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Conjugate gradient techniques are highly effective for addressing large-scale nonlinear
optimization problems. Hybridization is a prevalent strategy for improving the conjugate gradient
method. This study presents a novel hybrid conjugate gradient (CG) algorithm that incorporates
the golden section ratio for solving unconstrained optimization problems. Hence, we improve the
efficiency and robustness of traditional CG methods by taking advantage of the properties of the
golden section ratio, which is known for its optimality in line search procedures. Therefore, this
study explores the novel use of the golden section ratios (0.382) and (0.618) as a weighting factor
(B) in a hybrid convex combination under Dai-Liao condition of two pairs of standard conjugate
gradient methods: (B"S, BPY) and (B-S,BCP) separately. These formulas are fundamental to
conjugate gradient methods and provide clear benefits in optimization situations. The suggested
strategies seek to capitalize on the advantages of the approaches while minimizing their drawbacks
by including the golden section ratio which is known for reducing computational cost, improving
step size selection, and ensuring robust convergence especially in ill-conditioned problems in
optimization. The numerical results show how effective the suggested approaches are.
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1. Introduction

Mathematicians have created a number of numerical
techniques throughout the years to address this type of

The process of minimizing or maximizing an objective
function is known as optimization. A subfield of optimization
known as "unconstrained optimization" involves minimizing
an objective function that is dependent on actual variables
while completely removing any constraints on those
variables' values.

In unconstrained optimization, consider the following
objective function [1]:

min { f(x):x € R} €))
when f: R® — R is a continuously differentiable
function.
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problem, including the Newton method, CG, quasi-Newton

method, and steepest descent.

The conjugate gradient approach is the main emphasis of this

work due to its ease of use, minimal memory requirements

and particularly its usefulness when the dimension is big.

As is well known, there is a beginning point for solving this

issue {X,} is a sequence produced by a nonlinear CG [2] as:
Xp+1 = X + apdy (2)

Where:

Xy is the current iterating, a; > 0 is the step size is usually

determined by line search to fulfill the standard Wolfe line

search conditions [3]

[ + ardy) — f(x) < S gid,  (3)
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9 + aydi )" dy 2 0 gig dy, 4

or stronger version of the Wolfe line search conditions,
given by (4) and

lg (e + ardi )"yl < — 0l g dic|, (5)

Where 0 < § <o <1,d, is the search direction. In
CG methods, the search direction dj, is computed as:

dis1 = —9k+1 + B Sk,and dg = —go  (6)

where, s, = Xp41 — X, gk = V(%) and By is
known as conjugate gradient parameter throughout
history it has been created in various ways.

The scalar parameters S, are chosen differently for
each conjugate gradient technique.

These are a few well-known beta formulas:

T
BHS = JkXk=1l 4] (Hestenes and Stiefel, 1952)

y£_1 dg-1
FR _ ||gk||2
B = Tok_1I7 [5] (Flecher and Reeves, 1964)
BFR = Gices Vi [6] (Polak-Ribiere,1969)
T lgg 12 ’
2
peP = FL [7]1 (Conjugate Descent,1987)
—Yk-1 dg—1
LS — g£+1 Yk :
B === [8] (Liu and Storey, 1991)
9k Sk
DY llgg!l? .
7" =———— [9] (Dai-yuan, 1999)
Yi-1 dg—1
Where y,_1 = gx —9gr—1 and Il Il represent the
Euclidean norm.
In conjugate gradient method, the search

direction d, is determined in such a way that the
following conjugacy condition holds

diGd; =0, L#j (7
where G is the Hessian of the objective function. On
the other hand, according to the mean value theorem,

there exists some w € (0, 1) such that

dips1Yk = Adis19 (X + 0 di)"dy, (8)

Now, by combining (7), (8) the following conjugate
condition can be deduced

d£+1yk =0

Dai and Liao (DL) [10] with modification of conjugate

condition, presented a family of CG methods, denoted
by BPL, is decided by the extended conjugacy condition

digs1Yk = ~tJi+1S 9 t>0,is
scalar

in the DL method the CG coefficient is computed by
ﬁDL — Ihy1 Vr—tsg) (10)

vl
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The procedure (2), (6) with SP* in (10) is called the Dai-
Liao method. In recent years, much efforts has been made
to find the proper choice for the nonnegative
parameter t in (10), see [11],[12], [13], [14], [15]. Based
on a singular value study on the DL method, Babaie-Kafaki
proposed:

_ YEsk |, Nyl

= isoz T sl Ghanbari [16] proposed the following
k k

adaptive choices for t

_ Nkl
llskll”

And Andrei [17] suggested the following value for t

_ Yisk
e
The hybrid conjugate gradient method is a significant
class of conjugate gradient algorithms, it is a projection of
several conjugate gradient algorithms, primarily designed
to prevent jamming phenomena. Therefore, many
researchers have focused on hybrids, for example, the
following hybrids have been created:

1Y = 0,8 + (1~ 0,)B(°
BT = 0k + (1 — 6 )B°
Br = 6k Be™"Y + (1 - 6,)BF"

,’be = LB + (1 — )BES

(18]
[19]
[20]
[21]

Among the many advantages of Golden Section Ratio
are it is optimal for line search in hybrid algorithms because
it allows reusing one function evaluation per iteration,
minimizing computational cost. It also provides the smallest
possible worst-case interval shrinkage, ensuring faster
convergence in unimodal minimization. Additionally, when
used in convex combinations, it balances direction updates
effectively, improving stability and reducing zigzagging.

Hence, Golden Section Ratio will be used in this paper
to create a new hybrid conjugate gradient algorithm under
Dai-Liao condition, as a convex combination of HS and DY
for which we set (6 = 0.382) initially, and then, set (6 =
0.618) and the convex combination becomes:

BhSSHL = (1 — 0.382)BHS + 0.38282Y  (11)

ﬁ}?SSHS

= (1-0.618)B5 + 0.6188P" (12)

Same process will be repeated for the convex combination
of LS and CD, and the convex combination becomes:
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BhSSHZ = (1 — 0.382)BE5 + 0.3828F°  (13)
BISSHE = (1 — 0.618)BLS + 0.618B5°  (14)

This paper is organized as follows: Our hybrid
conjugates gradient approaches, the applied algorithm,
and under certain conditions, descent directions are
generated that satisfy the sufficient descent condition
are shown in Section 2. In the next section, we analyze
the convergence property. Then, in section 4, we
provide some numerical comparisons with some
traditional methods to demonstrate the effectiveness of
the algorithm. Finally, section 5 provides a brief
conclusion.

Proposed Method

2.1. A Hybrid Conjugate Gradient
Algorithm by Using Golden Section

Ratio Under the Dai-Liao Condition
Hybrid techniques combine two or more approaches.

While some of them have high comprehensive convergence
properties, others have good computational properties.

Br=(1 = 6B + 6,BC"

di+1 = —Gr+1 + Br Sk

By multiplying both sides by y,, we get:
di+1Yk = —Fir1Yr + BiSk Vi

From Dai-Liao condition, t = 0
dics1Vk = —tJk+15k

By using golden section ratio:

CaseI: Let 8 = 0.382

BISSH = (1 — 0.382) B + 0.382 B2
= 0.618Bf"° + 0.382 pP¥

From (5)

dis1 = —Girr + B> s

Multiple both sides by y;, and using (9)

T _ T hSSH1 T
—t19k+15k = —Gk+1 Ve + Bi Sk Yk

—t g5k = —gheayi + ( (0.618 Lri2) 4
19k+15k Gie+1Vk . T,

Yk Sk
0 382 Ik+19k+ T
( Vi Sk )

After some algebra operations, we get:

t, = 0.382(y;;g);+1)gk+1 (15)
k+1°k
Case II: Let 6 = 0.618
By the same way we can get
t, = 0518(3’;;9};+1)9k+1 (16)
k+1°k
Put (15) in (10) we get:

39

1
gri1 k= (0382(07k~Gk+ )3 )5k

ﬂhssm —
k yEdy

T T
_ Ghy1 Uk—0.382y+0.382g) 1)
yhdy

0.382g£+1gk_+1

_ glt+1 Yk 0-3829£+1 Yk
yidy

Yiedi Yiedi
= BHS —0.382p1° + 0.382p8P
= 0.618815 +0.382B82Y  (17)

In the same way:
0.618g£+1yk + 0-382“9k+1”2
—gidk
= 0.618B%° + 0.38235P
Put (16) in (10) we get:

0.618(y, —
Gl O — (LB Gy

yzdk

T
_ Gkt+1(Vk—0.618Y5+0.618gk+1)
yidi

= 0.382B/° + 0.61882"
In the same way:
0.382gj 41 Yk + 0.618(|gpe14 11
—yldk
= 0.382B%° + 0.618pB%°
Therefore; we obtained 4 new betas:
1- prsSHL = 0.618B/° + 0.38282"
2- BhSSHZ = 0.618BLS + 0.382BL°
3- BPSSH3 = 0.3828H5 + 0.618B82Y
4-  BhSSHE = 0382815 + 0.618BL°

phssH2 =

(18)

pRSHH3 =

(19

hSSH4 _
B> =

(20)

2.2. The Hybrid Algorithm

Step (1): Initialization: Select x, € R™, compute:
f(x0), go = Vf(xy). Consider dy, = —g,,

selecte (e.g £ = 1079)

Step (2): If ligyll < €, then stop. else go to step (3).

Step (3): Compute oy by using (3) and (4)

Step (4): Generate X1 = X + o d, compute

f(xke1), and giiq = VI (Xps1)

Step (5): Calculate Sy in (11), (12), (13) or (14) and search

direction
diev1 = —Gr+1 + Prdi
Step (6): Test the convergence: if f(xy;,) < f(xy) and
gy !l < &, then stop.
Otherwise, k = k+ 1
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2.3. A Hybrid Conjugate Gradient Algorithm
as a Convex Combination of (HS, DY) and
(LS, CD) Algorithms When ® =0.382 and

0=0.618
We shall demonstrate that the descent property is
satisfied by our conjugate gradient approaches.

Theorem (1): let {d,} be a sequence of directions generated
by the new algorithm and a}, in x;,; = X, + ad; be a step
size determined by Strong Wolfe line search, then d;, satisfy
sufficient descent conditions.

Proof:
1) pessHt = (1-0.382)4 + 0.382 B”

dir1 = —Gresr + B dye

dir1 = —Gr+r + (1 — 0-382)ﬁﬁsdk +
0.38282" d,,

gk+1dk+1 = —lgrs1I* +

2
0. 6189’””" gl dy + 0.382 "“‘;";dl" 9P ady
k %k
Smce ngdk < Gir1dk < —0gidy

Gier1dks1 < —Ngpea? +
0618*‘”‘“”‘( —ogTdy) + 0.382 %l ”g"“” =~ (~ogfdy)

And kak = (Gr+1 — 91" dk 2 (U - Dgidy

gk+1dk+1 —lgpsI? +
0618 LM (—agldy) +
0.382%( agldy)
gk+1dk+1 —llgp411? + 0. 618gk+1yk (—0) +
0.382 7 gy 2
gk+1dk+1 ~lgicsa I +0.618 7= lgiers I” +
0.382 7%=l g2 — 0.618 5 )gk+1gk
gk+1dk+1 —lgps1I? + o —— I gp41I* —
0'618m9k+19k
et < —(1 —%ﬁ)llgmll2
g dier < —(o) Igiee 12
a1 dirs < —Cyligisq 12
Where ¢; = 11__2:
By the same way, we can prove that ~ BRSSH3 =

(1—0.618)B}5 + 0.618BPY satisfies the sufficient

descent condition.

2) BRSSHZ = (1 — 0.382)BES +0.382 BEP

A1 = —Gier1 + BP% dy

dk+1 = —9k+1 + (1 - 0382)[3}%5(1]( + 03823]5de

40

i1 = =G + 0. 618gk+1yk dy, + 0.382 Lzl ”gkﬂ” ~dy

89k+1J’k

Iir1dk+1 = —lgis1” +0.61 Gier1dk +

0.382 20" —gads

Since gk+1dk < —ogldy

8 gk+1(.gk+1 Jk)

Fis1@irr = —Ngis11? + 061 —gTdx ka1 +

I 12
03822415 T,
= —l g, 1% + 0. 6189"“‘9"“ (—ogldy,) —
ki)

=g l? + 0Ing+1II2 +0.618 0gl, 19k

T
Ik+1k41 =

0.618 gk“g"( —ogldy) + 0.382 9kl "g"“" ~(~ag

gk+1dk+1
gk+1dk+1 < —(1 = 0)lggql? + 0.1236 gllgy, ., 117

By using Powell restart
Iia1@er1 < —(1 — 1.12360)lgy44 17

Fra1 @1 S —Collgpes 17
Where ¢, =1 —1.1236 0

By the same way, we can prove that Sr5SH* = (1 —
0.618)B%° + 0.618BfP, satisfies the sufficient descent
condition.

3. Convergence Analysis

Assumption (1): [22] The level set T = {x € R™: f(x) <
f(xo)} is bounded, i.e., there is a positive constant B >
0 such thatllxl < B,Vx€T

Assumption (2): [22] In a neighborhood N of T, f(x) is
continuously differentiable and its gradient is Lipschitz
continuous, i.e.

3L = OsuchthatlV f(x) =V f(y)Il < Lllx —
yl,vx,yeN

at stated by assumptions (1) and (2), there is a non-negative
constant T = 0 such that:

WFON<TVvxeT

The Zoutendijk criterion is commonly used to illustrate the
global convergence of the conjugate gradient method.
Lemma (1): [23] Suppose that assumption equations (1) and
(2) hold and xp,q = x; + apdy, where d; is descent
direction and a is a step size computed by using strong Wolf
condition then:

(k414
Zk>1k+1—k+1) < o holds.
=L dgeiq?

Lemma (2): [22] Suppose assumptions (1) and (2) hold, and
let Xp41 = X + akdk and dk =—gy t+ .Bk—l Sk-1 (k >
1) where dj, is a descent direction and a; is a step size
determined by Strong Wolf line search, if Zkalﬁ =

then: klim infllgell =0
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Theorem (2): Consider the assumptions 1 and 2 hold and

{x;} be generated by the new algorithm, then:
klim inflige,l=0

Proof: We prove this theorem by using contradiction.

Suppose the theorem is false, then: 3 r > 0 such that: Ig, Il >

r forallk
From the theorem (1):

IFi1diir < —Klgy, 1% forall k
By using strong Wolfe condition, we obtain:

Yidi = Gir1dr — gidi 2 0gydy — grdy
> —(1—o0)gld, = K(1—0)lig,l?

Multiplying both sides by a, where a > A, for A >
0,Vk = 0 then:

yrse = K1 —o)aglgl? = K(1—0)Ar?
And since:

"yk" = ”gk+1 - gk” S L”xk+1 - xk"
< LD (D is diameter of the level set S)

—Gk+1 + B sk
syl < Ngpsl + 1821 s |

diyr =

1) B:SH1 = 0.618B1° + 0. 3823”[21]
IBRe¥| < 0.6181B8551 + 0.382182Y

(O.618)ﬂ
(0.618)

Iyl sl
1((1 r2

= (0.382) knl” "g"“” < (0.382) en o
Iyl lisg

0.382ﬁD
(0.382)

K(1- U)Arz

(0.618)TLD+(0.382)T?
K(1-0)Ar2

|[;’§SH1| =M and since oy >

Athen — <=
(2473 A
Since ld 4 Il < llgpy1ll + I,BSS”ll s Il

SHLlxp 1 = x|
ag

<l gyl + 2

ST+2=W

Hence:

1
ldgssll < W then ;W -

From Zoutendijk condition we have:
2
(g£+1dk+ 1)
2
Lo Ndyeyny

since lggl =7 and gl dgs; < —Kllgll?

0.618 gk+1yk < (0.618 Igk+1ll "3’k”_
= (0618) %2 < (0.618) "2l

41

1 K2lig,lI*
2
Kr42u B SZ ez =%
dy dy
k=1 k=1

L . . 1
Which is contradiction with Y,;5, T ®
k+1

Then, we get lim infllg =0

2) [555”2 = 0.618BL5 + 0.382p5P[24]

di+1 = —Gr+1 +0.382g441 — 0.382g44, +
0.618B5°s; + 0.382B5°s

= —0.382g4, + 0.38285Ps
0.618B%5 s,

= (=Gis1 + BE"$1)0.382 + (—gps1 +
LS5 )0.618

dis1 = 0.382dE2, + 0.618d%S,
Iegrall < NAED, N+ AL, I

- 0.6189k+1 +

Furthermore;
Ildk+1ll < Nggsrll + 1BES s

From assumption (1) and (2), gk, < T, since D is
diameter of the level set S and by descent condition, we
have:

1

~gkdi 2 Klgl then —r <

Vi Gk+1 < YeGk+1 < Wilgiesall - Lisgh _ LD

hence IBS] =
B -dl gy Kgr —  Klggl — K K

gk+1gk+1 < gk+1gk+1 <
-dfgr — Kigpl

IB5SH2] < 0.6181B5 LS| 4+ 0. 382IECDI

Now, IId,fffl’z I < lgperll + 1B55H21ls,

Then,

[ 2
I+l < T
Klgel — K

similarly IBP| =

IdSSH2| < 2T + (0.618% +0.382 %) s ll = 27T +
MD where M = 0.618=2 + 0.382+
Idgs521l < W where W = 2T + MD

1
We get: Yo i

By using Lemma (2), we obtain:
lim infllge =0

3) BiSH3 = 0.382815 + 0.6188°Y
Similar to part (1)

4) B3H* = 0.3828%5 + 0.618B%5°
Similar to part (2)

The use of the golden section ratio in the line search
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process is a novel approach that enhances the algorithm's
efficiency by reducing the number of function evaluations
required.

4. Numerical Experiments

This section focuses on testing the new methods'
implementation. Based on this, we evaluate the computing
performance of the suggested approaches with several known
algorithms such as DY, HS, and LS conjugate gradient
algorithms. We consider 110 unconstrained optimization test
problems, some of which are selected from the CUTE
(constrained and unconstrained test environment) library [25]
and the rest are from the unconstrained problems collections
[26], [27]. The sizes of the test issues (denoted by n in the
tables) range from 2 to 200000. To be fair, all comparison
methods employ the strong Wolfe line search method to
compute the step length «,. The hybridization parameter 6
equals to 0.382 for the creation of (B"SSHY | phSSH2) and
equals to 0.618 for the creation of (B"SSH3 | BhSSHA) The
relevant parameters are set to be =0.0001 and 6=0.9 for the
proposed methods. The termination criterion is either (1)
lgrlle < 1076 or (2) number of iteration (NOI) >2000.
When (2) happens, the relevant algorithm is claimed to be
invalid for the corresponding test problem, which is denoted
by “NaN”.

All codes are written in MATLAB (as a tool for data
analysis) 2024b and run on a Lenovo PC with a 360GHz CPU
(Central Processing Unit) processor, 8 GB of RAM memory,
and the Windows 10 operating system.

The comparison of various methodologies is offered in the
following context for example, let fi"* and fi"?be the
optimal values determined by H; and H, for problems
i=1...110 respectively. It is considered that in the specific
problem i, if the performance of H; was better than the
performance of H:

IFFft — £H2] < 1073

The number of iterations (NOI), or the number of function
gradient-evaluation (NOF), or CPU time of H; methods is
less than that of H, methods. To get comprehensive
comparisons, the profile of Dolan and More [28] is utilized
to evaluate and compare the performance of the collection of
approaches.

1 3 = 5 . . . . =
0.9 |

0.8}

Figure 1. Number of Iteration.

42

Based on the extensive numerical data presented in table.1
and illustrated in Figure.1, the results clearly demonstrate
that our proposed methods outperform the classical
approaches in terms of number of iteration, with the fourth
method (hSSH4) exhibiting the highest efficiency.

Figure 2. CPU Time.

The detailed numerical data presented in Table 2 and
illustrated in Figure 2 provide performance profiles
comparing the proposed methods with classical approaches
(HS, DY, and LS). The new methods exhibit superior
efficiency by solving the problems more quickly, with the
fourth method (hSSH4) emerging as the most efficient.

Figure 3. Gradient Function.

Figure 3 demonstrates how these algorithms perform
in terms of the number of function gradient evaluations,
highlighting that the proposed methods are capable of
solving more functions than the classical approaches. It is
worth noting that the fourth method (hSSH4) consistently
demonstrates the highest efficiency across all three
performance factors.
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Table 1. [llustrates a numerical comparison between the classical methods and the proposed methods based on Number of
Iteration.

# Problem n HS DY LS hSSH1 hSSH2 hSSH3 hSSH4
1 ARGLINB 2 NaN NaN NaN NaN NaN NaN NaN
2 500 15 14 NaN 28 15 15 67
3 1000 18 27 20 79 20 19 15
4 BV 500 613 1593 1019 1342 1822 801 526
5 1000 250 229 168 165 140 133 101
6 10000 0 0 0 0 0 0 0

7 20000 0 0 0 0 0 0 0

8 30000 0 0 0 0 0 0 0

9 COSINE 10 12 12 11 11 11 12 11
10 100 11 11 11 10 11 11 10
11 1000 16 118 30 14 19 18 18
12 10000 14 14 14 16 15 15 16
13 100000 12 13 12 13 13 14 14
14 DIXMAANA 300 9 10 9 9 8 11 9
15 30000 9 9 10 9 9 10 9
16 60000 10 10 9 12 10 9 10
17 90000 11 10 10 10 10 9 10
18 120000 10 10 10 9 10 10 9
19 DIXMAANL 3000 2733 2613 1439 NaN 2283 2657 1431
20 9000 1572 NaN 2601 2698 1033 2326 774
21 30000 1649 NaN NaN 1885 1218 NaN 1199
22 60000 NaN NaN NaN NaN NaN NaN NaN
23 DIXMAANK 3000 1617 NaN 2278 NaN 1222 1846 937
24 9000 1834 NaN 2602 2939 1092 2604 1003
25 30000 NaN NaN NaN NaN 1474 NaN 1530
26 60000 NaN NaN NaN NaN NaN NaN NaN
27 120000 NaN NaN NaN NaN NaN NaN NaN
28 DIAG4 100 106 219 58 36 130 93 21
29 1000 54 189 138 204 129 139 40
30 10000 95 211 135 210 51 69 33
31 100000 105 132 40 208 100 131 31
32 200000 55 264 181 198 151 171 37
33 DIAGS 100 1 1 1 1 1 1 1
34 1000 7 7 7 7 7 7 7
35 10000 8 8 8 12 8 12 12
36 50000 8 8 8 8 8 8 8
37 200000 8 8 8 8 8 8 8
38 DIAG6 100 1 1 1 1 1 1 1
39 1000 8 8 8 8 8 8 8
40 10000 12 12 12 12 12 12 12
41 50000 8 8 8 8 8 8 8

43
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42 100000 12 NaN NaN 14 12 15 15
43 DIAGS 1000 9 9 9 11 9 11 11
44 5000 7 7 7 7 7 7 7
45 10000 8 8 8 8 8 8 8
46 DQRTIC 5000 17 17 17 38 32 54 33
47 10000 84 88 85 56 86 18 50
48 50000 21 36 21 98 56 21 61
49 100000 22 23 95 146 130 87 42
50 150000 63 23 176 126 113 23 66
51 EDENSCH 2 8 7 9 8 8 17 8
52 100 48 49 44 43 39 40 29
53 1000 43 67 50 67 44 75 31
54 10000 80 46 67 43 38 38 43
55 100000 45 65 49 45 38 46 36
56 DENSCHNF 10 18 18 15 19 16 18 16
57 100 15 16 20 16 18 17 16
58 1000 17 19 18 20 23 15 22
59 10000 20 22 19 20 16 20 21
60 100000 19 17 18 18 19 21 21
61 EDENSCHNB 2 13 12 13 12 13 13 11
62 100 12 12 13 14 11 12 12
63 10000 14 14 14 15 13 13 14
64 100000 18 17 18 14 17 15 16
65 HIMMELBG 10000 2 2 2 2 2 2 2
66 100000 2 2 2 2 2 2 2
67 IE 100 8 9 8 8 9 9 9
68 500 9 8 9 9 9 9 9
69 ENGVALI 10 41 40 39 39 37 37 NaN
70 1000 43 41 42 42 38 43 23
71 10000 40 41 42 42 36 37 28
72 EVF 2 38 34 40 34 38 39 26
73 EXPENALTY 100 6 6 6 6 6 6 6
74 1000 14 NaN NaN 11 14 11 11
75 25000 12 12 12 12 12 12 15
76 50000 11 11 11 11 11 11 11
77 EXTROSNB 2 105 388 167 1096 304 62 64
78 500 64 66 71 64 61 59 42
79 1000 NaN NaN NaN NaN NaN NaN NaN
80 10000 1649 NaN NaN 1161 265 666 218
81 EXROSEN 10 NaN NaN NaN 832 NaN 1533 319
82 100 NaN NaN NaN 914 NaN 1729 195
83 1000 NaN NaN NaN 661 NaN 1326 295
84 5000 NaN NaN NaN 1077 NaN 1903 324
85 10000 NaN NaN NaN 1115 NaN 1954 316
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86 50000 NaN NaN NaN 1100 NaN 2007 317
87 100000 NaN NaN NaN 1149 NaN 2087 392
88 EXHIMMELBLAU 10 18 18 20 19 21 19 21
89 1000 16 18 22 18 21 15 21
90 10000 16 15 20 17 19 16 22
91 GENHUMPS 2 6 6 6 6 6 6 6
92 100 11 NaN 13 12 11 12 11
93 500 NaN NaN NaN NaN NaN NaN NaN
94 1500 11 12 10 11 13 12 NaN
95 GENQUARTIC 1000 24 18 21 16 17 19 18
96 25000 13 13 12 10 14 14 12
97 75000 12 13 14 15 14 13 12
98 GQUARTIC 50 NaN NaN NaN 161 165 180 148
99 100 NaN NaN NaN 262 280 302 220
100 500 NaN NaN NaN 934 1081 1141 767
101 1000 NaN NaN NaN 1835 2092 2169 1596
102 HARKERP 100 9 9 9 12 9 12 12
103 1000 10 10 10 58 10 13 13
104 10000 9 25 11 13 16 10 23
105 50000 19 16 16 13 19 14 14
106 HIMMELBH 100 18 16 19 19 14 19 14
107 10000 22 21 23 23 22 24 21
108 100000 25 24 25 22 23 22 22
109 HIMMELBG 100 2 2 2 2 2 2 2
110 1000 2 2 2 2 2 2 2

Table 2. Demonstrates a numerical comparison between the classical methods and the proposed methods based on CPU time.

# Problem n HS DY LS hSSH1 hSSH2 hSSH3 hSSH4
1 RGLINB 2 NaN NaN NaN NaN NaN NaN NaN
2 500 0.322 0.278 NaN 0.654 0.301 0.326 1.544
3 1000 1.322 2.08 1.459 6.37 1.491 1.481 1.152
4 BV 500 4.444 10.56 7.099 8.99 10.771 5.499 3.294
5 1000 5.119 4.247 3.443 3.204 2.693 2.768 1.944
6 10000 0.385 0.435 0.376 0.352 0.376 0.331 0.352
7 20000 4.189 3.289 2.876 2.305 1.524 1.505 1.588
8 30000 6.17 5.014 5.1 5.036 4.706 4.789 4.286
9 COSINE 10 0.355 0.041 0.017 0.023 0.013 0.018 0.023
10 100 0.028 0.016 0.022 0.015 0.021 0.037 0.018
11 1000 0.048 0.211 0.07 0.057 0.05 0.048 0.048
12 10000 0.192 0.174 0.195 0.199 0.172 0.203 0.211
13 100000 0.981 1.119 1.265 1.043 0.864 1.034 1.044
14 AANA 300 0.047 0.03 0.031 0.034 0.035 0.05 0.048
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15 30000 1.049 1.029 1.096 1.147 1.067 1.261 0.993
16 60000 2.223 2.155 1.988 2.562 2.143 1.781 2.235
17 90000 3.123 2.86 2.952 2.966 2.868 2.786 3.066
18 120000 4.15 4.268 5.11 4.392 4231 4.469 3.657
19 AANL 3000 27.198 28.529 10.183 NaN 13.771 19.017 9.839
20 9000 30.659 NaN 47.928 47.545 16.31 41.997 13.107
21 30000 85.146 NaN NaN 86.94 48.802 NaN 50.972
22 60000 NaN NaN NaN NaN NaN NaN NaN

23 AANK 3000 12.152 NaN 16.639 NaN 8.311 13.318 6.481
24 9000 33.618 NaN 43.654 48.192 16.34 44.005 15.666
25 30000 NaN NaN NaN NaN 58.934 NaN 65.255
26 60000 NaN NaN NaN NaN NaN NaN NaN

27 120000 NaN NaN NaN NaN NaN NaN NaN
28 DIAG4 100 0.142 0.245 0.082 0.04 0.11 0.086 0.026
29 1000 0.069 0.211 0.158 0.213 0.136 0.15 0.068
30 10000 0.447 0.797 0.66 0.923 0.294 0.413 0.21

31 100000 2.469 3.058 1.187 4.342 2.144 3.093 1.192
32 200000 3.133 10.426 7.86 8.247 6.022 7.789 2.381
33 DIAGS 100 0.009 0.001 0.003 0.001 0.001 0.002 0.001
34 1000 0.035 0.036 0.044 0.034 0.033 0.035 0.039
35 10000 0.234 0.189 0.154 0.258 0.156 0.248 0.253
36 50000 0.538 0.527 0.497 0.497 0.505 0.517 0.508
37 200000 2.419 2.419 2.435 2.419 2432 2414 2.37

38 DIAG6 100 0.007 0.001 0 0 0.001 0.001 0.001
39 1000 0.013 0.015 0.016 0.017 0.013 0.016 0.019
40 10000 0.091 0.078 0.066 0.067 0.077 0.074 0.07

41 50000 0.141 0.135 0.117 0.12 0.116 0.117 0.115
42 100000 0.277 NaN NaN 0.383 0.285 0.406 0.389
43 DIAGS 1000 0.021 0.019 0.032 0.035 0.023 0.033 0.045
44 5000 0.063 0.054 0.049 0.045 0.04 0.047 0.042
45 10000 0.077 0.07 0.073 0.064 0.059 0.067 0.063
46 DQRTIC 5000 0.295 0.264 0.273 0.547 0.437 0.63 0.482
47 10000 1.796 1.777 1.761 1.234 1.755 0.526 1.115
48 50000 2.502 3.916 2.516 8.511 5.545 2.565 5.014
49 100000 5.229 5.252 16.016 24.417 20.742 15.004 8.538
50 150000 16.679 7.962 40.752 31.306 27.065 7.895 15.983
51 EDENSCH 2 0.013 0.011 0.008 0.009 0.007 0.019 0.009
52 100 0.055 0.073 0.053 0.056 0.046 0.062 0.038
53 1000 0.182 0.319 0.216 0.313 0.183 0.342 0.134
54 10000 2277 1.065 1.057 0.83 0.714 0.694 1.292
55 100000 8.402 16.756 10.034 9.357 6.805 8.764 8.622
56 DENSCHNF 10 0.039 0.031 0.032 0.029 0.044 0.032 0.036
57 100 0.031 0.038 0.035 0.032 0.036 0.036 0.038
58 1000 0.057 0.064 0.054 0.068 0.064 0.052 0.075
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59 10000 0.256 0.25 0.262 0.253 0.233 0.237 0.264
60 100000 1.923 1.973 1.837 1.758 1.925 2.012 2.016
61 DENSCHNB 2 0.009 0.011 0.012 0.011 0.008 0.014 0.013
62 100 0.023 0.029 0.026 0.028 0.016 0.021 0.027
63 10000 0.166 0.177 0.159 0.164 0.114 0.116 0.119
64 100000 0.824 0.813 0.854 0.743 0.86 0.784 0.771
65 HIMMELBG 10000 0.015 0.012 0.013 0.011 0.013 0.013 0.011
66 100000 0.077 0.08 0.075 0.077 0.079 0.075 0.074
67 IE 100 0.301 0.249 0.227 0.208 0.227 0.255 0.248
68 500 5.311 5.065 6.113 5.793 5.641 5.606 5.461
69 ENGVALI 10 0.029 0.026 0.031 0.035 0.033 0.031 NaN
70 1000 0.032 0.026 0.033 0.03 0.028 0.032 0.019
71 10000 0.107 0.105 0.126 0.13 0.113 0.107 0.099
72 EVF 2 0.033 0.023 0.028 0.032 0.029 0.036 0.029
73 M)ENALTY 100 0.009 0.008 0.006 0.006 0.007 0.005 0.007
74 1000 0.015 NaN NaN 0.017 0.018 0.013 0.012
75 25000 0.115 0.11 0.097 0.092 0.095 0.099 0.124
76 50000 0.135 0.124 0.126 0.123 0.12 0.126 0.117
77 EXTROSNB 2 0.079 0.312 0.138 0.655 0.173 0.051 0.047
78 500 0.044 0.045 0.048 0.045 0.045 0.039 0.032
79 1000 NaN NaN NaN NaN NaN NaN NaN
80 10000 4.013 NaN NaN 2.67 0.654 1.794 0.601
81 EXROSEN 10 NaN NaN NaN 0.665 NaN 1.367 0.376
82 100 NaN NaN NaN 0.761 NaN 1.605 0.251
83 1000 NaN NaN NaN 0.654 NaN 1.315 0.413
84 5000 NaN NaN NaN 2177 NaN 3.68 1.048
85 10000 NaN NaN NaN 3.277 NaN 5.469 1.229
86 50000 NaN NaN NaN 8.535 NaN 15.431 3.238
87 100000 NaN NaN NaN 14.384 NaN 24.892 6.813
88 LBLAU 10 0.066 0.036 0.034 0.036 0.033 0.048 0.047
89 1000 0.047 0.058 0.064 0.064 0.069 0.046 0.092
90 10000 0.248 0.214 0.216 0.176 0.173 0.164 0.219
91 GENHUMPS 2 0.01 0.003 0.004 0.01 0.005 0.004 0.005
92 100 0.01 NaN 0.016 0.012 0.011 0.011 0.015
93 500 NaN NaN NaN NaN NaN NaN NaN
94 1500 0.03 0.036 0.029 0.027 0.037 0.038 NaN
95 NQUARTIC 1000 0.026 0.02 0.026 0.017 0.03 0.025 0.027
96 25000 0.107 0.11 0.107 0.081 0.09 0.099 0.079
97 75000 0.177 0.193 0.191 0.205 0.196 0.199 0.183
98 GQUARTIC 50 NaN NaN NaN 0.13 0.131 0.14 0.118
99 100 NaN NaN NaN 0.239 0.26 0.272 0.202
100 500 NaN NaN NaN 0.986 1.154 1.417 0.867
101 1000 NaN NaN NaN 5.685 6.42 4.484 2.704
102 RKERP 100 0.016 0.009 0.012 0.013 0.006 0.015 0.015
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103 1000 0.031 0.022 0.024 0.142 0.026 0.027 0.03
104 10000 0.061 0.186 0.095 0.122 0.107 0.078 0.163
105 50000 0.463 (.404 0.384 0.316 0.488 0.359 0.346
106 MELBH 100 0.019 0.019 0.02 0.021 0.014 0.027 0.016
107 10000 0.198 0.202 0.161 0.161 0.174 0.182 0.154
108 100000 1.175 1.127 1.324 1.034 1.133 1.207 1.167
109 MELBG 100 0.001 0.001 0.001 0.001 0.002 0.002 0.002
110 1000 0.001 0.002 0.002 0.003 0.002 0.003 0.003
5, Conclusion [5] R. Fletcher, and C. Reeves, “Function minimization by conjugate

Conjugate gradient methods are frequently used to
address unconstrained optimization problems, particularly in
large scales. Hybrid strategies, which integrate classical
approaches, are among the most useful. To create a practical
and effective technique, this paper presents well-designed
hybrid conjugate gradient algorithms that effectively
leverage the golden section ratio to enhance the performance
of traditional CG methods. The theoretical and empirical
results are compelling, suggesting that the proposed
algorithms represent a valuable contribution to the methods
available for solving unconstrained optimization problems.
The new algorithms, in particular, showed superior
performance based on key factors such as CPU time, number
of gradient function evaluations, and number of iterations.
One of the main challenges faced during this research was
selection and integration of the most effective features of the
classical methods, particularly those derived from the DY-
HS and LS-CD approaches. It is recommended for future
work, to explore the use of these new hybrid algorithms in
wider domains such as fuzzy logic systems, time series
analysis, and finite difference methods.
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