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     In this paper, we study the graph structure of the zero divisor graph 𝛤𝛤(𝑅𝑅), when 𝑅𝑅 is a 
local principal ideal ring (P.I.R.). Special attention is given to the case when the nilpotency 
index 𝑡𝑡 is an even or odd positive integer, and the graph structure is clearly given in terms of 
the properties of the sets 𝑋𝑋𝑖𝑖. Formulas are given for computing the Zagreb coindices of the 
graph 𝛤𝛤(𝑅𝑅). These results build an understanding of how the properties of algebraic ring are 
related to the structural graph properties of the respective graphs. 
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1. Introduction 

This paper discusses a commutative ring 𝑅𝑅 with an 
identity element 1 ≠ 0, when 𝑅𝑅 local principal ideal ring 
(P.I.R) with nilpotency equals any positive integer 
number. and 𝑍𝑍(𝑅𝑅) denotes the collection of all zero 
divisors of the ring. In 1988, Beck (1) used graph theory to 
describe zero divisors. He created a graph in which any 
two elements 𝑠𝑠 and 𝑟𝑟 satisfying the relation 𝑠𝑠. 𝑟𝑟 = 0 are 
represented as connected nodes (vertices), together with 
the zero element. Anderson and Livingston then extended 
this idea in 1999 (2) by eliminating the zero element. This 
reduced the graphs made better to use. Because of this 
change, a lot of researchers became interested in the topic. 
You can read more on this from references [3–6]. This 
study continues the line of previous work [7,8] that 
explored the zero-divisor graph 𝛤𝛤(𝑅𝑅) structure in similar 
contexts, follows old research and adds new things. This 
paper wants to find general formulas for the first and 

second Zagreb coindices of 𝛤𝛤(𝑅𝑅). 𝑅𝑅 is a local principal 
ideal ring here, and the nilpotency index 𝑡𝑡 is an even or 
odd positive integer. These coindices offer a different way 
of looking at Zagreb indices by examining structural 
properties based on pairs of vertices that are not adjacent. 
By differentiating between the vertex sets 𝑋𝑋𝑖𝑖 and their 
relations to each other, we have formulas that allow us to 
more fully understand the algebraic structure of the ring 
given by its associated graph. 

 

2. Preliminaries 
We offer some basic definitions of ring theory and 

graph theory. 
Definition 2.1 (9): Let 𝑅𝑅 is a commutative ring. An ideal 𝐿𝐿 
in a ring 𝑅𝑅 is called a maximal ideal if 𝐿𝐿 ≠ 𝑅𝑅 and for any 
ideal 𝐴𝐴 of 𝑅𝑅 such that 𝐿𝐿 ⊂ 𝐴𝐴 ⊆ 𝑅𝑅, then 𝐴𝐴 = 𝑅𝑅. And the 
local ring contains only one maximal ideal and denoted by 
𝐿𝐿 
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Definition 2.2 (10): An element 𝑢𝑢 of a ring 𝑅𝑅 such that, 
𝑢𝑢𝑢𝑢 = 𝑟𝑟𝑟𝑟 = 1, where 𝑟𝑟 ∈ 𝑅𝑅 is called a unit element. And 
the set of all 𝑢𝑢 ∈ 𝑅𝑅 is denoted by 𝑈𝑈(𝑅𝑅). 
Definition 2.3 (11): A local principal ideal ring P.I.R. is 
a ring where all ideals are principal and it has a unique 
maximal ideal 𝐿𝐿, where every non-invertible element 
belongs to the maximal ideal.  
Definition 2.4 (12): A member 𝑎𝑎 of a ring 𝑅𝑅 is called 
nilpotent if there is some positive integer 𝑡𝑡 with 𝑎𝑎𝑡𝑡 = 0 
where 𝑡𝑡 is the least positive integer number, this property 
is called the nilpotency index of 𝑎𝑎. 
Definition 2.5 (12): An ideal 𝐼𝐼 in a ring 𝑅𝑅 is called a 
nilpotent ideal if there is some positive integer 𝑚𝑚 such 
that 𝐼𝐼𝑚𝑚 = {0}, The least positive integer 𝑚𝑚 such that the 
condition is called the nilpotency index of the ideal 𝐼𝐼. 
Definition 2.6 (9): The order of a set refers to the 
number of elements in the set. It is also called the 
cardinality of the set. If a set 𝑆𝑆 has 𝑛𝑛 elements, its order 
is denoted as ∣ 𝑆𝑆 ∣= 𝑛𝑛. 
Definition 2.7 (13): A graph 𝐺𝐺 is formally defined as an 
ordered pair 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), where 𝑉𝑉(𝐺𝐺) = {𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … 𝑣𝑣𝑛𝑛} 
is the set of vertices, and 𝐸𝐸(𝐺𝐺) =  {𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3 , . . . 𝑒𝑒𝑚𝑚}, for 
all 𝑛𝑛,𝑚𝑚 ∈ 𝑁𝑁 is the collection of edges, each edge 
connecting a pair of graph vertices. 
Definition 2.8 (13): The order of the graph 𝐺𝐺 is denoted 
by  𝑛𝑛(𝐺𝐺) and is defined to be the number of vertices of 
the graph where  𝑛𝑛(𝐺𝐺) = |𝑉𝑉(𝐺𝐺)|. 
Definition 2.9 (14): The  degree of a vertex 𝑣𝑣 is denoted 
by 𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣), is defined as the number of vertices adjacent 
to a given vertex 𝑣𝑣 in a graph 𝐺𝐺. 
Definition 2.10 (14): A graph 𝐺𝐺 is said to be complete if 
every vertex of the graph is joined to every other vertex. 
That is, there is an edge between every pair of distinct 
vertices. A complete graph with 𝑛𝑛 vertices is denoted by 
𝐾𝐾𝑛𝑛.  
Definition 2.11 (15,16): The first Zagreb coindices 𝑀𝑀1���� is 
the sum of the degrees of all pairs of non-adjacent 
vertices in the graph. It is given by:  
 

𝑀𝑀1���� = � (𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢) + 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑣𝑣))
𝑢𝑢𝑢𝑢∉𝐸𝐸(𝐺𝐺)

 

 

Definition 2.12 (15,16): The second Zagreb coindex 𝑀𝑀2���� 
is determined by summing the products of the degrees of 
all pairs of non-adjacent vertices of the graph:  
 

𝑀𝑀2���� = � (𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢)𝑑𝑑𝑑𝑑𝑑𝑑 (𝑣𝑣))
𝑢𝑢𝑢𝑢∉𝐸𝐸(𝐺𝐺)

. 

 

3. Main Results 
In order to examine the structure of 𝛤𝛤(𝑅𝑅) of a local 
principal ideal ring (R, L, t) where 𝑅𝑅 is a ring, 𝐿𝐿 is 
maximal ideal of 𝑅𝑅  and 𝑡𝑡 is a positive integer, we divided 
the vertex set into disjoint subsets 𝑋𝑋𝑖𝑖 ⊆ 𝛤𝛤(𝑅𝑅). These 
subsets are formed according to the difference of the 
powers of the maximal ideal 𝐿𝐿. The subsets 𝑋𝑋𝑖𝑖, indexed by 
𝑖𝑖 = 1, … , 𝑡𝑡 − 1, possess different adjacency properties 
based on the value of 𝑖𝑖 in comparison with 𝑡𝑡. So, the 
induced subgraphs of 𝑋𝑋𝑖𝑖 belong to one of two types: nil-
subgraphs or complete subgraphs 

 
Lemma 3.1 (8): Let 𝑅𝑅 be a local P.I.R with nilpotency 𝑡𝑡, 
where 𝑡𝑡 any positive integer number. Then any two 
subsets 𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗 of 𝛤𝛤(𝑅𝑅) is adjacent if and only if 𝑖𝑖 + 𝑗𝑗 ≥ 𝑡𝑡. 

 
Remark 3.2: From above (Lemma 3.1), one can see 
clearly that the properties of adjacency in the sets are as 
follows. The set  𝑋𝑋1 adjacent to only 𝑋𝑋𝑡𝑡−1, and 𝑋𝑋2 adjacent 
to 𝑋𝑋𝑡𝑡−1 and 𝑋𝑋𝑡𝑡−2 , to 𝑋𝑋𝑡𝑡

2−1
 is adjacent to all sets 𝑋𝑋𝑖𝑖, when 

𝑖𝑖 = 𝑡𝑡
2

+ 1, … , 𝑡𝑡 − 1, for all 𝑡𝑡 even or odd 

Theorem 3.3: In local P.I.R with nilpotency 𝑡𝑡 even 
positive integer number, the first Zagreb coindex is given 
by: 

  

𝑀𝑀1���� = � �(|𝑋𝑋𝑖𝑖|)(|𝑋𝑋𝑖𝑖| − 1)� � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

��

�𝑋𝑋𝑡𝑡
2−1

�

𝑖𝑖=1

 

+ � |𝑋𝑋𝑖𝑖|

⎝

⎛ � �� � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

+ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢ℎ)�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡
2−1

𝑘𝑘=𝑖𝑖+1
⎠

⎞

�𝑋𝑋𝑡𝑡
2−2

�

𝑖𝑖=1

 

+ � |𝑋𝑋𝑖𝑖|

⎝

⎛ � �� � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

+ 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ∗ )�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡
2−1

𝑘𝑘=𝑖𝑖+1
⎠

⎞

�𝑋𝑋𝑡𝑡
2−1

�

𝑖𝑖=1

 

 
Proof: From the above Remark 3.2, we have every vertex 
from 𝑋𝑋1 to 𝑋𝑋𝑡𝑡

2−1
 are not adjacent between them. Also, all 

vertices in 𝑋𝑋𝑡𝑡−1 are excluded because all these vertices are 
adjacent to all other vertices of the graph 𝛤𝛤(𝑅𝑅). Therefore, 
to find the first Zagreb coindex, the sum of numbers of 
pair different vertices without repeating pairs, therefore we 
divided the proof to three parts. 
Part 1. Used the combination law for choosing two 
vertices within each set separately (𝑖𝑖 = 𝑗𝑗) to 
𝑋𝑋1, … . ,𝑋𝑋𝑡𝑡

2−1
,where all vertices on set have the same 
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degree.  
Since,  

𝑑𝑑𝑑𝑑𝑑𝑑 (𝑣𝑣)𝑣𝑣∈𝑋𝑋𝑖𝑖 = � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

, 𝑖𝑖 = 1, … ,
𝑡𝑡
2
− 1 

Apply  that to the first Zagreb coindex low, there is: 
 

𝑴𝑴𝟏𝟏����∗ = 𝐶𝐶2
|𝑋𝑋1|�2𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋1� + 𝐶𝐶2

|𝑋𝑋2|�2𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋2� 

+⋯+ 𝐶𝐶2
�𝑋𝑋𝑡𝑡
2−1

�
�2 𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋𝑡𝑡

2−1
�, 

 

           = 2�
(|𝑋𝑋1|)(|𝑋𝑋1| − 1)

2
� � �𝑋𝑋𝑗𝑗�

𝑡𝑡−1

𝑗𝑗=𝑡𝑡−1

 

+⋯+ 2�
��𝑋𝑋𝑡𝑡

2−1
�� �𝑋𝑋𝑡𝑡

2−1
− 1�

2
� � �𝑋𝑋𝑗𝑗�

𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑡𝑡2−1

, 

 

            = (|𝑋𝑋1|)(|𝑋𝑋1| − 1) � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−1

 

+⋯+ ��𝑋𝑋𝑡𝑡
2−1

�� �𝑋𝑋𝑡𝑡
2−1

− 1� � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑡𝑡2−1

 

 

        = ��(|𝑋𝑋𝑖𝑖|)(|𝑋𝑋𝑖𝑖| − 1)� � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

��

𝑡𝑡
2−1

𝑖𝑖=1

. 

 
Part 2. We will analyze the cases of non-adjacency 
between the vertices of distinct sets (𝑖𝑖 ≠ 𝑗𝑗) form 𝑋𝑋1 to 
𝑋𝑋𝑡𝑡
2−1

, where choosing two distinct vertices on set has a 

deferent degree. 
When 𝑣𝑣 ∈ 𝑋𝑋𝑖𝑖 and 𝑢𝑢 ∈ 𝑋𝑋ℎ  

𝐴𝐴1 = |𝑋𝑋1|

⎝

⎜⎜
⎛
��𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋1 + 𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢ℎ)�
|𝑋𝑋2|

ℎ=1

+ ⋯

+ � �𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋1 + 𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢ℎ)�

�𝑋𝑋𝑡𝑡
2−1

�

ℎ=1

⎠

⎟⎟
⎞

 

       = |𝑋𝑋1|

⎝

⎛���𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋1 + 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ)�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡
2−1

𝑘𝑘=2
⎠

⎞ 

 

𝑨𝑨𝟐𝟐 = |𝑋𝑋2|

⎝

⎜⎜
⎛
��𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋2 + 𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢ℎ)�  + ⋯

|𝑋𝑋3|

ℎ=1

+ � �𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋2 + 𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢ℎ)�

�𝑋𝑋𝑡𝑡
2−1

�

ℎ=1

⎠

⎟⎟
⎞

 

        = |𝑋𝑋2|

⎝

⎛���𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋2 + 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ)�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡
2−1

𝑘𝑘=3
⎠

⎞ 

𝑨𝑨𝟑𝟑 = |𝑋𝑋3|

⎝

⎜⎜
⎛
��𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋3 + 𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢ℎ)�
|𝑋𝑋4|

ℎ=1

+ ⋯

+ � �𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋3 + 𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢ℎ)�

�𝑋𝑋𝑡𝑡
2−1

�

ℎ=1

⎠

⎟⎟
⎞

 

= |𝑋𝑋3|

⎝

⎛���𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋3 + 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ)�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡
2−1

𝑘𝑘=4
⎠

⎞ 

 
.  
. 
. 
. 
. 
 

𝑨𝑨𝒕𝒕
𝟐𝟐−𝟐𝟐

= �𝑋𝑋𝑡𝑡
2−2

� � �𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋𝑡𝑡
2−2

+ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢ℎ)�

|𝑋𝑋𝑡𝑡−1|

ℎ=1

 

= �𝑋𝑋𝑡𝑡
2−2

� � ��𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋𝑡𝑡
2−2

+ 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ)�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡
2−1

𝑘𝑘=𝑡𝑡2−1
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Therefore, 𝑴𝑴𝟏𝟏����∗∗ = 𝐴𝐴1 + ⋯+ 𝐴𝐴𝑡𝑡
2−2

 

 

𝑴𝑴𝟏𝟏����∗∗ = � |𝑋𝑋𝑖𝑖|

⎝

⎛ � ��𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋𝑖𝑖 + 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ)�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡
2−1

𝑘𝑘=𝑖𝑖+1
⎠

⎞

�𝑋𝑋𝑡𝑡
2−2

�

𝑖𝑖=1

 

Since, 

𝑑𝑑𝑑𝑑𝑑𝑑 (𝑣𝑣)𝑣𝑣∈𝑋𝑋𝑖𝑖 = � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

, 𝑖𝑖 = 1, … ,
𝑡𝑡
2
− 1 

𝑴𝑴𝟏𝟏����∗∗ = � |𝑋𝑋𝑖𝑖|

⎝

⎛ � �� � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

+ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢ℎ)�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡
2−1

𝑘𝑘=𝑖𝑖+1
⎠

⎞

�𝑋𝑋𝑡𝑡
2−2

�

𝑖𝑖=1

 

 
And used the degree of the vertices of 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ) law after 
the distribution of all summation, where  

𝑑𝑑𝑑𝑑 𝑔𝑔(𝑢𝑢ℎ) = � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

, 𝑖𝑖 = 1, … ,
𝑡𝑡
2
− 1 

 
Part 3. Now, we consider the cases of non-adjacency 
between the elements of the sets 𝑋𝑋𝑖𝑖, where  

𝑖𝑖 = 1, . . . ,
𝑡𝑡
2
−  1 

And the elements of the sets 𝑋𝑋𝑗𝑗, where  

𝑗𝑗 =
𝑡𝑡
2

+
𝑡𝑡
2

+ 1, . . . , 𝑡𝑡 − 2 

Now, 

𝑩𝑩𝟏𝟏 = |𝑋𝑋1|

⎝

⎜⎜
⎛

 ��𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋1 + 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ∗ )�

�𝑋𝑋𝑡𝑡
2
�

ℎ=1

+ ⋯

+ � �𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋1 + 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ∗ )�

|𝑋𝑋𝑡𝑡−2|

ℎ=1

⎠

⎟⎟
⎞

 

 

    = |𝑋𝑋1|����𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋1 + 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ∗ )�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡−2

𝑘𝑘=𝑡𝑡2

� 

𝑩𝑩𝟐𝟐 = |𝑋𝑋2|

⎝

⎜⎜
⎛

 ��𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋2 + 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ∗ )�

�𝑋𝑋𝑡𝑡
2
�

ℎ=1

+ ⋯

+ � �𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋2 + 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ∗ )�

|𝑋𝑋𝑡𝑡−3|

ℎ=1

⎠

⎟⎟
⎞

 

= |𝑋𝑋2|����𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋2 + 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ∗ )�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡−3

𝑘𝑘=𝑡𝑡2

� 

 

𝑩𝑩𝟑𝟑 = |𝑋𝑋3|

⎝

⎜⎜
⎛

 ��𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋3 + 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ∗ )�

�𝑋𝑋𝑡𝑡
2
�

ℎ=1

+ ⋯

+ � �𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋3 + 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ∗ )�

|𝑋𝑋𝑡𝑡−4|

ℎ=1

⎠

⎟⎟
⎞

 

 

= |𝑋𝑋3|����𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋3 + 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ∗ )�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡−4

𝑘𝑘=𝑡𝑡2

� 

.  
. 
. 
. 
. 
. 

𝑩𝑩𝒕𝒕
𝟐𝟐−𝟏𝟏

= �𝑋𝑋𝑡𝑡
2−1

�

⎝

⎜⎜
⎛
��𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋𝑡𝑡

2−1
+ 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ∗ )�

�𝑋𝑋𝑡𝑡
2
�

ℎ=1

⎠

⎟⎟
⎞

 

 

= �𝑋𝑋𝑡𝑡
2−1

�

⎝

⎛ � ��𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋𝑡𝑡
2−1

+ 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ∗ )�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡
2−1

𝑘𝑘=𝑡𝑡2−1 ⎠

⎞ 
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Therefore, 

𝑴𝑴𝟏𝟏����∗∗∗ = 𝐵𝐵1 + ⋯+ 𝐵𝐵𝑡𝑡
2−1

 

 

       = � |𝑋𝑋𝑖𝑖|� � ��𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋𝑖𝑖 + 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ∗ )�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡
2−1

𝑘𝑘=𝑖𝑖+1

�

�𝑋𝑋𝑡𝑡
2−1

�

𝑖𝑖=1

 

 

= � |𝑋𝑋𝑖𝑖|

⎝

⎛ � �� � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

+ 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ∗ )�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡
2−1

𝑘𝑘=𝑖𝑖+1
⎠

⎞

�𝑋𝑋𝑡𝑡
2−1

�

𝑖𝑖=1

 

And used the degree of the vertices of 𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢ℎ)∗ law after 
the distribution of all the summation  

𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢ℎ∗ ) = � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

− 1, 𝑖𝑖 =
𝑡𝑡
2

, … , 𝑡𝑡 − 1 

Hence, 

𝑀𝑀1���� = 𝑀𝑀1����
∗ + 𝑀𝑀1����

∗∗ + 𝑀𝑀1����
∗∗∗ 

𝑴𝑴𝟏𝟏���� = � �(|𝑋𝑋𝑖𝑖|)(|𝑋𝑋𝑖𝑖| − 1)� � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

��

�𝑋𝑋𝑡𝑡
2−1

�

𝑖𝑖=1

 

+ � |𝑋𝑋𝑖𝑖|

⎝

⎛ � �� � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

+ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢ℎ)�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡
2−1

𝑘𝑘=𝑖𝑖+1
⎠

⎞

�𝑋𝑋𝑡𝑡
2−2

�

𝑖𝑖=1

 

+ � |𝑋𝑋𝑖𝑖|

⎝

⎛ � �� � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

+ 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ∗ )�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡
2−1

𝑘𝑘=𝑖𝑖+1
⎠

⎞

�𝑋𝑋𝑡𝑡
2−1

�

𝑖𝑖=1

 

Similarly, the first Zagreb coindex where 𝑡𝑡 an odd positive 
integer number can be derived taking into account the non 
adjacency properties between the sets, therefore the 
adjacency formula is as given: 
 

𝑴𝑴𝟏𝟏���� = ��(|𝑋𝑋𝑖𝑖|)(|𝑋𝑋𝑖𝑖| − 1)� � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

��

𝑡𝑡−1
2

𝑖𝑖=1

 

+ � |𝑋𝑋𝑖𝑖|

⎝

⎛ � �� � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

+ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢ℎ)�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡−1
2

𝑘𝑘=𝑖𝑖+1
⎠

⎞

�𝑋𝑋𝑡𝑡−1
2 −1

�

𝑖𝑖=1

 

+ � |𝑋𝑋𝑖𝑖|

⎝

⎛ � �� � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

+ 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ∗ )�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡−1
2

𝑘𝑘=𝑖𝑖+1
⎠

⎞ .

�𝑋𝑋𝑡𝑡−1
2
�

𝑖𝑖=1

 

 
Theorem 3.4: In local P.I.R with nilpotency (t) even 
positive integer number, the second Zagreb coindex is 
given by: 
 

𝑴𝑴𝟐𝟐���� = ��
(|𝑋𝑋𝑖𝑖|)(|𝑋𝑋𝑖𝑖| − 1)

2
� � �𝑋𝑋𝑗𝑗�

𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

�

2

�

𝑡𝑡
2−1

𝑖𝑖=1

 

+ � |𝑋𝑋𝑖𝑖|

⎝

⎛ � �� � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

. 𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢ℎ)�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡
2−1

𝑘𝑘=𝑖𝑖+1
⎠

⎞

�𝑋𝑋𝑡𝑡
2−2

�

𝑖𝑖=1

 

+ � |𝑋𝑋𝑖𝑖|

⎝

⎛ � �� � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

. 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ∗ )�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡
2−1

𝑘𝑘=𝑖𝑖+1
⎠

⎞

�𝑋𝑋𝑡𝑡
2−1

�

𝑖𝑖=1

 

Proof: From above Remark 3.2, we have every vertex 
from 𝑋𝑋1 to 𝑋𝑋𝑡𝑡

2−1
 are not adjacent between them. Also, all 

vertices in 𝑋𝑋𝑡𝑡−1 are excluded because all these vertices are 
adjacent to all another vertex of graph 𝛤𝛤(𝑅𝑅). Therefore, to 
find the second Zagreb coindex, the sum of product 
numbers of pair different vertices without repeating pairs, 
therefore we divided the proof to three parts. 
Part 1. The union rule was applied in selecting pairs of 
vertices from within each provided set (i.e., for 𝑖𝑖 = 𝑗𝑗), that 
is, from sets 𝑋𝑋1, … ,𝑋𝑋𝑡𝑡

2−1
, whose vertices possess the same 

degree. Since, 

𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋𝑖𝑖 = � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

, 𝑖𝑖 = 1, … ,
𝑡𝑡
2
− 1 

Apply that to the second Zagreb coindex low, there is : 

𝑴𝑴𝟐𝟐����∗ = 𝐶𝐶2
|𝑋𝑋1|�𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋1�

2
+ ⋯

+ 𝐶𝐶2
�𝑋𝑋𝑡𝑡
2−1

�
�𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)𝑣𝑣∈𝑋𝑋𝑡𝑡

2−1
�
2

 

         =
(|𝑋𝑋1|)(|𝑋𝑋1| − 1)

2
� � �𝑋𝑋𝑗𝑗�

𝑡𝑡−1

𝑗𝑗=𝑡𝑡−1

�

2

+ ⋯ 

           +
��𝑋𝑋𝑡𝑡

2−1
�� �𝑋𝑋𝑡𝑡

2−1
− 1�

2
� � �𝑋𝑋𝑗𝑗�

𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑡𝑡2−1

�

2
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       = ��
(|𝑋𝑋𝑖𝑖|)(|𝑋𝑋𝑖𝑖| − 1)

2
� � �𝑋𝑋𝑗𝑗�

𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

�

2

�

𝑡𝑡
2−1

𝑖𝑖=1

 

 
Similarly, applying the second and third parts of 
(Theorem 3.3) repeatedly, we have 

𝑴𝑴𝟐𝟐����∗∗
∗

= � |𝑋𝑋𝑖𝑖|

⎝

⎛ � �� � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

.𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ∗ )�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡
2−1

𝑘𝑘=𝑖𝑖+1
⎠

⎞

�𝑋𝑋𝑡𝑡
2−2

�

𝑖𝑖=1

 

And, 

𝑴𝑴𝟐𝟐����∗∗∗ = � |𝑋𝑋𝑖𝑖|

⎝

⎛ � �� � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

.𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ∗ )�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡
2−1

𝑘𝑘=𝑖𝑖+1
⎠

⎞

�𝑋𝑋𝑡𝑡
2−1

�

𝑖𝑖=1

 

 
Hence, 

𝑴𝑴𝟐𝟐���� = 𝑀𝑀2����
∗+𝑀𝑀2����

∗∗ + 𝑀𝑀2����
∗∗∗ 

So, 
 

𝑴𝑴𝟐𝟐���� = ��
(|𝑋𝑋𝑖𝑖|)(|𝑋𝑋𝑖𝑖| − 1)

2
� � �𝑋𝑋𝑗𝑗�

𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

�

2

�

𝑡𝑡
2−1

𝑖𝑖=1

 

+ � |𝑋𝑋𝑖𝑖|

⎝

⎛ � �� � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

. 𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢ℎ)�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡
2−1

𝑘𝑘=𝑖𝑖+1
⎠

⎞

�𝑋𝑋𝑡𝑡
2−2

�

𝑖𝑖=1

 

+ � |𝑋𝑋𝑖𝑖|

⎝

⎛ � �� � �𝑋𝑋𝑗𝑗�
𝑡𝑡−1

𝑗𝑗=𝑡𝑡−𝑖𝑖

. 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑢𝑢ℎ∗ )�

|𝑋𝑋𝑘𝑘|

ℎ=1

𝑡𝑡
2−1

𝑘𝑘=𝑖𝑖+1
⎠

⎞

�𝑋𝑋𝑡𝑡
2−1

�

𝑖𝑖=1

 

Similarly, the second Zagreb coindex, where 𝑡𝑡 an odd 
positive integer number can be derived taking into account 
the non-adjacency properties between the sets, where the 
adjacency formula is as given: 
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. 

 
This way of classifying the sets shows how non-zero zero 
divisors of 𝑅𝑅 are arranged in layers based on the powers of 
𝐿𝐿. This also helps us understand exactly how the vertices 
are connected and, in general, how the graph 𝛤𝛤(𝑅𝑅) is 
organized. 

 

Conclusion 
This paper provides general formulas for the Zagreb 

coindices of 𝛤𝛤(𝑅𝑅) in local principal ideal rings. By vertex 
subset analysis, it shows how algebraic ring structures 
determine the non-adjacency of the graph and overall 
structure. 
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