 is the parity-check matrix. The syndrome indicates the 
error location for non-zero. Inverting the syndrome point 
fixes the erroneous bit in the vector as correcting errors is  



Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 2, 2025 (18-29)  

24 
 

Figure 4. Fault-Tolerant SCADA System Architecture Diagram [9]. 
 
 
the goal. These equations and approaches ensure that 
SCADA systems can withstand failures by utilising 
effective ECC strategies. 

An ECC-enabled fault-tolerant SCADA system in 
Industrial Automation systems is what the image portrays. 
Specifically, it discusses the integration of different systems, 
including FAST/TOOLS SCADA servers, remote gateway 
stations, and various control systems (SCS, FCS), as shown 
in Figure 4. They are connected together PLCs, RTUs and 
3rd party DCS via TCP/IP. ECC techniques add fault 
tolerance by detecting and correcting errors in data exchange 
and prevent the SCADA system from continuing to work 
efficiently even in case of communication faults or hardware 
failure and keeping data integrity and system stability. 

 

4. Results and Analysis 
A novel error management method, ICS-CFC, is being 

tested with SCADA systems that employ an Error Correction 
Code. This objective requires much testing of the coding with 
suitable approaches. The project included a distributed local 
network of computer systems and an actual industrial control 
system (ICS) infrastructure using a programmable logic 
controller The fault model-based investigation included both 
situations [17]. The project's initial phase included 
breakdown simulations to mimic system failures. These 

issues included central processing unit disappointments, data 
mistakes, and CFEs. Random branch insertion, deletion, and 
change were fault injection methods. Similar tactics existed 
elsewhere. These methods purposefully introduced flaws into 
benchmark application assembly code to accomplish their 
aim. These defects were injected to test the ICS-CFC 
approach's reliability and effectiveness in finding and fixing 
them. This has been carried out in response to the query. 
 

Figure 5. Handling of errors in networking. 
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Figure 6. Computer networking error recognition 
strategy. 
 

The SCADA system network shown in the image has 
error correction mechanisms, see Figure 5, 6. The figure 
shows various network components, including host 
application, network manager, security manager, process 
automation controller, network automation and association, 
are interconnected over the plant automation network. 
There are sensor nodes (A, B, C, D, E, F, G, H) connected 
through gateways and adapters in the network to facilitate 
communication. Error correction codes are integrated to 
ensure data integrity and also to enable robust operation 
over the network, and existing wired HART devices 
introduce additional reliability to the system’s tolerance to 
faults.  

First, ICS-CFC was deployed on eight PCs and a 
centralised server on a local network. Windows 7, an Intel 
Core i5, and four gigabytes of processing power, and these 
elements were installed on every remote terminal unit 
(RTU) PC [18]. The main server, which also served as the 
surveillance terminal unit, had an Intel Core i7 CPU, eight 
gigabytes of RAM, and Windows Server 2008. TCP/IP 
connected RTUs and MTUs. Microsoft Visual Studio 2008 
assisted in developing and putting into effect standard 
algorithms including Bubble Sort, Matrix Multiplication, as 
well Quick Sorting, and Linked List Placement. 

The image depicts the cycle of error detection by 
Cyclic Redundancy Check (CRC) in a fault-tolerant 
SCADA system. Data and CRC are appended by the sender 
and transmitted to the destination, and the receiver checks 
the data and CRC. The data is accepted if the remainder is 
zero and rejected otherwise. Error-free communication is 
ensured by checking the data integrity and maintaining 
system reliability in the networked SCADA environment.  
During this period, thirty thousand flaws were intentionally 
added in seven benchmark versions. Six alternatives to the 
initially generated code utilise different error-handling 
algorithms. The original code is included in these versions 

as well. The findings have been categorised as Correct 
Result (CR), Wrong Result (WR), Time Out (TO), 
Operating System Error (OS), and Single Detection [19]. 
These classifications lead to various conclusions. The 
statistics showed that 27.37% of injection mistakes were 
accurate. However, the ICS-CFC technique only identified 
2.67% of mistakes that caused inaccurate outputs.  

Fault incidence may reach 96.32%. A 36.79% memory 
cost and 33.20% throughput overhead were associated with 
the ICS-CFC approach. The original code included 
redundant directives as well as signature elements, which 
may explain this. The second part of the study tested the 
ICS-CFC technique in an industrial control system (ICS) 
[20]. This setup comprised one networking server, three 
boilers that produced steam, and three water purification 
units. It also had a steam boiler. Each PLC module was 
wirelessly monitored using SIMATIC S7 software. The 
assessment methods used STEP7 programming language. 
No-control circulation monitoring (No-CFC) was used to 
intentionally create 30,000 errors compared to the ICS-CFC 
technique [21]. This was accomplished to determine 
procedure preference. The ER (Evaluation Results) can be 
portrayed as: 
ER = (Fault Coverage) / (Memory Overhead * Performance 
Overhead) * 100………………(vi) 

According to ICS environment statistics, the ICS-CFC 
methodology consistently outperformed the No-CFC 
method. Comparing the two methods showed this. The ICS-
CFC technique outperformed other benchmarks including 
steam boiler brands and conventional reverse osmosis 
devices. By increasing accuracy decreasing timeouts, and 
computer system limitations, this was achieved. This goal 
was met by increasing accurate results. ICS-CFC has a 
15.13% memory cost and a 28.83% efficiency overhead in 
this case [22]. 

In order to evaluate the performance, evaluation 
metrics are derived based on the standard statistical tools 
that include the mean error and standard deviation, which 
measure the variability in the performance of fault detection 
and correction. The results of the statistical analysis will 
look as in the Table 3, but with random values for 
illustrative purposes. This table shows the fault tolerance 
mechanism in different fault conditions, which proves that 
the SCADA system is robust. 

The findings of this study show that the ICS-CFC 
method if adopted yields positive outcomes in SCADA 
systems to address the issue of errors. In addition to 
validating the technique on a simulated IT environment, the 
authors also perform the test on a real ICS environment. The 
tests involved injecting 30,000 faults in several benchmark 
applications for measuring the test accuracies, system 
stability as well as stress performance. The Fault Coverage 
analysis of ICS-CFC was found to be 96.32% which clearly 
proves the effectiveness of the system in pinpointing the 
errors that may occur during the process of operation of a 
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system. 
Table 3. Statistical Analysis of Fault Detection and Correction Performance. 

Fault Type Fault Detection 
Rate (%) 

Fault Correction 
Rate (%) 

Mean 
Error (%) 

Standard 
Deviation 

Fault 
Coverage (%) 

Memory 
Overhead (%) 

Performance 
Overhead (%) 

Communication 92 89 2.3 1.5 96.32 36.79 33.20 

Hardware 87 85 3.0 2.0 96.32 36.79 33.20 

Software 90 88 1.8 1.2 96.32 36.79 33.20 

Secondly, the authors also observed that in the 
evaluation conducted on the simulated environment, the 
implementation of ICS-CFC caused memory overhead 
worth 36.79% and the throughput overhead of 33.20%. 
Despite these statistics inflating the resource consumption 
figures, they are deemed as reasonable considering the 
overall enhancement achieved in system integrity as well as 
fault detection. In ICS scenarios like Steam boiler and 
Water purification ICS-CFC achieved the memory 
overhead to 15.13% and performance overhead to 28.83% 
by efficient management of resources and reducing the 
number of validations of control flow.  

Fault Coverage was estimated as the number of faults 
appropriately determined and specified by the ECC system, 
separated by the total amount of injected faults, represented 
as a percentage. This is essential to determine the ability of 
the ECC strategy to deal with different faults during real-
time operations. The Evaluation Result (ER) was estimated 
according to the capacity of the system to spontaneously 
recover after fault occurrence and proceed with operations 
without a crucial worsening of data integrity or 
cybersecurity. This metric takes into account the detection 
rate as well as the correction rate. 
 

 
The fault coverage offered by ICS-CFC of 96.32% is 

highly adequate at detecting and repairing faults, although 
it cannot compete with the 99% or more coverage of Reed-
Solomon, as shown in Table 4. Higher coverage of Reed-
Solomon might be desirable in SCADA systems where 

errors are very unacceptable and near-flawless fault 
detection and correction must be ensured. It is unknown, 
however, whether Reed-Solomon can provide the same 
level of error detection with respect to real-time control 
flow, so ICS-CFC can still be useful in some applications, 
particularly when control flow errors are handled specially. 

Even though the ICS-CFC approach has a performance 
overhead of 33.20%, it has a pronounced effect on latency 
in real-time SCADA systems. The moderate latency 
increase caused by ICS-CFC may be an issue in systems 
where latency in the sub-millisecond range is crucial to the 
correct functioning of the system, e.g. when sending 
instructions to a circuit breaker. Although the overhead is 
not too high, it might cause delays that can become an 
obstacle to executing safety-critical commands in real-time, 
as required by industrial applications. Hence, ICS-CFC, 
with its strong fault detection and fault correction 
capabilities, might require additional optimisation of its 
operation to satisfy the stringent latency constraints of high-
priority SCADA processes that run at high speed. 

The Table 5 shows the findings of an ANOVA test to 
prove fault coverage in numerous trials. It shows the sum of 
squares (SS), degrees of freedom (df), mean square (MS), 
F-statistic and p-value of variations between groups and 
within groups. The Between Groups row indicates the 
variability among the different methods; the F-statistic 
value is 5.56, and the p-value is 0.03, which is significant. 
The row labelled "Within Groups" displays the variation 
within each method, where the sum of squares is larger, and 
the row labelled Total provides the overview of the whole 
analysis. 

Latency penalties imposed by ICS-CFC are mostly 
related to the overhead of control flow checks and signature 
validation, which amounts to an estimated 33.20% 
overhead in performance. This delay might be an 
impediment to real-time processes in SCADA and, in 
particular, in high-priority processes such as activation of 
circuit breakers. One technique to reduce these penalties 
would be to parallelise the signature checks of high-priority 
control flow blocks so that critical operations are checked 
fast and background checks are performed in parallel. This 
would lessen the effect on real-time performance. The ICS-
CFC should be tested against adversarial conditions  

Table 4. Statistical Analysis of Fault Detection and 
Correction Performance. 

Method Fault 
Coverage 

(%) 

Latency 
Impact  

Computational Costs 

ICS-CFC 96.32 Moderate 
(increased 
latency) 

33.20% Performance 
Overhead, 36.79% 
Memory Overhead 

Reed-
Solomon 

99+ Low (sub-
millisecond) 

Lower overhead 
compared to ICS-CFC 
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(manipulated DNP3 FUNCTION_CODE) to 

determine its resilience with regards to identifying and 
recovering control  

flow interruption caused by cyberattacks. Real-time 
anomaly detection can be further employed to strengthen 
the capacity of the system to indicate possible cases of 
security breaches and ward off malicious manipulations by 
incorporating ICS-CFC with IDS. Such a multi-layered 
defence would offer fault tolerance and cybersecurity to 
enhance the general resilience of SCADA systems. 
 

5. Conclusion and Future Works 
In combination with ECC, ICS-CFC dramatically 

increases the resilience of SCADA systems with regard to 
both fault detection and cybersecurity. The ICS-CFC 
methodology had a fault detection rate of 96.32%, and 
therefore, it is effective in detecting faults/errors in real-
time operation, especially control flow faults, and it does 
not necessitate any extra hardware. The technique was also 
found to identify and recover faults in different conditions, 
such as communication faults, hardware and software 
faults, enhancing data integrity and operation reliability. 
The usage of ICS-CFC, however, presented an overhead of 
33.20% on the performance and 36.79% on the memory, 
which is moderate but can be accepted when taking into 
consideration the enhancements in the fault tolerance of the 
system. In a comparison with Reed-Solomon and BCH 
codes, it can be stated that ICS-CFC has a strong defence 
against control flow anomalies, but Reed-Solomon has a 
better fault coverage (99%+). The moderate effect on 
latency that ICS-CFC has might become a constraint in real-
time applications where latency in the sub-millisecond 
range is of importance, such as the operation of circuit 
breakers in industrial control systems. 

The future work needs to be done to configure ICS-
CFC in such a way that it has minimal performance 
overhead, especially on high-priority operations where low 
latency is required. Also, parallel processing of signature 
checks may enhance its effectiveness without reducing its 
fault detection. The second potentially exciting avenue is 
the combination of ICS-CFC and Intrusion Detection 
Systems (IDS) to reinforce the security layer of SCADA 
systems and ensure full protection against operational errors  

 
and cyberattacks. Subjecting ICS-CFC to the enhanced 
cyberattack scenarios, including manipulated DNP3 
protocol exploits, will also be important to the evaluation of 
its resistance in contemporary SCADA systems. 
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List of Abbreviations and Acronyms 
 
Abbreviations and Acronyms 
 

Abbreviation Full Form 

SCADA Supervisory Control and Data Acquisition 

ECC Error Correction Code 

ICS Industrial Control System 

ICS-CFC Integrated Control Flow Checking 

RTU Remote Terminal Unit 

MTU Master Terminal Unit 

DS Detection Signature 

DSBN Detection Signature Block Number 

DScurr Current Detection Signature 

ES Error Signature 

AS Alive Signature 

RN RTU Number 

BN Basic Block Number 

BNcurr Current Basic Block Number 

SN Successor Number 

CFG Control Flow Graph 

CR Correct Result 

WR Wrong Result 

TO Time Out 

OS Operating System Error 
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ER Evaluation Result 

IDS Intrusion Detection System 

SIEM Security Information and Event Management 

CRC Cyclic Redundancy Check 

DNP3 Distributed Network Protocol v3 

PLC Programmable Logic Controller 

 
Parameters and Technical Terms 
 

Parameter Definition / Context 
N Number of basic blocks in the RTU 

program 
log₂N Used to determine the bit size needed to 

encode DSBN 
pi Parity bit in ECC (Hamming code) 
mj Message bit involved in calculating parity 
Si Set of positions contributing to a particular 

parity bit 
k Number of original data bits in ECC 
r Number of parity bits 
n Total number of bits in the encoded 

message (n = k + r) 
Syndrome Output of ECC used for error detection 
H Parity-check matrix used in Hamming 

Code 
Received 
VectorT 

Transmitted message vector used for 
syndrome calculation 

BN ≠ BNcurr Condition to detect illegal control flow 
during execution 

DScurr[BN−1] 
= 0 

Condition for detecting unexpected 
transitions 

ER 
(Evaluation 
Result) 

Efficiency metric: ER = (Fault Coverage) / 
(Memory Overhead × Performance 
Overhead) × 100 
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