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Abstract

In this paper, we study the graph structure of the zero divisor graph I'(R), when R is a
local principal ideal ring (P.I.R.). Special attention is given to the case when the nilpotency
index t is an even or odd positive integer, and the graph structure is clearly given in terms of
the properties of the sets X;. Formulas are given for computing the Zagreb coindices of the
graph I'(R). These results build an understanding of how the properties of algebraic ring are
related to the structural graph properties of the respective graphs.
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1. Introduction

This paper discusses a commutative ring R with an
identity element 1 # 0, when R local principal ideal ring
(P.LR) with nilpotency equals any positive integer
number. and Z(R) denotes the collection of all zero
divisors of the ring. In 1988, Beck (1) used graph theory to
describe zero divisors. He created a graph in which any
two elements s and r satisfying the relation s.7 = 0 are
represented as connected nodes (vertices), together with
the zero element. Anderson and Livingston then extended
this idea in 1999 (2) by eliminating the zero element. This
reduced the graphs made better to use. Because of this
change, a lot of researchers became interested in the topic.
You can read more on this from references [3—6]. This
study continues the line of previous work [7,8] that
explored the zero-divisor graph I'(R) structure in similar
contexts, follows old research and adds new things. This
paper wants to find general formulas for the first and
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second Zagreb coindices of I'(R). R is a local principal
ideal ring here, and the nilpotency index t is an even or
odd positive integer. These coindices offer a different way
of looking at Zagreb indices by examining structural
properties based on pairs of vertices that are not adjacent.
By differentiating between the vertex sets X; and their
relations to each other, we have formulas that allow us to
more fully understand the algebraic structure of the ring
given by its associated graph.

2. Preliminaries

We offer some basic definitions of ring theory and
graph theory.

Definition 2.1 (9): Let R is a commutative ring. An ideal L
in a ring R is called a maximal ideal if L # R and for any
ideal A of R such that L € A € R, then A = R. And the
local ring contains only one maximal ideal and denoted by
L
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Definition 2.2 (10): An element u of a ring R such that,
ur =ru = 1, where r € R is called a unit element. And
the set of all u € R is denoted by U(R).

Definition 2.3 (11): A local principal ideal ring P.LR. is
a ring where all ideals are principal and it has a unique
maximal ideal L, where every non-invertible element
belongs to the maximal ideal.

Definition 2.4 (12): A member a of a ring R is called
nilpotent if there is some positive integer ¢ with a = 0
where t is the least positive integer number, this property
is called the nilpotency index of a.

Definition 2.5 (12): An ideal [ in a ring R is called a
nilpotent ideal if there is some positive integer m such
that I™ = {0}, The least positive integer m such that the
condition is called the nilpotency index of the ideal I.

Definition 2.6 (9): The order of a set refers to the
number of elements in the set. It is also called the
cardinality of the set. If a set S has n elements, its order
isdenotedas | S |=n

Definition 2.7 (13): A graph G is formally defined as an
ordered pair G = (V,E), where V(G) = {vy,v,,V3, ... Up}
is the set of vertices, and E(G) = {eq,e,,e5,...e,}, for
all n,m €N is the collection of edges, each edge
connecting a pair of graph vertices.

Definition 2.8 (13): The order of the graph G is denoted
by n(G) and is defined to be the number of vertices of
the graph where n(G) = |V (G)|.

Definition 2.9 (14): The degree of a vertex v is denoted
by deg(v), is defined as the number of vertices adjacent
to a given vertex v in a graph G.

Definition 2.10 (14): A graph G is said to be complete if
every vertex of the graph is joined to every other vertex.
That is, there is an edge between every pair of distinct
vertices. A complete graph with n vertices is denoted by
K,.

Definition 2.11 (15,16): The first Zagreb coindices M; is
the sum of the degrees of all pairs of non-adjacent
vertices in the graph. It is given by:

M, = (deg(u) + deg (v))
Uv€E(G)

Definition 2.12 (15,16): The second Zagreb coindex M,
is determined by summing the products of the degrees of
all pairs of non-adjacent vertices of the graph:

M, = (deg(w) deg (v)).
Uv€E(G)
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3. Main Results

In order to examine the structure of I'(R) of a local
principal ideal ring (R,L,t) where R is a ring, L is
maximal ideal of R and t is a positive integer, we divided
the vertex set into disjoint subsets X; € I'(R). These
subsets are formed according to the difference of the
powers of the maximal ideal L. The subsets X;, indexed by
i=1,..,t—1, possess different adjacency properties
based on the value of i in comparison with t. So, the
induced subgraphs of X; belong to one of two types: nil-
subgraphs or complete subgraphs

Lemma 3.1 (8): Let R be a local P.I.LR with nilpotency ¢,
where t any positive integer number. Then any two
subsets X;, X; of I'(R) is adjacent if and only if i + j = t.

Remark 3.2: From above (Lemma 3.1), one can see

clearly that the properties of adjacency in the sets are as

follows. The set X; adjacent to only X;_4, and X, adjacent

to X;_1 and X;_, , to X¢__ is adjacent to all sets X;, when
2

i=§+ 1,...,t — 1, for all t even or odd

Theorem 3.3: In local P.ILR with nilpotency t even
positive integer number, the first Zagreb coindex is given

by:

X£_1

2 t-1
M=) [ axbaxi-n( ) [x|

i=1 j=t—i

¢
“2 771 Xl [ t-1

+ ZIXI > | 2 Il degtun

k=i+1h=1|j=t

—‘1 “1 Xkl / t-1

+ Z 1,1 Z z Z |X,| + deg (u})

k=i+1 h=

Proof: From the above Remark 3.2, we have every vertex
from X; to X:_, are not adjacent between them. Also, all
2

vertices in X;_; are excluded because all these vertices are
adjacent to all other vertices of the graph I'(R). Therefore,
to find the first Zagreb coindex, the sum of numbers of
pair different vertices without repeating pairs, therefore we
divided the proof to three parts.

Part 1. Used the combination law for choosing two

vertices within each set separately (i=j) to

Xl,....,XE_l,where all vertices on set have the same
2
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degree.

Since,
t—1

t
deg (V)vex; = Z |x;|,i = L.,z —1

j=t—i

Apply that to the first Zagreb coindex low, there is:

My =l (2deg(vrex,) + €' (2deg(v)sex,)

Xt |
+ .+ C <2 deg(v)vEXt )'
-1

(1 )( )
7_1
+ot 2 Z |,
j=t—%—1
t-1
CACAER NP
j=t-1
t—1
+"'+(Xt )(Xt —1) Z |XJ|
j=t-5-
31 t-1
= > [ axvaxi-n{ > 1x|
i=1 j=t—i

Part 2. We will analyze the cases of non-adjacency

between the vertices of distinct sets (i # j) form X; to

X:_,, where choosing two distinct vertices on set has a
2

deferent degree.
Whenv € X; andu € X,

X2

Ay = Xl | D (deg(uex, + deg(un)) + -
h=1

b
i

+ Z (deg(@)yex, +deg(uy)
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t
771Xl

=l | D0 (deg@uey, +deg (un)

k=2 h=1

X3
A; = |X,| (Z (deg(v),,exz + deg(uh)) + o

h=1
Xt

51

+ Z (deg(W)yex, + deg(uy))
h=1

t
771 Xkl
= 10| ) ) (deg(@yex, + deg (un)
k=3 h=1
X4l
45 = 1| \Z(deg(v)vexs + deg(uy) + -
h=1

x
i

+ Z (deg()vex, + deg(uy))

t
771 Xkl
= |X,] (deg(V)yex, + deg (up))

2
k=4 h=1

ﬁM"%
- oy

(deg(v)vext_ + deg(“h))

N| e+
|
o
>
=

(deg(v)vext_ + deg (uh)>

3
L
g

=
1l

N[ e
|
[N
>
1l
g
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Therefore, My = Ay + -+ Ae_,
2

o 511Xl
M, = Z | X1 Z(deg(v)vexi +deg (up))
i=1 kK=i+1h=1
Since,
t—-1 ¢
deg Moex, = Y K i=1mz—1
j=t-i

‘—2 _‘1 Xkl / t-1

Z Xl Z Z Z |X;| + deg (un)

k=i+1h= j=t—i

And used the degree of the vertices of deg (uy) law after
the distribution of all summation, where
t—1

t
de g(uy) = 2 |Xj|,i = 1,...,5—

j=t—i

Part 3. Now, we consider the cases of non-adjacency

between the elements of the sets X;, where
i=1,...,.-—1

And the elements of the sets X;, where

'—t+t+1 t—2
]—2 >
Now,

Xt

2

By = 1Xl| ) (deg@ue, + deg (ui)) + -
h=1

[Xe—2]

+ Z (deg(U)uex1 +deg (up))
h=1

-2 |Xkl

Z(deg(v)vex1 + deg (uz))

h=1

= |X1|

t
k=

Xt

2

By = 1X,1| ) (deg(@ye, + deg (i) + -

h=1

[Xt—3l

+ ) (deg@yex, + deg (up)
h=1

=3 1Xgl

Z > [deg@huex, + deg s3]
k=Lh=1
2

Xt
2
Bs = IXal| D (deg(®)yex, + deg i)+~
h=1
[Xe—al
+ ) (deg(uex, +deg (i)
h=1
t—4 Xkl
=11 [ D0 (deg@ue, + deg i)
k= %h:l
Xt
2
B: Xt (deg(v)vext + deg (u;l)>
27! 7 2
%_1 | Xkl
= X, Z Z(deg(v)vext +deg (uh)>
’ k=t-11=1 '
2
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Therefore,
M; =B ,+-+B:
51
X%‘l %_1 | Xkl
= D[ D) D (deguex, +deg i)
i=1 k=i+1 h=1
Xt
i1 “1 Xkl / t-1

Z i Z Z Z %] + deg (i)

k=i+1h=

And used the degree of the vertices of deg(uy,)* law after
the distribution of all the summation

t—1
t
deg(up) = Z |Xj| —-1,i= > v, t—=1
j=t=i
Hence,
My =M, + M+
X
%‘1 t—1
M= ) | axhaxd - n{ x|

i=1 j=t—i

N
|
m
>~
il
-
|
n

|X]-| + deg(uy)

k=i+1h=1 \ j=t—i

I
o~

T 31 |Xk| t-1
|xl| D\ Do il deg i
k= L+1h 1\ j=t—i

Similarly, the first Zagreb coindex where t an odd positive
integer number can be derived taking into account the non
adjacency properties between the sets, therefore the
adjacency formula is as given:

t-1
2 t—1
= [ axbaxd - ) x|
i=1 j=t—i
Xt;_l‘l /t;_l Xkl /-1
AR [X5] + deg )
i=1 k=i+1 h=1 \j=t—-i

-1
2 Xkl [/ t—1

+ ZIXl DD ]+ deg )

k=i+1 h=1 \ j=t-i

Theorem 3.4: In local P.ILR with nilpotency (t) even
positive integer number, the second Zagreb coindex is
given by:

271 t-1 2
— Ax:DAX;l = 1)

i=1 j=t—i
X%‘Z 771 Xkl / -1

+ Z | X; 1 Z Z Z |X;| . deg(un)
i=1 k=i+1 h=1 \j=t—i
X%‘l 271 Xkl [ -1

SN A DA DNIRI!
i=1 k=i+1 h=1 \ j=t—i

Proof: From above Remark 3.2, we have every vertex
from X; to Xt are not adjacent between them. Also, all
2

vertices in X;_, are excluded because all these vertices are
adjacent to all another vertex of graph I'(R). Therefore, to
find the second Zagreb coindex, the sum of product
numbers of pair different vertices without repeating pairs,
therefore we divided the proof to three parts.

Part 1. The union rule was applied in selecting pairs of

vertices from within each provided set (i.e., for i = j), that

is, from sets X;, ..., Xt_,, whose vertices possess the same
2

degree. Since,
t—1

t
deg(v),,exi = Z |Xj|,i =1, g T 1

j=t—i

Apply that to the second Zagreb coindex low, there is :
— 2
My = ;" (deg(@oex,) + -

XE—I‘ 2
2 (deg(v)vEXt_l)
2

2

+C

t-1

(XD, — 1)
- Z|Xj| 4o
j=t-1
( 2
)
+ > > Iyl
j=t—=-1
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%_1 t-1 2
_ Ax:DAX;l = 1)
- 2 |X}|
i=1 j=t—i

Similarly, applying the second and third parts of
(Theorem 3.3) repeatedly, we have

g
" = Z'Xi'\kzz Z|X,-|.deg(u;)/

i=1 =i+1h=1 \ j=t—i
And,
Xt t
771 271 Xkl /-1
= Y | Y Y D ] deg i)
i=1 k=i+1h=1 \ j=t-i
Hence,
M, =M, +M, +M,
So,
t
~—1 2
2 t-1
— (X:DAX; — 1)
M, = 2 |X]|
i=1 j=t—i
X t
‘ 52 771 Xkl /-1
+ > 1x |X;| . deg(up)
i=1 k=i+1h=1 \ j=t—i
X
%— ‘ 5—1 |xk|

t—1
Z |X|.deg (u})
i=1 \k =i+1 h=1 \j=t-i

Similarly, the second Zagreb coindex, where t an odd
positive integer number can be derived taking into account
the non-adjacency properties between the sets, where the
adjacency formula is as given:

%_1 t—1 2
— Ax: DXl = 1)
) T
i=1 j=t—i
Xu 1‘ %1 Xkl / t—1

+ Z 1X;| Z Z Z|Xj|.deg(uh)

k=i+1 h=1 \ j=t-i
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=1
2 Xkl [/ t-1

Xt-1
Z'X' D DIl deg i

k=i+1h=1 \ j=t—i

This way of classifying the sets shows how non-zero zero
divisors of R are arranged in layers based on the powers of
L. This also helps us understand exactly how the vertices
are connected and, in general, how the graph I'(R) is
organized.

Conclusion

This paper provides general formulas for the Zagreb
coindices of I'(R) in local principal ideal rings. By vertex
subset analysis, it shows how algebraic ring structures
determine the non-adjacency of the graph and overall
structure.
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