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     Conjugate gradient techniques are highly effective for addressing large-scale nonlinear 
optimization problems. Hybridization is a prevalent strategy for improving the conjugate gradient 
method. This study presents a novel hybrid conjugate gradient (CG) algorithm that incorporates 
the golden section ratio for solving unconstrained optimization problems. Hence, we improve the 
efficiency and robustness of traditional CG methods by taking advantage of the properties of the 
golden section ratio, which is known for its optimality in line search procedures. Therefore, this 
study explores the novel use of the golden section ratios (0.382) and (0.618) as a weighting factor 
(β) in a hybrid convex combination under Dai-Liao condition of two pairs of standard conjugate 
gradient methods: (βHS, βDY) and (βLS ,βCD) separately. These formulas are fundamental to 
conjugate gradient methods and provide clear benefits in optimization situations. The suggested 
strategies seek to capitalize on the advantages of the approaches while minimizing their drawbacks 
by including the golden section ratio which is known for reducing computational cost, improving 
step size selection, and ensuring robust convergence especially in ill-conditioned problems in 
optimization. The numerical results show how effective the suggested approaches are. 
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1. Introduction 

The process of minimizing or maximizing an objective 
function is known as optimization. A subfield of optimization 
known as "unconstrained optimization" involves minimizing 
an objective function that is dependent on actual variables 
while completely removing any constraints on those 
variables' values. 

In unconstrained optimization, consider the following 
objective function [1]: 

 
𝑚𝑚𝑚𝑚𝑚𝑚 {𝑓𝑓(𝑥𝑥):𝑥𝑥 ∊ 𝑅𝑅𝑛𝑛}                (1)                                                                                                                  
when 𝑓𝑓: 𝑅𝑅𝑛𝑛 ⟶ 𝑅𝑅     is a continuously differentiable 
function. 
 

Mathematicians have created a number of numerical 
techniques throughout the years to address this type of 
problem, including the Newton method, CG, quasi-Newton 
method, and steepest descent.  
The conjugate gradient approach is the main emphasis of this 
work due to its ease of use, minimal memory requirements 
and particularly its usefulness when the dimension is big. 
As is well known, there is a beginning point for solving this 
issue {xn} is a sequence produced by a nonlinear CG [2] as: 

𝑥𝑥𝑘𝑘+1 =  𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘                                      (2)                                                                                                                     
Where: 
𝑥𝑥𝑘𝑘 is the current iterating, 𝛼𝛼𝑘𝑘 > 0  is the step size is usually 
determined by line search to fulfill the standard Wolfe line 
search conditions [3] 

𝑓𝑓(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘) − 𝑓𝑓(𝑥𝑥𝑘𝑘) ≤  𝛿𝛿𝛼𝛼𝑘𝑘 𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘 ,      (3)                                                                                      
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𝑔𝑔(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘)𝑇𝑇𝑑𝑑𝑘𝑘  ≥  𝜎𝜎 𝑔𝑔𝑘𝑘 
𝑇𝑇 𝑑𝑑𝑘𝑘 ,                   (4)                                                                                                   

or stronger version of the Wolfe line search conditions, 
given by (4) and 
 ǀ𝑔𝑔(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘)𝑇𝑇𝑑𝑑𝑘𝑘ǀ ≤  − 𝜎𝜎| 𝑔𝑔𝑘𝑘 

𝑇𝑇 𝑑𝑑𝑘𝑘 |,          (5)                                                                                          
Where  0 < 𝛿𝛿 ≤ 𝜎𝜎 < 1, 𝑑𝑑𝑘𝑘 is the search direction. In 
CG methods, the search direction 𝑑𝑑𝑘𝑘 is computed as: 
 
𝑑𝑑𝑘𝑘+1  = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘 𝑠𝑠𝑘𝑘 ,𝑎𝑎𝑎𝑎𝑎𝑎  𝑑𝑑0 = −𝑔𝑔0    (6)                                                                                     
 
where , 𝑠𝑠𝑘𝑘 = 𝑥𝑥𝑘𝑘+1 −  𝑥𝑥𝑘𝑘 ,𝑔𝑔𝑘𝑘 = 𝛻𝛻𝛻𝛻(𝑥𝑥𝑘𝑘) and 𝛽𝛽𝑘𝑘 is 
known as conjugate gradient parameter throughout 
history it has been created in various ways. 
The scalar parameters 𝛽𝛽𝑘𝑘 are chosen differently for 
each conjugate gradient technique. 
These are a few well-known beta formulas: 

 𝛽𝛽𝐻𝐻𝐻𝐻 = 𝑔𝑔𝑘𝑘 
𝑇𝑇  𝑦𝑦𝑘𝑘−1

𝑦𝑦𝑘𝑘−1
𝑇𝑇  𝑑𝑑𝑘𝑘−1

     [4]    (Hestenes and Stiefel, 1952)                 

 𝛽𝛽𝐹𝐹𝐹𝐹 = ǀǀ𝑔𝑔𝑘𝑘ǀǀ2

ǀǀ𝑔𝑔𝑔𝑔−1ǀǀ2
       [5]    (Flecher and Reeves, 1964)            

 𝛽𝛽𝑃𝑃𝑃𝑃 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇  𝑦𝑦𝑘𝑘
ǁ𝑔𝑔𝑘𝑘 ǁ2

        [6]    (Polak-Ribiere,1969) 

 𝛽𝛽𝐶𝐶𝐶𝐶 = ǀǀ𝑔𝑔𝑘𝑘ǀǀ2

−𝑔𝑔𝑘𝑘−1  
𝑇𝑇 𝑑𝑑𝑘𝑘−1

   [7]    (Conjugate Descent,1987) 

𝛽𝛽𝐿𝐿𝐿𝐿 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇  𝑦𝑦𝑘𝑘
−𝑔𝑔𝑘𝑘

𝑇𝑇𝑠𝑠𝑘𝑘
          [8]    (Liu and Storey, 1991) 

𝛽𝛽𝐷𝐷𝐷𝐷 = ǀǀ𝑔𝑔𝑘𝑘ǀǀ2

𝑦𝑦𝑘𝑘−1  
𝑇𝑇 𝑑𝑑𝑘𝑘−1

      [9]    (Dai-yuan, 1999) 

Where 𝑦𝑦𝑘𝑘−1 = 𝑔𝑔𝑘𝑘 − 𝑔𝑔𝑘𝑘−1  and ǀǀ. ǀǀ represent the 
Euclidean norm. 
In conjugate gradient method, the search 
direction 𝑑𝑑𝑘𝑘 is determined in such a way that the 
following conjugacy condition holds 
 

         𝑑𝑑𝑖𝑖𝑇𝑇𝐺𝐺𝑑𝑑𝑗𝑗 = 0,                     𝑖𝑖 ≠ 𝑗𝑗         (7)                                                                            

where G is the Hessian of the objective function. On 
the other hand, according to the mean value theorem, 
there exists some 𝜔𝜔 ∈ (0, 1) such that 
𝑑𝑑𝑘𝑘+1𝑇𝑇 𝑦𝑦𝑘𝑘 = 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘+1𝑇𝑇 𝑔𝑔(𝑥𝑥𝑘𝑘 + 𝜔𝜔𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘)𝑇𝑇𝑑𝑑𝑘𝑘 ,    (8)                                                                           
Now, by combining (7), (8) the following conjugate 
condition can be deduced  
𝑑𝑑𝑘𝑘+1𝑇𝑇 𝑦𝑦𝑘𝑘 = 0  
Dai and Liao (DL) [10] with modification of conjugate 
condition, presented a family of CG methods, denoted 
by 𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷, is decided by the extended conjugacy condition 

 𝑑𝑑𝑘𝑘+1𝑇𝑇 𝑦𝑦𝑘𝑘 = −𝑡𝑡𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑠𝑠𝑘𝑘,                                  (9)   𝑡𝑡 > 0, is 
scalar                                                                         
in the DL method the CG coefficient is computed by 

𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷 = 𝑔𝑔𝑘𝑘+1 
𝑇𝑇 (𝑦𝑦𝑘𝑘−𝑡𝑡𝑠𝑠𝑘𝑘)

𝑦𝑦𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘

                                     (10)                                                                                                                             

The procedure (2), (6) with 𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷 in (10) is called the Dai-
Liao method. In recent years, much efforts has been made 
to find the proper choice for the nonnegative 
parameter 𝑡𝑡 in (10), see [11], [12], [13], [14], [15]. Based 
on a singular value study on the DL method, Babaie-Kafaki 
proposed:  

𝑡𝑡 = 𝑦𝑦𝑘𝑘
𝑇𝑇𝑠𝑠𝑘𝑘

‖𝑠𝑠𝑘𝑘‖2
+ ‖𝑦𝑦𝑘𝑘‖

‖𝑠𝑠𝑘𝑘‖
, Ghanbari [16] proposed the following 

adaptive choices for 𝑡𝑡 

   𝑡𝑡 = ‖𝑦𝑦𝑘𝑘‖
‖𝑠𝑠𝑘𝑘‖

.  

      And Andrei [17] suggested the following value for 𝑡𝑡 
 

𝑡𝑡 = 𝑦𝑦𝑘𝑘
𝑇𝑇𝑠𝑠𝑘𝑘

‖𝑠𝑠𝑘𝑘‖2
  

The hybrid conjugate gradient method is a significant 
class of conjugate gradient algorithms, it is a projection of 
several conjugate gradient algorithms, primarily designed 
to prevent jamming phenomena. Therefore, many 
researchers have focused on hybrids, for example, the 
following hybrids have been created: 
 

𝛽𝛽𝑘𝑘ℎ𝐷𝐷𝐷𝐷 = 𝜃𝜃𝑘𝑘𝛽𝛽𝑘𝑘𝐹𝐹𝐹𝐹 + (1 − 𝜃𝜃𝑘𝑘)𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻          [18] 

𝛽𝛽𝑘𝑘ℎ𝐷𝐷𝐷𝐷 = 𝜃𝜃𝑘𝑘𝛽𝛽𝑘𝑘𝐿𝐿𝐿𝐿 + (1 − 𝜃𝜃𝑘𝑘)𝛽𝛽𝑘𝑘𝐶𝐶𝐶𝐶          [19] 

𝛽𝛽𝑘𝑘𝑁𝑁 = 𝜃𝜃𝑘𝑘𝛽𝛽𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + (1 − 𝜃𝜃𝑘𝑘)𝛽𝛽𝑘𝑘𝐹𝐹𝐹𝐹       [20] 

𝛽𝛽𝑘𝑘
ℎ𝑦𝑦𝑦𝑦 = 𝜆𝜆𝑘𝑘𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷 + (1 − 𝜆𝜆𝑘𝑘)𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻          [21] 

 
Among the many advantages of Golden Section Ratio 

are it is optimal for line search in hybrid algorithms because 
it allows reusing one function evaluation per iteration, 
minimizing computational cost. It also provides the smallest 
possible worst-case interval shrinkage, ensuring faster 
convergence in unimodal minimization. Additionally, when 
used in convex combinations, it balances direction updates 
effectively, improving stability and reducing zigzagging. 

Hence, Golden Section Ratio will be used in this paper 
to create a new hybrid conjugate gradient algorithm under 
Dai-Liao condition, as a convex combination of HS and DY 
for which we set (θ = 0.382) initially, and then, set (θ = 
0.618) and the convex combination becomes:  
 

𝛽𝛽𝑘𝑘ℎ𝑆𝑆𝑆𝑆𝑆𝑆1 = (1 − 0.382)𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻 + 0.382𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷     (11)                                                                    
 

𝛽𝛽𝑘𝑘ℎ𝑆𝑆𝑆𝑆𝑆𝑆3 = (1 − 0.618)𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻 + 0.618𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷     (12)                                                                    
 

Same process will be repeated for the convex combination 
of LS and CD, and the convex combination becomes: 

 

https://www.sciencedirect.com/science/article/pii/S0377042719307137#fd1.3
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𝛽𝛽𝑘𝑘ℎ𝑆𝑆𝑆𝑆𝑆𝑆2 = (1 − 0.382)𝛽𝛽𝑘𝑘𝐿𝐿𝐿𝐿 + 0.382𝛽𝛽𝑘𝑘𝐶𝐶𝐶𝐶    (13)                                                                     

𝛽𝛽𝑘𝑘ℎ𝑆𝑆𝑆𝑆𝑆𝑆4 = (1 − 0.618)𝛽𝛽𝑘𝑘𝐿𝐿𝐿𝐿 + 0.618𝛽𝛽𝑘𝑘𝐶𝐶𝐶𝐶    (14)                                                                     
 
This paper is organized as follows: Our hybrid 
conjugates gradient approaches, the applied algorithm, 
and under certain conditions, descent directions are 
generated that satisfy the sufficient descent condition 
are shown in Section 2. In the next section, we analyze 
the convergence property. Then, in section 4, we 
provide some numerical comparisons with some 
traditional methods to demonstrate the effectiveness of 
the algorithm. Finally, section 5 provides a brief 
conclusion. 
 

2. Proposed Method 
2.1.  A Hybrid Conjugate Gradient 

Algorithm by Using Golden Section 
Ratio Under the Dai-Liao Condition 

Hybrid techniques combine two or more approaches. 
While some of them have high comprehensive convergence 
properties, others have good computational properties. 

 
𝛽𝛽𝑘𝑘=(1 − 𝜃𝜃𝑘𝑘)𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻 +  𝜃𝜃𝑘𝑘𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷 
𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘 𝑠𝑠𝑘𝑘 
By multiplying both sides by 𝑦𝑦𝑘𝑘, we get: 
𝑑𝑑𝑘𝑘+1𝑇𝑇 𝑦𝑦𝑘𝑘 = −𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑦𝑦𝑘𝑘 + 𝛽𝛽𝑘𝑘𝑠𝑠𝑘𝑘𝑇𝑇 𝑦𝑦𝑘𝑘                                                            
From Dai-Liao condition, 𝑡𝑡 ≥ 0  
𝑑𝑑𝑘𝑘+1𝑇𝑇 𝑦𝑦𝑘𝑘 = −𝑡𝑡𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑠𝑠𝑘𝑘                                                                               
By using golden section ratio: 
 
Case I: Let 𝜃𝜃 = 0.382 
 𝛽𝛽𝑘𝑘ℎ𝑆𝑆𝑆𝑆𝑆𝑆1 = (1 − 0.382)𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻 + 0.382 𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷 
                   = 0.618𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻 + 0.382 𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷 
From (5)  
 𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘ℎ𝑆𝑆𝑆𝑆𝑆𝑆1𝑠𝑠𝑘𝑘𝑇𝑇  
Multiple both sides by 𝑦𝑦𝑘𝑘 and using (9)   
−𝑡𝑡1𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑠𝑠𝑘𝑘 = −𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑦𝑦𝑘𝑘 + 𝛽𝛽𝑘𝑘ℎ𝑆𝑆𝑆𝑆𝑆𝑆1𝑠𝑠𝑘𝑘𝑇𝑇 𝑦𝑦𝑘𝑘  

 −𝑡𝑡1𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑠𝑠𝑘𝑘 = −𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑦𝑦𝑘𝑘 + ��0.618 𝑔𝑔𝑘𝑘+1 
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑦𝑦𝑘𝑘
𝑇𝑇𝑠𝑠𝑘𝑘

� +

�0.382 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑔𝑔𝑘𝑘+1
𝑦𝑦𝑘𝑘
𝑇𝑇 𝑠𝑠𝑘𝑘

��  𝑠𝑠𝑘𝑘𝑇𝑇 𝑦𝑦𝑘𝑘 

After some algebra operations, we get: 
 𝑡𝑡1 = 0.382(𝑦𝑦𝑘𝑘−𝑔𝑔𝑘𝑘+1)𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑠𝑠𝑘𝑘

                     (15)                                                                                                            

 
Case II: Let θ = 0.618 
             By the same way we can get  

𝑡𝑡2 = 0.618(𝑦𝑦𝑘𝑘−𝑔𝑔𝑘𝑘+1)𝑔𝑔𝑘𝑘+1
𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑠𝑠𝑘𝑘

                 (16)                                                                                                              

Put (15) in (10) we get: 

𝛽𝛽𝑘𝑘ℎ𝑆𝑆𝑆𝑆𝑆𝑆1 =
𝑔𝑔𝑘𝑘+1 
𝑇𝑇 (𝑦𝑦𝑘𝑘−(0.382(𝑦𝑦𝑘𝑘−𝑔𝑔𝑘𝑘+1) 1𝑠𝑠𝑘𝑘

)𝑠𝑠𝑘𝑘

𝑦𝑦𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘

  

           = 𝑔𝑔𝑘𝑘+1 
𝑇𝑇 (𝑦𝑦𝑘𝑘−0.382𝑦𝑦𝑘𝑘+0.382𝑔𝑔𝑘𝑘+1 

𝑇𝑇 )
𝑦𝑦𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘

  

            = 𝑔𝑔𝑘𝑘+1 
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑦𝑦𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘

− 0.382𝑔𝑔𝑘𝑘+1 
𝑇𝑇 𝑦𝑦𝑘𝑘

𝑦𝑦𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘

+ 0.382𝑔𝑔𝑘𝑘+1 
𝑇𝑇 𝑔𝑔𝑘𝑘+1

𝑦𝑦𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘

  

           = 𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻 − 0.382𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻 + 0.382𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷  

           = 0.618𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻 + 0.382𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷      (17)                                                                                                       
 
In the same way: 

𝛽𝛽𝑘𝑘ℎ𝑆𝑆𝑆𝑆𝑆𝑆2 =
0.618𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑦𝑦𝑘𝑘 + 0.382‖𝑔𝑔𝑘𝑘+1‖2

−𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘
 

              = 0.618𝛽𝛽𝑘𝑘𝐿𝐿𝐿𝐿 + 0.382𝛽𝛽𝑘𝑘𝐶𝐶𝐶𝐶         (18)                                                                             
Put (16) in (10) we get: 

𝛽𝛽𝑘𝑘ℎ𝑆𝑆𝑆𝑆𝑆𝑆3 =
𝑔𝑔𝑘𝑘+1𝑇𝑇 (𝑦𝑦𝑘𝑘 − (0.618(𝑦𝑦𝑘𝑘 − 𝑔𝑔𝑘𝑘+1)

𝑠𝑠𝑘𝑘
)𝑠𝑠𝑘𝑘)

𝑦𝑦𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘
 

            = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 (𝑦𝑦𝑘𝑘−0.618𝑦𝑦𝑘𝑘+0.618𝑔𝑔𝑘𝑘+1)

𝑦𝑦𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘

 

             = 0.382𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻 + 0.618𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷          (19)                                                                           
In the same way: 

𝛽𝛽𝑘𝑘ℎ𝑆𝑆𝑆𝑆𝑆𝑆4 =
0.382𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑦𝑦𝑘𝑘 + 0.618‖𝑔𝑔𝑘𝑘+1‖2

−𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘
 

             = 0.382𝛽𝛽𝑘𝑘𝐿𝐿𝐿𝐿 + 0.618𝛽𝛽𝑘𝑘𝐶𝐶𝐶𝐶           (20)                                                               
Therefore; we obtained 4 new betas: 

1- 𝛽𝛽𝑘𝑘ℎ𝑆𝑆𝑆𝑆𝑆𝑆1 = 0.618𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻 + 0.382𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷  

2- 𝛽𝛽𝑘𝑘ℎ𝑆𝑆𝑆𝑆𝑆𝑆2 = 0.618βkLS + 0.382βkCD 

3- 𝛽𝛽𝑘𝑘ℎ𝑆𝑆𝑆𝑆𝑆𝑆3 = 0.382𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻 + 0.618𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷 

4- 𝛽𝛽𝑘𝑘ℎ𝑆𝑆𝑆𝑆𝑆𝑆4 = 0.382βkLS + 0.618βkCD 

  
2.2.  The Hybrid Algorithm 
Step (1): Initialization: Select 𝑥𝑥0 ∊ 𝑅𝑅𝑛𝑛, compute: 
       𝑓𝑓(𝑥𝑥0), 𝑔𝑔0 = ∇𝑓𝑓(𝑥𝑥0).  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑0 = −𝑔𝑔0,
select ε (e. g  ε = 10−6)  
Step (2): If ǁgkǁ ≤ ε, then stop. else go to step (3). 
Step (3): Compute αk by using (3) and (4)  
Step (4): Generate 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + αk𝑑𝑑𝑘𝑘, compute 
𝑓𝑓(𝑥𝑥𝑘𝑘+1),  𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝑘𝑘+1 = ∇𝑓𝑓(𝑥𝑥𝑘𝑘+1) 
Step (5): Calculate 𝛽𝛽𝑘𝑘 in (11), (12), (13) or (14) and search 
direction 
                𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘 
Step (6): Test the convergence: if f(xk+1) ≤ f(xk) and 
ǁgkǁ ≤ ε, then stop.  
Otherwise, k = k + 1 
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2.3.  A Hybrid Conjugate Gradient Algorithm 
as a Convex Combination of (HS, DY) and 
(LS, CD) Algorithms When Θ =0.382 and 
Θ=0.618 
We shall demonstrate that the descent property is 

satisfied by our conjugate gradient approaches. 
 
Theorem (1): let {dk} be a sequence of directions generated 
by the new algorithm and 𝛼𝛼𝑘𝑘 in 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘  be a step 
size determined by Strong Wolfe line search, then 𝑑𝑑𝑘𝑘 satisfy 
sufficient descent conditions. 

 
Proof: 
1) 𝛽𝛽𝑘𝑘ℎ𝑆𝑆𝑆𝑆𝑆𝑆1 = (1 − 0.382)𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻 + 0.382 𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷 

      𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘ℎ𝑆𝑆𝑆𝑆𝑆𝑆1 𝑑𝑑𝑘𝑘 
      𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + (1 − 0.382)𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻𝑑𝑑𝑘𝑘 +

0.382𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷𝑑𝑑𝑘𝑘  
     𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1 = −ǁ𝑔𝑔𝑘𝑘+1ǁ2 +

0.618 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑦𝑦𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘

𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘 + 0.382 ǁ𝑔𝑔𝑘𝑘+1ǁ2

𝑦𝑦𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘

𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘  

Since  𝜎𝜎𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘 ≤ 𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘 ≤ −𝜎𝜎𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘   
           𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1 ≤ −ǁ𝑔𝑔𝑘𝑘+1ǁ2 +

0.618 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑦𝑦𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘

(−𝜎𝜎𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘) + 0.382 ǁ𝑔𝑔𝑘𝑘+1ǁ2

𝑦𝑦𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘

(−𝜎𝜎𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘)   

And  𝑦𝑦𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘 = (𝑔𝑔𝑘𝑘+1 − 𝑔𝑔𝑘𝑘)𝑇𝑇𝑑𝑑𝑘𝑘 ≥ (𝜎𝜎 − 1)𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘 
𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1 ≤ −ǁ𝑔𝑔𝑘𝑘+1ǁ2 +

0.618 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘

(𝜎𝜎−1)𝑔𝑔𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘

(−𝜎𝜎𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘) +

0.382 ǁ𝑔𝑔𝑘𝑘+1ǁ2

(𝜎𝜎−1)𝑔𝑔𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘

(−𝜎𝜎𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘)  

𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1 ≤ −ǁ𝑔𝑔𝑘𝑘+1ǁ2 + 0.618 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘

(𝜎𝜎−1)
(−𝜎𝜎) +

0.382 𝜎𝜎
(1−𝜎𝜎)

ǁ𝑔𝑔𝑘𝑘+1ǁ2  

𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1 ≤ −ǁ𝑔𝑔𝑘𝑘+1ǁ2 + 0.618 𝜎𝜎
(1−𝜎𝜎) ǁ𝑔𝑔𝑘𝑘+1ǁ

2 +

0.382 𝜎𝜎
(1−𝜎𝜎) ǁ𝑔𝑔𝑘𝑘+1ǁ

2 − 0.618 𝜎𝜎
(1−𝜎𝜎)𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑔𝑔𝑘𝑘  

𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1 ≤ −ǁ𝑔𝑔𝑘𝑘+1ǁ2 + 𝜎𝜎
(1−𝜎𝜎) ǁ𝑔𝑔𝑘𝑘+1ǁ

2 −

0.618 𝜎𝜎
(1−𝜎𝜎)𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑔𝑔𝑘𝑘  

       gk+1T dk+1 ≤ −(1 − σ
(1−σ))ǁgk+1ǁ

2  

       gk+1T dk+1 ≤ −(1−2σ
1−σ

)ǁgk+1ǁ2  

       gk+1T dk+1 ≤ −c1ǁgk+1ǁ2  

Where 𝑐𝑐1 = 1−2𝜎𝜎
1−𝜎𝜎

 

By the same way, we can prove that      𝛽𝛽𝑘𝑘ℎ𝑆𝑆𝑆𝑆𝑆𝑆3 =
(1 − 0.618)𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻 + 0.618𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷 satisfies the sufficient 
descent condition. 
 

2) 𝛽𝛽𝑘𝑘ℎ𝑆𝑆𝑆𝑆𝑆𝑆2 = (1 − 0.382)𝛽𝛽𝑘𝑘𝐿𝐿𝐿𝐿 + 0.382 𝛽𝛽𝑘𝑘𝐶𝐶𝐶𝐶    

 𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘ℎ𝑆𝑆𝑆𝑆𝑆𝑆2 𝑑𝑑𝑘𝑘 

 𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + (1 − 0.382)𝛽𝛽𝑘𝑘𝐿𝐿𝐿𝐿𝑑𝑑𝑘𝑘 + 0.382𝛽𝛽𝑘𝑘𝐶𝐶𝐶𝐶𝑑𝑑𝑘𝑘  

 𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 0.618 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
−𝑔𝑔𝑘𝑘

𝑇𝑇𝑑𝑑𝑘𝑘
𝑑𝑑𝑘𝑘 + 0.382 ǁ𝑔𝑔𝑘𝑘+1ǁ2

−𝑔𝑔𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘

𝑑𝑑𝑘𝑘   

 𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1 = −ǁ𝑔𝑔𝑘𝑘+1ǁ2 + 0.618 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
−𝑔𝑔𝑘𝑘

𝑇𝑇𝑑𝑑𝑘𝑘
𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘 +

0.382 ǁ𝑔𝑔𝑘𝑘+1ǁ2

−𝑔𝑔𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘

𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘    

Since  𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘 ≤ −𝜎𝜎𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘   

 𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1 = −ǁ𝑔𝑔𝑘𝑘+1ǁ2 + 0.618 𝑔𝑔𝑘𝑘+1
𝑇𝑇 (𝑔𝑔𝑘𝑘+1−𝑔𝑔𝑘𝑘)

−𝑔𝑔𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘

𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘 +

0.382 ǁ𝑔𝑔𝑘𝑘+1ǁ2

−𝑔𝑔𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘

𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘 

 𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1 = −ǁ𝑔𝑔𝑘𝑘+1ǁ2 + 0.618 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑔𝑔𝑘𝑘+1
−𝑔𝑔𝑘𝑘

𝑇𝑇𝑑𝑑𝑘𝑘
(−𝜎𝜎𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘) −

0.618 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑔𝑔𝑘𝑘
−𝑔𝑔𝑘𝑘

𝑇𝑇𝑑𝑑𝑘𝑘
(−𝜎𝜎𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘) + 0.382 ǁ𝑔𝑔𝑘𝑘+1ǁ2

−𝑔𝑔𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘

(−𝜎𝜎𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘) 

𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1 ≤ −ǁ𝑔𝑔𝑘𝑘+1ǁ2 + 𝜎𝜎ǁ𝑔𝑔𝑘𝑘+1ǁ2 + 0.618 𝜎𝜎𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑔𝑔𝑘𝑘  

𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1 ≤ −(1 − 𝜎𝜎)ǁ𝑔𝑔𝑘𝑘+1ǁ2 + 0.1236 𝜎𝜎ǁ𝑔𝑔𝑘𝑘+1ǁ2  
By using Powell restart 
𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1 ≤ −(1 − 1.1236𝜎𝜎)ǁ𝑔𝑔𝑘𝑘+1ǁ2  

𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1 ≤ −𝑐𝑐2ǁ𝑔𝑔𝑘𝑘+1ǁ2  
   Where 𝑐𝑐2 = 1 − 1.1236 𝜎𝜎 

By the same way, we can prove that    𝛽𝛽𝑘𝑘ℎ𝑆𝑆𝑆𝑆𝑆𝑆4 = (1 −
0.618)𝛽𝛽𝑘𝑘𝐿𝐿𝐿𝐿 + 0.618𝛽𝛽𝑘𝑘𝐶𝐶𝐶𝐶, satisfies the sufficient descent 
condition. 
 

3. Convergence Analysis 
 
Assumption (1): [22] The level set 𝑇𝑇 = {𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛: 𝑓𝑓(𝑥𝑥) ≤
𝑓𝑓(𝑥𝑥0)}  is bounded, i.e., there is a positive constant  𝐵𝐵 >
0 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 ǁ𝑥𝑥ǁ ≤ 𝐵𝐵,∀ 𝑥𝑥 ∈ 𝑇𝑇    
Assumption (2): [22] In a neighborhood 𝑁𝑁 of 𝑇𝑇,  𝑓𝑓(𝑥𝑥) is 
continuously differentiable and its gradient is Lipschitz 
continuous, i.e. 
 ∃ 𝐿𝐿 ≥  0 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 ǁ𝛻𝛻 𝑓𝑓(𝑥𝑥) − 𝛻𝛻 𝑓𝑓(𝑦𝑦)ǁ ≤ 𝐿𝐿ǁ𝑥𝑥 −
𝑦𝑦ǁ ,∀ 𝑥𝑥,𝑦𝑦 ∊ 𝑁𝑁        
at stated by assumptions (1) and (2), there is a non-negative 
constant Ʈ ≥ 0 such that: 
ǁ𝛻𝛻𝛻𝛻(𝑥𝑥)ǁ ≤ Ʈ  ∀𝑥𝑥 ∊ 𝑇𝑇  
The Zoutendijk criterion is commonly used to illustrate the 
global convergence of the conjugate gradient method. 
 Lemma (1): [23] Suppose that assumption equations (1) and 
(2) hold and 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘, where 𝑑𝑑𝑘𝑘 is descent 
direction and 𝛼𝛼𝑘𝑘 is a step size computed by using strong Wolf 
condition then: 

∑ (𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘+1)

2

ǁ𝑑𝑑𝑘𝑘+1ǁ
2𝑘𝑘≥1  < ∞ holds. 

Lemma (2): [22] Suppose assumptions (1) and (2) hold, and 
let 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘 and 𝑑𝑑𝑘𝑘 = −𝑔𝑔𝑘𝑘 + 𝛽𝛽𝑘𝑘−1 𝑠𝑠𝑘𝑘−1  ( 𝑘𝑘 ≥
1) where 𝑑𝑑𝑘𝑘 is a descent direction and 𝛼𝛼𝑘𝑘 is a step size 
determined by Strong Wolf line search, if ∑ 1

ǁ𝑑𝑑𝑘𝑘ǁ2𝑘𝑘≥1 = ∞ 
then: 𝑙𝑙𝑙𝑙𝑙𝑙

𝑘𝑘⟶∞
𝑖𝑖𝑖𝑖𝑖𝑖ǁ𝑔𝑔𝑘𝑘ǁ = 0 
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Theorem (2): Consider the assumptions 1 and 2 hold and 
{𝑥𝑥𝑘𝑘} be generated by the new algorithm, then: 
lim
𝑘𝑘⟶∞

𝑖𝑖𝑖𝑖𝑖𝑖ǁ𝑔𝑔𝑘𝑘+1ǁ = 0 
Proof:  We prove this theorem by using contradiction.  
Suppose the theorem is false, then: ∃ 𝑟𝑟 > 0 such that: ǁ𝑔𝑔𝑘𝑘ǁ ≥
𝑟𝑟  𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 
From the theorem (1): 
𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1  ≤ −𝐾𝐾ǁ𝑔𝑔𝑘𝑘+1ǁ2 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘  
By using strong Wolfe condition, we obtain: 
𝑦𝑦𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘 =  𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘 − 𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘 ≥ 𝜎𝜎𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘 − 𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘

≥ −(1− 𝜎𝜎)𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘 ≥ 𝐾𝐾(1 − 𝜎𝜎)ǁ𝑔𝑔𝑘𝑘ǁ2 
Multiplying both sides by 𝛼𝛼𝑘𝑘 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝛼𝛼𝑘𝑘 > 𝜆𝜆, 𝑓𝑓𝑓𝑓𝑓𝑓 𝜆𝜆 >
0,∀𝑘𝑘 ≥ 0 then: 
𝑦𝑦𝑘𝑘𝑇𝑇𝑠𝑠𝑘𝑘  ≥ 𝐾𝐾(1 − 𝜎𝜎)𝛼𝛼𝑘𝑘ǁ𝑔𝑔𝑘𝑘ǁ2 ≥ 𝐾𝐾(1 − 𝜎𝜎)𝜆𝜆𝑟𝑟2 
And since: 
ǁ𝑦𝑦𝑘𝑘ǁ = ǁ𝑔𝑔𝑘𝑘+1 − 𝑔𝑔𝑘𝑘ǁ ≤ 𝐿𝐿ǁ𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘ǁ
≤ 𝐿𝐿𝐿𝐿  (𝐷𝐷 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆) 
𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑘𝑘 
ǁ𝑑𝑑𝑘𝑘+1ǁ ≤ ǁ𝑔𝑔𝑘𝑘+1ǁ + ǀ𝛽𝛽𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛ǀ ǁ𝑠𝑠𝑘𝑘  ǁ 
 

1) 𝛃𝛃𝒌𝒌𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = 𝟎𝟎.𝟔𝟔𝟔𝟔𝟔𝟔𝛃𝛃𝒌𝒌𝑯𝑯𝑯𝑯 + 𝟎𝟎.𝟑𝟑𝟑𝟑𝟑𝟑𝛃𝛃𝒌𝒌𝑫𝑫𝑫𝑫[21] 

       ǀ𝛽𝛽𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛ǀ ≤ 0.618ǀ𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻ǀ + 0.382ǀ𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷ǀ 

      (0.618)𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻 = (0.618) 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑦𝑦𝑘𝑘
𝑇𝑇 𝑠𝑠𝑘𝑘

 ≤ (0.618) ǁ𝑔𝑔𝑘𝑘+1ǁ ǁ𝑦𝑦𝑘𝑘ǁ
 ǁ𝑦𝑦𝑘𝑘ǁ ǁ𝑠𝑠𝑘𝑘ǁ

=

(0.618) Ʈ𝐿𝐿𝐿𝐿
𝐾𝐾(1−𝜎𝜎)𝜆𝜆𝑟𝑟2

 

       0.382𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷 = (0.382) ǁ𝑔𝑔𝑘𝑘+1ǁ
2

𝑦𝑦𝑘𝑘
𝑇𝑇𝑠𝑠𝑘𝑘

 ≤ (0.382) ǁ𝑔𝑔𝑘𝑘+1ǁ
2

ǁ𝑦𝑦𝑘𝑘ǁ ǁ𝑠𝑠𝑘𝑘
 ≤

(0.382) Ʈ2

𝐾𝐾(1−𝜎𝜎)𝜆𝜆𝑟𝑟2
 

       ǀ𝛽𝛽𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆1ǀ ≤  (0.618)Ʈ𝐿𝐿𝐿𝐿+(0.382)Ʈ2

𝐾𝐾(1−𝜎𝜎)𝜆𝜆𝑟𝑟2
= 𝑀𝑀  and since 𝛼𝛼𝑘𝑘 >

𝜆𝜆 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 1
𝛼𝛼𝑘𝑘

 < 1
𝜆𝜆
 

Since ǁ𝑑𝑑𝑘𝑘+1ǁ ≤ ǁ𝑔𝑔𝑘𝑘+1ǁ + ǀ𝛽𝛽𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆1ǀ ǁ𝑠𝑠𝑘𝑘 ǁ  

                        ≤ ǁ𝑔𝑔𝑘𝑘+1ǁ + ǀ𝛽𝛽𝑘𝑘
𝑆𝑆𝑆𝑆𝑆𝑆1ǀǁ𝑥𝑥𝑘𝑘+1−𝑥𝑥𝑘𝑘ǁ

𝛼𝛼𝑘𝑘
 

                         ≤ Ʈ + 𝑀𝑀𝑀𝑀
𝜆𝜆

= 𝑊𝑊 

 
Hence:  

ǁ𝑑𝑑𝑘𝑘+1ǁ ≤ 𝑊𝑊 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 �
1

ǁ𝑑𝑑𝑘𝑘ǁ2𝑘𝑘≥1

= ∞ 

From Zoutendijk condition we have: 

�
(𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1)

2

ǁ𝑑𝑑𝑘𝑘+1ǁ
2

𝑘𝑘≥1

 < ∞  

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ǁ𝑔𝑔𝑘𝑘+1ǁ ≥ 𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1  ≤ −𝐾𝐾ǁ𝑔𝑔𝑘𝑘ǁ2   

𝐾𝐾2𝑟𝑟4�
1

ǁ𝑑𝑑𝑘𝑘ǁ2
 ≤

𝑘𝑘≥1

�
𝐾𝐾2ǁ𝑔𝑔𝑘𝑘ǁ4

ǁ𝑑𝑑𝑘𝑘ǁ2
 ≤  ∞

𝑘𝑘≥1

 

Which is contradiction with ∑ 1
ǁ𝑑𝑑𝑘𝑘+1ǁ2𝑘𝑘≥1 = ∞ 

Then, we get 𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘⟶∞

𝑖𝑖𝑖𝑖𝑖𝑖ǁ𝑔𝑔𝑘𝑘+1ǁ = 0                                                                            

2) 𝛃𝛃𝒌𝒌𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = 𝟎𝟎.𝟔𝟔𝟔𝟔𝟔𝟔𝛃𝛃𝒌𝒌𝑳𝑳𝑳𝑳 + 𝟎𝟎.𝟑𝟑𝟑𝟑𝟑𝟑𝛃𝛃𝒌𝒌𝑪𝑪𝑪𝑪[24] 

      𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 0.382𝑔𝑔𝑘𝑘+1 − 0.382𝑔𝑔𝑘𝑘+1 +
0.618𝛽𝛽𝑘𝑘𝐿𝐿𝐿𝐿𝑠𝑠𝑘𝑘 + 0.382𝛽𝛽𝑘𝑘𝐶𝐶𝐶𝐶𝑠𝑠𝑘𝑘 

                = −0.382𝑔𝑔𝑘𝑘+1 + 0.382𝛽𝛽𝑘𝑘𝐶𝐶𝐶𝐶𝑠𝑠𝑘𝑘 − 0.618𝑔𝑔𝑘𝑘+1 +
0.618𝛽𝛽𝑘𝑘𝐿𝐿𝐿𝐿𝑠𝑠𝑘𝑘 

                = (−𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝐶𝐶𝐶𝐶𝑠𝑠𝑘𝑘)0.382 + (−𝑔𝑔𝑘𝑘+1 +
𝛽𝛽𝑘𝑘𝐿𝐿𝐿𝐿𝑠𝑠𝑘𝑘)0.618 

      𝑑𝑑𝑘𝑘+1 = 0.382𝑑𝑑𝑘𝑘+1𝐶𝐶𝐶𝐶 + 0.618𝑑𝑑𝑘𝑘+1𝐿𝐿𝐿𝐿  

      ǁ𝑑𝑑𝑘𝑘+1ǁ ≤ ǁ𝑑𝑑𝑘𝑘+1𝐶𝐶𝐶𝐶 ǁ + ǁ𝑑𝑑𝑘𝑘+1𝐿𝐿𝐿𝐿 ǁ  
 
Furthermore;  

      ǁ𝑑𝑑𝑘𝑘+1𝐿𝐿𝐿𝐿 ǁ ≤ ǁ𝑔𝑔𝑘𝑘+1ǁ + ǀ𝛽𝛽𝐿𝐿𝐿𝐿ǀǁ𝑠𝑠𝑘𝑘ǁ  
From assumption (1) and (2), ǁgk+1ǁ ≤ Ʈ, since D is 
diameter of the level set S and by descent condition, we 
have: 

      −𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘 ≥ 𝐾𝐾ǁ𝑔𝑔𝑘𝑘ǁ  then 1
−𝑔𝑔𝑘𝑘

𝑇𝑇𝑑𝑑𝑘𝑘
≤ 1

𝐾𝐾ǁ𝑔𝑔𝑘𝑘ǁ
 

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ǀ𝛽𝛽𝐿𝐿𝐿𝐿ǀ = 𝑦𝑦𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘+1
−𝑑𝑑𝑘𝑘

𝑇𝑇𝑔𝑔𝑘𝑘
≤ 𝑦𝑦𝑘𝑘

𝑇𝑇𝑔𝑔𝑘𝑘+1
𝐾𝐾𝑔𝑔𝑘𝑘

≤ ǁ𝑦𝑦𝑘𝑘ǁǁ𝑔𝑔𝑘𝑘+1ǁ
𝐾𝐾ǁ𝑔𝑔𝑘𝑘ǁ

≤ 𝐿𝐿ǁ𝑠𝑠𝑘𝑘ǁ
𝐾𝐾

= 𝐿𝐿𝐿𝐿
𝐾𝐾

  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ǀ𝛽𝛽𝐶𝐶𝐶𝐶ǀ = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑔𝑔𝑘𝑘+1
−𝑑𝑑𝑘𝑘

𝑇𝑇𝑔𝑔𝑘𝑘
≤ 𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑔𝑔𝑘𝑘+1
𝐾𝐾ǁ𝑔𝑔𝑘𝑘ǁ

≤ ǁ𝑔𝑔𝑘𝑘+1ǁ2

𝐾𝐾ǁ𝑔𝑔𝑘𝑘ǁ
≤ Ʈ

𝐾𝐾
  

ǀ𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆2ǀ ≤ 0.618ǀ𝛽𝛽𝑘𝑘𝐿𝐿𝐿𝐿ǀ + 0.382ǀ𝛽𝛽𝑘𝑘𝐶𝐶𝐶𝐶ǀ  

Now, ǁ𝑑𝑑𝑘𝑘+1𝑆𝑆𝑆𝑆𝑆𝑆2ǁ ≤  ǁ𝑔𝑔𝑘𝑘+1ǁ + ǀ𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆2ǀǁ𝑠𝑠𝑘𝑘ǁ 
Then, 

 ǁ𝑑𝑑𝑘𝑘+1𝑆𝑆𝑆𝑆𝑆𝑆2ǁ ≤ 2Ʈ + �0.618 𝐿𝐿𝐿𝐿
𝐾𝐾

+ 0.382 Ʈ
𝐾𝐾
� ǁ𝑠𝑠𝑘𝑘ǁ = 2Ʈ +

𝑀𝑀𝑀𝑀 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑀𝑀 = 0.618 𝐿𝐿𝐿𝐿
𝐾𝐾

+ 0.382 Ʈ
𝐾𝐾

  

ǁ𝑑𝑑𝑘𝑘+1𝑆𝑆𝑆𝑆𝑆𝑆2ǁ ≤ 𝑊𝑊 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑊𝑊 = 2Ʈ + 𝑀𝑀𝑀𝑀  

We get: ∑ 1
ǁ𝑑𝑑𝑘𝑘+1ǁ

= ∞𝑘𝑘≥0   

 
 
By using Lemma (2), we obtain: 
𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘⟶∞

𝑖𝑖𝑖𝑖𝑖𝑖ǁ𝑔𝑔𝑘𝑘+1ǁ = 0                                                                          

3)  𝜷𝜷𝒌𝒌𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = 𝟎𝟎.𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝒌𝒌𝑯𝑯𝑯𝑯 + 𝟎𝟎.𝟔𝟔𝟔𝟔𝟔𝟔𝜷𝜷𝒌𝒌𝑫𝑫𝑫𝑫  
Similar to part (1) 

4)  𝜷𝜷𝒌𝒌𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = 𝟎𝟎.𝟑𝟑𝟑𝟑𝟑𝟑𝜷𝜷𝒌𝒌𝑳𝑳𝑳𝑳 + 𝟎𝟎.𝟔𝟔𝟔𝟔𝟔𝟔𝜷𝜷𝒌𝒌𝑪𝑪𝑪𝑪 
Similar to part (2) 
 The use of the golden section ratio in the line search 
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process is a novel approach that enhances the algorithm's 
efficiency by reducing the number of function evaluations 
required. 
 

4. Numerical Experiments 
This section focuses on testing the new methods' 

implementation. Based on this, we evaluate the computing 
performance of the suggested approaches with several known 
algorithms such as DY, HS, and LS conjugate gradient 
algorithms. We consider 110 unconstrained optimization test 
problems, some of which are selected from the CUTE 
(constrained and unconstrained test environment) library [25] 
and the rest are from the unconstrained problems collections 
[26], [27]. The sizes of the test issues (denoted by n in the 
tables) range from 2 to 200000. To be fair, all comparison 
methods employ the strong Wolfe line search method to 
compute the step length ∝𝑘𝑘. The hybridization parameter θ 
equals to 0.382 for the creation of (𝛽𝛽ℎ𝑆𝑆𝑆𝑆𝑆𝑆1 , 𝛽𝛽ℎ𝑆𝑆𝑆𝑆𝑆𝑆2), and 
equals to 0.618 for the creation of (𝛽𝛽ℎ𝑆𝑆𝑆𝑆𝑆𝑆3 , 𝛽𝛽ℎ𝑆𝑆𝑆𝑆𝑆𝑆4). The 
relevant parameters are set to be δ=0.0001 and σ=0.9 for the 
proposed methods. The termination criterion is either (1) 
ǁ𝑔𝑔𝑘𝑘ǁ∞ ≤ 10−6 or (2) number of iteration (NOI) >2000. 
When (2) happens, the relevant algorithm is claimed to be 
invalid for the corresponding test problem, which is denoted 
by “NaN”. 

 All codes are written in MATLAB (as a tool for data 
analysis) 2024b and run on a Lenovo PC with a 360GHz CPU 
(Central Processing Unit) processor, 8 GB of RAM memory, 
and the Windows 10 operating system.  
The comparison of various methodologies is offered in the 
following context for example, let fiH1 and fiH2be the 
optimal values determined by H1 and H2 for problems 
i=1…110 respectively. It is considered that in the specific 
problem i, if the performance of H1 was better than the 
performance of H2: 

ǀfiH1 − fiH2ǀ < 10−3 
The number of iterations (NOI), or the number of function 
gradient-evaluation (NOF), or CPU time of H1 methods is 
less than that of H2 methods. To get comprehensive 
comparisons, the profile of Dolan and More [28] is utilized 
to evaluate and compare the performance of the collection of 
approaches.  

 
                Figure 1. Number of Iteration. 

Based on the extensive numerical data presented in table.1 
and illustrated in Figure.1, the results clearly demonstrate 
that our proposed methods outperform the classical 
approaches in terms of number of iteration, with the fourth 
method (hSSH4) exhibiting the highest efficiency.                                                                                                           
 
 
 
 
 
 
 
 
 
 
 
 
 
                      Figure 2. CPU Time. 

 
The detailed numerical data presented in Table 2 and 

illustrated in Figure 2 provide performance profiles 
comparing the proposed methods with classical approaches 
(HS, DY, and LS). The new methods exhibit superior 
efficiency by solving the problems more quickly, with the 
fourth method (hSSH4) emerging as the most efficient. 
 
 
 
 
 
 
 
 
 
 
                 Figure 3. Gradient Function. 

Figure 3 demonstrates how these algorithms perform 
in terms of the number of function gradient evaluations, 
highlighting that the proposed methods are capable of 
solving more functions than the classical approaches. It is 
worth noting that the fourth method (hSSH4) consistently 
demonstrates the highest efficiency across all three 
performance factors. 
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Table 1. Illustrates a numerical comparison between the classical methods and the proposed methods based on Number of 
Iteration. 

# Problem n HS DY LS hSSH1 hSSH2 hSSH3 hSSH4 

1 ARGLINB 2 NaN NaN NaN NaN NaN NaN NaN 

2 500 15 14 NaN 28 15 15 67 

3 1000 18 27 20 79 20 19 15 

4 BV 500 613 1593 1019 1342 1822 801 526 

5 1000 250 229 168 165 140 133 101 

6 10000 0 0 0 0 0 0 0 

7 20000 0 0 0 0 0 0 0 

8 30000 0 0 0 0 0 0 0 

9 COSINE 10 12 12 11 11 11 12 11 

10 100 11 11 11 10 11 11 10 

11 1000 16 118 30 14 19 18 18 

12 10000 14 14 14 16 15 15 16 

13 100000 12 13 12 13 13 14 14 

14 DIXMAANA 300 9 10 9 9 8 11 9 

15 30000 9 9 10 9 9 10 9 

16 60000 10 10 9 12 10 9 10 

17 90000 11 10 10 10 10 9 10 

18 120000 10 10 10 9 10 10 9 

19 DIXMAANL 3000 2733 2613 1439 NaN 2283 2657 1431 

20 9000 1572 NaN 2601 2698 1033 2326 774 

21 30000 1649 NaN NaN 1885 1218 NaN 1199 

22 60000 NaN NaN NaN NaN NaN NaN NaN 

23 DIXMAANK 3000 1617 NaN 2278 NaN 1222 1846 937 

24 9000 1834 NaN 2602 2939 1092 2604 1003 

25 30000 NaN NaN NaN NaN 1474 NaN 1530 

26 60000 NaN NaN NaN NaN NaN NaN NaN 

27 120000 NaN NaN NaN NaN NaN NaN NaN 

28 DIAG4 100 106 219 58 36 130 93 21 

29 1000 54 189 138 204 129 139 40 

30 10000 95 211 135 210 51 69 33 

31 100000 105 132 40 208 100 131 31 

32 200000 55 264 181 198 151 171 37 

33 DIAG5 100 1 1 1 1 1 1 1 

34 1000 7 7 7 7 7 7 7 

35 10000 8 8 8 12 8 12 12 

36 50000 8 8 8 8 8 8 8 

37 200000 8 8 8 8 8 8 8 

38 DIAG6 100 1 1 1 1 1 1 1 

39 1000 8 8 8 8 8 8 8 

40 10000 12 12 12 12 12 12 12 

41 50000 8 8 8 8 8 8 8 
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42 100000 12 NaN NaN 14 12 15 15 

43 DIAG8 1000 9 9 9 11 9 11 11 

44 5000 7 7 7 7 7 7 7 

45 10000 8 8 8 8 8 8 8 

46 DQRTIC 5000 17 17 17 38 32 54 33 

47 10000 84 88 85 56 86 18 50 

48 50000 21 36 21 98 56 21 61 

49 100000 22 23 95 146 130 87 42 

50 150000 63 23 176 126 113 23 66 

51 EDENSCH 2 8 7 9 8 8 17 8 

52 100 48 49 44 43 39 40 29 

53 1000 43 67 50 67 44 75 31 

54 10000 80 46 67 43 38 38 43 

55 100000 45 65 49 45 38 46 36 

56 DENSCHNF 10 18 18 15 19 16 18 16 

57 100 15 16 20 16 18 17 16 

58 1000 17 19 18 20 23 15 22 

59 10000 20 22 19 20 16 20 21 

60 100000 19 17 18 18 19 21 21 

61 EDENSCHNB 2 13 12 13 12 13 13 11 

62 100 12 12 13 14 11 12 12 

63 10000 14 14 14 15 13 13 14 

64 100000 18 17 18 14 17 15 16 

65 HIMMELBG 10000 2 2 2 2 2 2 2 

66 100000 2 2 2 2 2 2 2 

67 IE 100 8 9 8 8 9 9 9 

68 500 9 8 9 9 9 9 9 

69 ENGVALI 10 41 40 39 39 37 37 NaN 

70 1000 43 41 42 42 38 43 23 

71 10000 40 41 42 42 36 37 28 

72 EVF 2 38 34 40 34 38 39 26 

73 EXPENALTY 100 6 6 6 6 6 6 6 

74 1000 14 NaN NaN 11 14 11 11 

75 25000 12 12 12 12 12 12 15 

76 50000 11 11 11 11 11 11 11 

77 EXTROSNB 2 105 388 167 1096 304 62 64 

78 500 64 66 71 64 61 59 42 

79 1000 NaN NaN NaN NaN NaN NaN NaN 

80 10000 1649 NaN NaN 1161 265 666 218 

81 EXROSEN 10 NaN NaN NaN 832 NaN 1533 319 

82 100 NaN NaN NaN 914 NaN 1729 195 

83 1000 NaN NaN NaN 661 NaN 1326 295 

84 5000 NaN NaN NaN 1077 NaN 1903 324 

85 10000 NaN NaN NaN 1115 NaN 1954 316 
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86 
 

50000 NaN NaN NaN 1100 NaN 2007 317 

87 100000 NaN NaN NaN 1149 NaN 2087 392 

88 EXHIMMELBLAU 10 18 18 20 19 21 19 21 

89 1000 16 18 22 18 21 15 21 

90 10000 16 15 20 17 19 16 22 

91 GENHUMPS 2 6 6 6 6 6 6 6 

92 100 11 NaN 13 12 11 12 11 

93 500 NaN NaN NaN NaN NaN NaN NaN 

94 1500 11 12 10 11 13 12 NaN 

95 GENQUARTIC 1000 24 18 21 16 17 19 18 

96 25000 13 13 12 10 14 14 12 

97 75000 12 13 14 15 14 13 12 

98 GQUARTIC 50 NaN NaN NaN 161 165 180 148 

99 100 NaN NaN NaN 262 280 302 220 

100 500 NaN NaN NaN 934 1081 1141 767 

101 1000 NaN NaN NaN 1835 2092 2169 1596 

102 HARKERP 100 9 9 9 12 9 12 12 

103 1000 10 10 10 58 10 13 13 

104 10000 9 25 11 13 16 10 23 

105 50000 19 16 16 13 19 14 14 

106 HIMMELBH 100 18 16 19 19 14 19 14 

107 10000 22 21 23 23 22 24 21 

108 100000 25 24 25 22 23 22 22 

109 HIMMELBG 100 2 2 2 2 2 2 2 

110 1000 2 2 2 2 2 2 2 

  
 

Table 2. Demonstrates a numerical comparison between the classical methods and the proposed methods based on CPU time. 
 

# Problem n HS DY LS hSSH1 hSSH2 hSSH3 hSSH4 

1 RGLINB 2 NaN NaN NaN NaN NaN NaN NaN 

2 500 0.322 0.278 NaN 0.654 0.301 0.326 1.544 

3 1000 1.322 2.08 1.459 6.37 1.491 1.481 1.152 

4 BV 500 4.444 10.56 7.099 8.99 10.771 5.499 3.294 

5 1000 5.119 4.247 3.443 3.204 2.693 2.768 1.944 

6 10000 0.385 0.435 0.376 0.352 0.376 0.331 0.352 

7 20000 4.189 3.289 2.876 2.305 1.524 1.505 1.588 

8 30000 6.17 5.014 5.1 5.036 4.706 4.789 4.286 

9 COSINE 10 0.355 0.041 0.017 0.023 0.013 0.018 0.023 

10 100 0.028 0.016 0.022 0.015 0.021 0.037 0.018 

11 1000 0.048 0.211 0.07 0.057 0.05 0.048 0.048 

12 10000 0.192 0.174 0.195 0.199 0.172 0.203 0.211 

13 100000 0.981 1.119 1.265 1.043 0.864 1.034 1.044 

14 AANA 300 0.047 0.03 0.031 0.034 0.035 0.05 0.048 
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15 30000 1.049 1.029 1.096 1.147 1.067 1.261 0.993 

16 60000 2.223 2.155 1.988 2.562 2.143 1.781 2.235 

17 90000 3.123 2.86 2.952 2.966 2.868 2.786 3.066 

18 120000 4.15 4.268 5.11 4.392 4.231 4.469 3.657 

19 AANL 3000 27.198 28.529 10.183 NaN 13.771 19.017 9.839 

20 9000 30.659 NaN 47.928 47.545 16.31 41.997 13.107 

21 30000 85.146 NaN NaN 86.94 48.802 NaN 50.972 

22 60000 NaN NaN NaN NaN NaN NaN NaN 

23 AANK 3000 12.152 NaN 16.639 NaN 8.311 13.318 6.481 

24 9000 33.618 NaN 43.654 48.192 16.34 44.005 15.666 

25 30000 NaN NaN NaN NaN 58.934 NaN 65.255 

26 60000 NaN NaN NaN NaN NaN NaN NaN 

27 120000 NaN NaN NaN NaN NaN NaN NaN 

28 DIAG4 100 0.142 0.245 0.082 0.04 0.11 0.086 0.026 

29 1000 0.069 0.211 0.158 0.213 0.136 0.15 0.068 

30 10000 0.447 0.797 0.66 0.923 0.294 0.413 0.21 

31 100000 2.469 3.058 1.187 4.342 2.144 3.093 1.192 

32 200000 3.133 10.426 7.86 8.247 6.022 7.789 2.381 

33 DIAG5 100 0.009 0.001 0.003 0.001 0.001 0.002 0.001 

34 1000 0.035 0.036 0.044 0.034 0.033 0.035 0.039 

35 10000 0.234 0.189 0.154 0.258 0.156 0.248 0.253 

36 50000 0.538 0.527 0.497 0.497 0.505 0.517 0.508 

37 200000 2.419 2.419 2.435 2.419 2.432 2.414 2.37 

38 DIAG6 100 0.007 0.001 0 0 0.001 0.001 0.001 

39 1000 0.013 0.015 0.016 0.017 0.013 0.016 0.019 

40 10000 0.091 0.078 0.066 0.067 0.077 0.074 0.07 

41 50000 0.141 0.135 0.117 0.12 0.116 0.117 0.115 

42 100000 0.277 NaN NaN 0.383 0.285 0.406 0.389 

43 DIAG8 1000 0.021 0.019 0.032 0.035 0.023 0.033 0.045 

44 5000 0.063 0.054 0.049 0.045 0.04 0.047 0.042 

45 10000 0.077 0.07 0.073 0.064 0.059 0.067 0.063 

46 DQRTIC 5000 0.295 0.264 0.273 0.547 0.437 0.63 0.482 

47 10000 1.796 1.777 1.761 1.234 1.755 0.526 1.115 

48 50000 2.502 3.916 2.516 8.511 5.545 2.565 5.014 

49 100000 5.229 5.252 16.016 24.417 20.742 15.004 8.538 

50 150000 16.679 7.962 40.752 31.306 27.065 7.895 15.983 

51 EDENSCH 2 0.013 0.011 0.008 0.009 0.007 0.019 0.009 

52 100 0.055 0.073 0.053 0.056 0.046 0.062 0.038 

53 1000 0.182 0.319 0.216 0.313 0.183 0.342 0.134 

54 10000 2.277 1.065 1.057 0.83 0.714 0.694 1.292 

55 100000 8.402 16.756 10.034 9.357 6.805 8.764 8.622 

56 DENSCHNF 10 0.039 0.031 0.032 0.029 0.044 0.032 0.036 

57 100 0.031 0.038 0.035 0.032 0.036 0.036 0.038 

58 1000 0.057 0.064 0.054 0.068 0.064 0.052 0.075 
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59 10000 0.256 0.25 0.262 0.253 0.233 0.237 0.264 

60 100000 1.923 1.973 1.837 1.758 1.925 2.012 2.016 

61 DENSCHNB 2 0.009 0.011 0.012 0.011 0.008 0.014 0.013 

62 100 0.023 0.029 0.026 0.028 0.016 0.021 0.027 

63 10000 0.166 0.177 0.159 0.164 0.114 0.116 0.119 

64 100000 0.824 0.813 0.854 0.743 0.86 0.784 0.771 

65 HIMMELBG 10000 0.015 0.012 0.013 0.011 0.013 0.013 0.011 

66 100000 0.077 0.08 0.075 0.077 0.079 0.075 0.074 

67 IE 100 0.301 0.249 0.227 0.208 0.227 0.255 0.248 

68 500 5.311 5.065 6.113 5.793 5.641 5.606 5.461 

69 ENGVALI 10 0.029 0.026 0.031 0.035 0.033 0.031 NaN 

70 1000 0.032 0.026 0.033 0.03 0.028 0.032 0.019 

71 10000 0.107 0.105 0.126 0.13 0.113 0.107 0.099 

72 EVF 2 0.033 0.023 0.028 0.032 0.029 0.036 0.029 

73 M)ENALTY 100 0.009 0.008 0.006 0.006 0.007 0.005 0.007 

74 1000 0.015 NaN NaN 0.017 0.018 0.013 0.012 

75 25000 0.115 0.11 0.097 0.092 0.095 0.099 0.124 

76 50000 0.135 0.124 0.126 0.123 0.12 0.126 0.117 

77 EXTROSNB 2 0.079 0.312 0.138 0.655 0.173 0.051 0.047 

78 500 0.044 0.045 0.048 0.045 0.045 0.039 0.032 

79 1000 NaN NaN NaN NaN NaN NaN NaN 

80 10000 4.013 NaN NaN 2.67 0.654 1.794 0.601 

81 EXROSEN 10 NaN NaN NaN 0.665 NaN 1.367 0.376 

82 100 NaN NaN NaN 0.761 NaN 1.605 0.251 

83 1000 NaN NaN NaN 0.654 NaN 1.315 0.413 

84 5000 NaN NaN NaN 2.177 NaN 3.68 1.048 

85 10000 NaN NaN NaN 3.277 NaN 5.469 1.229 

86 50000 NaN NaN NaN 8.535 NaN 15.431 3.238 

87 100000 NaN NaN NaN 14.384 NaN 24.892 6.813 

88 LBLAU 10 0.066 0.036 0.034 0.036 0.033 0.048 0.047 

89 1000 0.047 0.058 0.064 0.064 0.069 0.046 0.092 

90 10000 0.248 0.214 0.216 0.176 0.173 0.164 0.219 

91 GENHUMPS 2 0.01 0.003 0.004 0.01 0.005 0.004 0.005 

92 100 0.01 NaN 0.016 0.012 0.011 0.011 0.015 

93 500 NaN NaN NaN NaN NaN NaN NaN 

94 1500 0.03 0.036 0.029 0.027 0.037 0.038 NaN 

95 NQUARTIC 1000 0.026 0.02 0.026 0.017 0.03 0.025 0.027 

96 25000 0.107 0.11 0.107 0.081 0.09 0.099 0.079 

97 75000 0.177 0.193 0.191 0.205 0.196 0.199 0.183 

98 GQUARTIC 50 NaN NaN NaN 0.13 0.131 0.14 0.118 

99 100 NaN NaN NaN 0.239 0.26 0.272 0.202 

100 500 NaN NaN NaN 0.986 1.154 1.417 0.867 

101 1000 NaN NaN NaN 5.685 6.42 4.484 2.704 

102 RKERP 100 0.016 0.009 0.012 0.013 0.006 0.015 0.015 
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103 1000 0.031 0.022 0.024 0.142 0.026 0.027 0.03 

104 10000 0.061 0.186 0.095 0.122 0.107 0.078 0.163 

105 50000 0.463 ().404 0.384 0.316 0.488 0.359 0.346 

106 MELBH 100 0.019 0.019 0.02 0.021 0.014 0.027 0.016 

107 10000 0.198 0.202 0.161 0.161 0.174 0.182 0.154 

108 100000 1.175 1.127 1.324 1.034 1.133 1.207 1.167 

109 MELBG 100 0.001 0.001 0.001 0.001 0.002 0.002 0.002 

110 1000 0.001 0.002 0.002 0.003 0.002 0.003 0.003 

 

5. Conclusion 
 

Conjugate gradient methods are frequently used to 
address unconstrained optimization problems, particularly in 
large scales. Hybrid strategies, which integrate classical 
approaches, are among the most useful. To create a practical 
and effective technique, this paper presents well-designed 
hybrid conjugate gradient algorithms that effectively 
leverage the golden section ratio to enhance the performance 
of traditional CG methods. The theoretical and empirical 
results are compelling, suggesting that the proposed 
algorithms represent a valuable contribution to the methods 
available for solving unconstrained optimization problems. 
The new algorithms, in particular, showed superior 
performance based on key factors such as CPU time, number 
of gradient function evaluations, and number of iterations. 
One of the main challenges faced during this research was 
selection and integration of the most effective features of the 
classical methods, particularly those derived from the DY-
HS and LS-CD approaches. It is recommended for future 
work, to explore the use of these new hybrid algorithms in 
wider domains such as fuzzy logic systems, time series 
analysis, and finite difference methods. 
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