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Conjugate gradient methods have been favored to use for their efficiency in solving large-scale
unconstrained optimization problems, primarily because of their low memory requirements and
exclusive to use the first-order derivative information. In this paper, we introduce a spectral conjugate
gradient method that enhances the classical approach by merge a spectral property directly into the
determination of the search direction. At the core of our method lies a developed formulation of a
spectral search direction and a more precisely adjusted conjugate gradient coefficient, both derived as
extensions of established conjugacy condition. To ensure numerical stability, we also include a
correction term that accounts for the limitations of machine precision. Our theoretical analysis confirms
that the developed method generates search directions satisfying the descent condition, which is critical
for ensuring convergence. To assess its real-world effectiveness, we subjected the spectral conjugate
gradient method to an extensive set of numerical experiments and benchmarked its performance against
that of a standard conjugate gradient method. By using range of test problems, our method consistently
delivered superior results, particularly in reducing the number of function evaluations and exhibiting
improved scalability in higher-dimensional settings. These findings strongly indicate the spectral
conjugate gradient method’s potential as a reliable and efficient tool for optimization. Future research
may explore further refinements to the method’s theoretical foundations, investigate its performance
in constrained or stochastic environments, and apply it to practical optimization challenges such as
neural network training, signal recovery, structural design, and control system calibration.
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1. Introduction

Unconstrained optimization represents a fundamental is
mathematical

concept  within

world applications make them foundational to the field.
Proposing reliable and computationally efficient algorithms
particularly  pivotal when solving large-scale
unconstrained problems. Classical methods often struggle

modeling, frequently

encountered across various scientific and engineering
disciplines. These problems focus on minimizing an
objective function f(x), defined over x € R", without
imposing explicit constraints on the decision variable x.
Unconstrained optimization problems lie at the heart of both
theoretical advancements and the development of practical,
efficient optimization algorithms. Their direct formulation
and widespread occurrence in real-world applications make
them foundational to the field.

Their direct formulation and popular occurrence in real-
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with such challenges because of the excessive memory
demands or slow convergence rates. Among the most widely
used methods are first-order iterative methods, such as quasi-
Newton (QN) and conjugate gradient (CG) algorithms.
These methods are chosen for their ability to deal with large
datasets while maintaining relatively low memory.

Unconstrained optimization arises in numerous real-
world applications practical. For instance, in medical
imaging, it plays a key role in reconstructing magnetic
resonance (MR) images by formulating the inverse problem
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as an optimization task [1]. In finance, such methods are
central to portfolio optimization models that aim to balance
expected returns with associated risks [2,3]. In robotics,
motion control problems are frequently modeled as
unconstrained minimization problems [4]. also, in signal
processing and computer vision, applications such as
compressed sensing and image restoration often rely on
solving unconstrained optimization problems to recover
accurate signals or images from incomplete or noisy [5,6,7].

Moreover, the fast progress in machine learning and
artificial intelligence has significantly high the importance
of unconstrained optimization, particularly in the training of
deep neural networks. These training problems typically
involve highly nonconvex objective functions defined over
extremely high-dimensional, demanding optimization
techniques that are fast converging and also robust and
stable [8,9,10]. Consequently, improving optimization
algorithms remains an active and evolving research, with
ongoing efforts directed toward improve convergence,
enhancing generalization performance, and computational
efficiency.

Motivated by these considerations, this paper focuses on
unconstrained optimization problems, formally described as
the minimization of function defined over R™, with no
restrictions on the domain variables:

min{f(x),x € R"}, €))

where the objective function f: R™ — R possesses
continuous partial derivatives, and its gradient, denoted by
Vf (x) = g(x),is available.

Our goal is to contribute to this field by proposing
developed a new method that combines spectral properties
with the conjugate gradient framework to enhance
convergence and numerical performance.

CG methods constitute a prominent class of iterative
algorithms widely employed for solving large-scale
optimization problems (1) due to their simple iterative
structure, relatively fast convergence properties, and low
memory requirements. The iterative steps of the classical
CG method are defined by:

X1 = X + Qpdy, (2)
and the search direction dk is given by:
—3J1, k=0
sy = { : 3
T =Grewr + Brdis k=1 ®)

where g, = g(xx), and By, is the conjugate parameter, and
ay is the step length determined by an appropriate exact or
inexact line search. Numerous researchers have investigated
the convergence properties of CG methods under various
line search conditions, with some employing exact line
search (ELS) and others utilizing the strong Wolfe line
search (SWL) conditions, defined as:

{f(xk + ardy) < f(x) + Sapgldy,

4
9 + ad)"dy = ogidy ¥
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or the SWL

{f(xk + ardy) < f(xp) + Sapgidy,

%)
lg(x + ardy)"di| < algpdyl,

where the parameters 0 < § < o < 1 are typically required.
Different choices for the conjugate parameter S, lead to
different CG methods with varying numerical performance
and convergence behavior [17]. Well-known formulas for fk
include those proposed by Hestenes and Stiefel (HS) [11],
Fletcher and Reeves (FR) [12], Polak, Ribiére, and Polyak
(PRP) [13, 14], Dai and Yuan (DY) [15], Liu-Storey (LS)

[16], Conjugate-Descent (CD) methods [17], given
respectively by:
T
HS _ Jk+1Vk
o=t ©)
T
FR _ Yk+19k
k™ glgx )
T
PRP _ Yk+1Yk
= 8
k Ik 9K ®)
T
pr = thyuse ©)
T
LS _ 9k+1Vk
= 1
k _gzdka ( O)
2
IED _ 1gk+4ll (11)

—gldy’
where y, = grxy1 — gr and |-ll denotes the Euclidean norm
in R™. Theoretically, when an exact minimization rule is
employed, all these choices of 5, are equivalent for strongly
convex quadratic functions. However, for non-quadratic
objective functions, each choice of [ can result in
significantly different numerical performance [18].

It is established that the FR and DY CG methods possess
favorable global convergence properties. However, their
numerical performance in practice is often not optimal.
Conversely, the PRP and HS methods typically exhibit
excellent performance in practical computations, but
establishing their global convergence properties can be
challenging. To address these limitations of classical CG
methods, considerable research has focused on developing
improved CG methods with enhanced theoretical properties
and numerical performance, as exemplified by the methods
presented in References [19, 20, 21,22,23,24,25,26].

Despite the numerous successes of classical conjugate
gradient methods, they face challenges in efficiently
handling high-dimensional and strongly nonlinear problems.
Achieving convergence often requires accurate line search
properties, and the performance of these methods can be
sensitive to the choice of the conjugate parameter.
Furthermore, ensuring the sufficient descent property, which
is fundamental for strong global convergence, is not always
guaranteed in practice, especially with inexact line searches.

Given these limitations, spectral gradient methods have
emerged as a promising alternative that seeks to incorporate
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spectral information from previous iterations with the aim
of accelerating convergence and improving numerical
performance. These methods leverage eigenvalues or
approximations of the Hessian of the objective function to
define more effective search directions. However, there
remains a need for the development of new spectral
conjugate gradient methods that combine practical
efficiency with strong theoretical properties, such as
guaranteeing the sufficient descent property at each
iteration.

In [27, 28], Barzilai, Borwein, and Raydan
independently introduced and analyzed spectral gradient
methods for unconstrained optimization. Subsequently,
drawing inspiration from spectral gradient methods,
significant efforts have been directed towards modifying
traditional CG methods. Brigin and Martinez [29] proposed
a spectral CG method where the search direction is defined
as:

dis1 = =0k Grs1 + BV, dy = —6,91, (12)

where 6, and S, named a spectral parameter and a CG
parameter, respectively, are given by

T
Vi Vk
6, = = 13
k V,’Syk_’ ( )
M1 _ Bkyk—vi) ks
B = (14)
Vi Yk
T
BM2 _ _OkYViTk+1 (15)
K a O-191 91K’
0.7
BM3 _ YkIk+19k+1
K= (16)

arb-1959K

The experimental results obtained using the Wolfe line
search strategy on the three CG formulas indicate that the
coefficient fEM! delivers the most favorable numerical
performance. Based on certain reasonable assumptions,
Birgin and Martinez [28] demonstrated that their spectral
CG method achieves global convergence. Nevertheless, it is
important to note that spectral CG approaches do not
inherently guarantee descent directions [29]. To address this
limitation, Andrei [30] introduced a scaled CG algorithm
designed to ensure descent properties under the Wolfe line
search conditions. Subsequently, Jiang et al. [31] developed
a spectral CG method with sufficient descent properties,
building upon the modified CG approach proposed by
Zhang et al. [32], where the search direction was defined

using the BERPcoefficient.

_ Yk—19k—s _ 9k9kdk—_19k—1
e =

amn

lgk-1l2  Ngrl?llge-117>
T
PRP _ JkVk-1 18
K lgp-112 7 (18)
In this context, the vector y,_1 = gi — gr_1,represents
the difference between successive gradients. The

corresponding algorithm was implemented using a modified
Armijo-type line search strategy, and it was later shown to
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be globally convergent under certain mild assumptions.
Building upon this, Liu and Jiang [33] introduced a spectral
conjugate gradient method known as SCD, which is derived
from the classical CD method. The SCD algorithm is notable
for maintaining the sufficient descent property regardless of
the line search technique employed, and its global
convergence has been established under the strong Wolfe
line search conditions. The method is defined by the
following expressions:

T
dy—
9k=1—gkk1

19
gi_ldk—f ( )
cp _ _llgxll?
= . 2
L T (20)

Subsequently, Liu et al. [34] proposed another variant of
the spectral CG method, which integrates the CD and DY
methods. In this formulation, the CG coefficient is computed
as:

B = B° + min{0, Yy, BE"}, 21
T dp_
9k:1—%ﬁfﬁ (22)
T
iy = — ol (23)

dk-1(gr-1-91)
In 2010, Andrei [35] introduced another spectral CG
method where the search direction is given by:

dir1 = =Oks19k+1 + B Swdi = —g1.  (24)
with
pi = 1ol oweign es)
k Sk (Ve sk)
and
1 lgirill2sE grss
0 =___< 2 _ 19ksalPogisn) 26
k+1 YE ok lgrall VEsk (26)

The directions yielded by Equations (24)-(26) possess
descent property as follows:

Fis1@ierr < —Opsr — /D greaa 1> (27)
This shows that the direction is descent only in case

0r+1 > 1/4. Therefore, to obtain descent in any case, Andrei
[35] reset By.4 = 1 in case 65,4 < 1/4.

Further examples of spectral CG methods based on the
structure of Equation (12) can be found in References [36,
37].

While numerous numerical experiments have
demonstrated the superior numerical performance of spectral
CG methods compared to traditional CG methods, ensuring
the descent property, particularly the sufficient descent
property, for the search directions in spectral CG methods
remains a challenge. This motivates further research into the
development of more robust spectral CG methods.

The primary objective of this study is to develop a novel
(SCG) method specifically designed to improve the
numerical efficiency of solving large-scale unconstrained
optimization problems. The main contributions of this work
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can be summarized as follows. First, we propose the
development of a new conjugate parameter, derived from a
modified form of the Dai—Liao conjugacy condition, which
is integrated within the structure of the proposed spectral
CG framework. Second, we prove that the resulting search
directions satisfy both the (descent and sufficient descent)
conditions, and we ensure that the spectral parameter
remains bounded an essential aspect for establishing global
convergence. Third, we validate the effectiveness of the
proposed method through comprehensive numerical
experiments, demonstrating its superior performance
relative to existing methods on a broad set of standard large-
scale benchmark problems.

The structure of the paper is organized as follows. In
Section tow introduces the mathematical preliminaries and
outlines the assumptions employed in constructing the new
method. In Section 3, the derivation of the search directions
and provide theoretical results confirming that they satisfy
the descent and sufficient descent properties are present.
Section 4 is dedicated to analyzing the boundedness of the
spectral parameter, which plays a critical role in
guaranteeing global convergence. Section 5 reports the
results of numerical experiments that compare the proposed
method with several state-of-the-art optimization
techniques. Finally, Section 6 summarizes the main findings
and outlines potential directions for future research.

2. Derivation of a Developed SCG Method and
Its Algorithm

In this section, we present the development and
derivation of a new SCG method designed to solve
optimization problems of the form defined in equation (1).
The proposed method introduces a novel spectral search
direction defined as:

dis1 = —OkGrs1 + Brdi, dy = =01 94, (28)

T

ViV,
where 6, = v’;yk

kYk

X = apdy. This parameter plays a central role in controlling
the direction and efficiency of the iterative optimization
process. For the method to be both theoretically sound and
practically robust, it is crucial that 8, remains bounded
throughout the iterations. Boundedness ensures stable
behavior of the generated directions and supports the
convergence analysis.

To enhance the method’s performance, particularly in
large-scale or ill-conditioned problems, we construct the
algorithm to ensure that each search direction satisfies both
the (descent and sufficient descent) conditions, which are
fundamental for global convergence and numerical stability.

We define a modified gradient-difference vector inspired
by [38] as follows:

. 0.2-pg) (Ivill-2vVem 1 +lxg+11)
= + S
Y = Yk (1—pk)( 2Vem(+ Xl )y
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where 0.2 < p, <1 and €,is error machine used for
accuracy which is the smallest positive < 1. Extending the
conjugacy condition originally proposed by Dai and Liao [39],
we adopt the following modified form:

dis1Vk = di (1 + K K3) = —tgi,q vy, (30)
Based on Equation 30, we arrive at the following result:

T
T — _ tOk+1Vk
Q= — et (1)
©2-p3) il=2Vem A+ aq 1)
where Ky =-"7—, ) and K = ( 2Vem(1+ %511 )

By multiplying the search direction defined in Equation
(28) by yi, and using the conjugacy condition given in
Equation (31), we derive the following expression for the
developed conjugate parameter:

New _ Ok~ (i?fo)
k - ko’k ’

This yields the following:

tglﬂwc ; (32)

New _ 9
KB  (1+K1Kp) dLyi

where SfSdenotes the classical Hestenes—Stiefel parameter
defined in (6).

Based on the proposed spectral search direction (28) and the
updated conjugate parameter (32), we now outline the
algorithmic steps for the new SCG method.

Algorithm: Steps of the Developed New SCG Method

Step; 1 Given x, € R"

Step; 2 setdg = —go, k = 0. If ||gi|l = O stop, otherwise
continue.

Step; 3 . Compute the a;, by using minimize f (x;, + a;dy).

Step; 4 Determine xj,q = x + i dy, .

Step; 5 . Compute gyi1, if  |lgrs+1ll <1075 stop, else
continue to Step 6.

Step; 6 Determine dj,; by using (28) and (32).

Step; 7 . If | gr+1ll? < M is satisfied go to step 3,

else k = k + 1 and go to step 3.

3. The Descent Properties of the Developed
SCG Method

In this section, we aim to prove that the proposed New
SCG method satisfies both the descent condition and the
sufficient descent property. To ensure the global convergence
of the method, it is essential to demonstrate that the search
direction fulfills these two key properties, as they are
fundamental to the theory of unconstrained optimization.

Theorem 1: The search direction dj,, of the New SCG
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method, generated by (28) where B is defined in (32),

satisfies the descent condition: I
(3 1.

glt+1dk+1 <0

Proof: Multiplying both sides of equation (28) by gr,,,
we get:

Iks1@ier1 = —OkGir19ke1 + BrGierr s (34)
substituting the definition of ) from equation (32):
T
Gk+1Y
Gir1is1 = —OkJhr19k+1 + Ok Zi;kk Gie+1 di
T
e — geadi, (39

T (1+K1Kp) dL v
since the above equation satisfying the descent condition if
the search direction is exact, i.e.

T _ T
Jk+19k+1 = =0k Gr119k+1 < 0. (36)

Because 6, > 0. However, if the search direction (35) is
inexact we will prove that (33).

Since in general the inequality g7, dy < dly, true and
by wusing the Cauchy-Schwarz inequality g7,,yx <
gr+1lIyll, we have

tv;;yk
(1+K1K2)’

37)

Irs1k+1 < —OkllGrsalI? + Ol g Nyl —

simplify

vy
(1+K1K3)’

< =0l g1 12 (1 — 22y —

gre41ll

g£+1dk+1 (3%)

Wil . 5o, equation (38) can be write as

since, 1 — >
lgk+ll

T
tv Vg
(1+K1K2)’

Gier1dis1 < — (39)

clearly, t, v} y, are non-negative and given that 0.2 < p; <
1, , it follows that K; < 0. Also, since
0 < [vgell = llxess = xiell < llxieall,

[lvgll
50—
2vVw1+lxg 411D

Therefore, since bothK; < 0 and K, < 0 it follows that:
K;K, > 0, the right-hand side is non-positive. Thus, the
descent condition is satisfied:

Gi+1dk+1 < 0.

Hence, the proof is complete

<1 . ThisimpliesK, <O0.

4. The Global Convergence Property of the
Developed SCG Method

In this section, we aim to establish the global
convergence property of the proposed New SCG method. To
achieve this, we introduce the following standard
assumptions:
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Assumption:
The level set S is bounded S = {x |f(x) < f(x0)}

The objective function f is continuously differentiable in a
neighborhood N of some point S and its gradient is Lipschitz
continuous on S with Lipschitz constant L > 0, that is,

lgG) =gl < Lllx—yll vx,y €S (40)

As a consequence of these assumptions, there exists a
constant b, such that

lg()ll<b vxeS. (41)

Building upon these conditions, we proceed to establish the
global convergence of the New SCG algorithm as follows.

Lemma 1: [39] Assume that conditions (I)—(IT) hold. Let
the iterative sequence be generated by methods (2) and (10),
where the search direction dy,, is a descent and the «ay
satisfies the Wolfe conditions. If the condition
1

Zkalm = (42)
Then,
]fl_fg inf lgx+1ll = 0. (43)

In light of this result and the previous discussion, the
global convergence of the proposed New SCG algorithm is
thereby established.

Theorem 3: If assumptions (I)-(II) are true and the
corresponding sequences of {x.}, {dr}, {gx}, {ax} are
generated by new SCG-Algorithm, then we arrive at the

conclusion that
lim inf ||gx+1ll = 0. (44)

Proof: From the search direction (28), and the new parameter
By in (32), we have

T T T
d < |k 4 [Pk | Geta Yk g ||+
Il < 25| Ngianl + [252% | 25522 1
t GeaVk
M) dn Il dell, (45)

since g7, Vi < a,dLyy and by using the Lipschitz Condition
lyill < L||lvkll along with the fact that ylv, > I ll?, we
obtained

1 Lag llgx+all
ldk+1ll < 5“gk+1” 4 ok

92|l

tay
+ |l il @6)

from Equation (32), we get that the norm of the gradient is
bounded:

Lbay t

1

ldis1ll < Eb + 2l vl + ) Il vl 47)

let D = max{|lvill = llx — xll},V x, x, € R}.

Hence the inequality in Equation (47), becomes

l Lbay t _

ldiall < b+ 3+ D = 0, (48)
1 1

= L1 2 ez = (49)
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1

= Zkz1m = oo, (50)

By using lemma (1), we get lgim infllgrs+1]l = 0. which

completes the proof.

5. Numerical Results

In this section, we present the numerical evaluation of
our proposed method (denoted by New SCG for short) on a
set of well-established the optimization test problems [40] of
varying dimensions are listed in the appendix. We compare
its performance against the Hestenes-Stiefel (HS) method.
All algorithms were implemented in FORTRAN 95. The step
length for each iteration was determined using a cubic
interpolation line search routine that utilized both function
and gradient values. In the result tables, the letter "F"
indicates that a particular method failed to satisfy the
termination criteria within the maximum allowed number of
iterations or function evaluations. The results presented in
Table 1 and summarized in Table 2 are based on the [number
of iterations, the number of function evaluations] write as
[NOI, NOF] respectively, required to reach a solution. The
experimental results reported in Table 2 suggest that the New
SCG algorithm demonstrates superior performance compared
to the HS algorithm in terms of both NOI and NOF.

To provide a visual comparison of the algorithms'
performance, we employed the performance profile tool
introduced by Dolan and Mor¢ [41]. This tool allows for a
robust assessment of the relative efficiency of different
solvers across a set of test problems. For a given set of
problems P with n,, problems and a set of solvers S with ns

solvers, and for each problem p € P and solver s € S, we

define ¢, 5 as the value of a specific performance metric (NOI,
NOF) required by solver s to solve problem p. The
performance ratio for solver s on problem p is then defined as:

C2))

tps
minltps)

The performance profile of a solver s is given by the
function p(7), which represents the fraction of problems for

which the performance ratio of solver s is within a factor 7 of
the best performance achieved by any solver on that problem:

(52)

Tos =

ps(T) = ésize{p EPIns < T}.

In the performance profile plots, the value p;(t) on the y -
axis represents the percentage of problems solved by
algorithm s with a performance within a factor T (on the x-
axis) of the best performing algorithm. An algorithm whose
curve appears at the top of the plot is considered to have better
overall performance compared to the other algorithms in the
comparison for the given metric. Furthermore, the value of
ps(1) indicates the percentage of problems for which
algorithm s was the most efficient. The value of ps(7) as T
increases towards the right shows the robustness of the
algorithm, i.e., the percentage of problems solved within a
certain tolerance of the best performance.

Figures 1 and 2 illustrate the performance profiles of the
compared algorithms based on the NOI and NOF metrics,
respectively. In Figure 1, the curves depict the performance of
all algorithms with respect to NOI, while Figure 2 displays the
performance profile based on the NOF. The algorithm with the
curve positioned highest in these figures demonstrates the
most favorable performance for the respective metric across
the tested problem set.

Table 1. Numerical Comparison of Hs and New Scg Methods on Selected Test Functions.

Method HS New SCG

Test Function Dimensions NOI NOF NOI NOF

4 11 24 11 29

10 32 65 32 71

100 49 99 43 90

Wolfe

500 52 105 44 91

1000 70 141 45 94

5000 165 348 151 308

4 22 159 18 78

10 22 159 18 78

100 22 159 19 85

G-Central

500 23 171 21 100

1000 23 171 21 100

5000 28 248 24 113

Nondiagonal 4 24 64 24 64
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10 26 72 26 72
100 29 79 29 79
500 F F 29 79
1000 29 79 29 79
5000 30 81 30 81
4 37 102 30 120
10 37 102 30 120
100 40 117 30 120
Powell
500 44 136 36 130
1000 44 136 36 130
5000 44 136 36 130
4 30 83 29 79
10 30 83 29 79
100 30 83 29 79
Rosen
500 30 83 29 79
1000 30 83 29 79
5000 30 83 29 79
4 28 85 28 85
10 31 102 31 102
100 33 114 33 114
Miele
500 40 146 40 146
1000 46 176 46 176
5000 54 211 54 211
4 30 68 25 62
10 30 68 25 62
100 30 68 27 66
Wood
500 30 68 27 66
1000 30 68 27 66
5000 30 68 27 66
4 3 11 3 11
10 6 34 6 30
100 14 81 14 73
Sum
500 21 124 18 88
1000 23 128 23 105
5000 31 159 27 124
4 5 14 5 15
10 5 14 5 15
100 5 14 5 15
Edger
500 6 16 5 15
1000 6 16 5 15
5000 6 16 5 15
Shallow 4 8 21 8 21
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10 8 21 8 21
100 8 21 8 21
500 8 21 8 21
1000 9 24 9 24
5000 9 24 9 24
4 12 35 12 33
10 13 37 12 33
100 13 37 12 33
Cubic
500 13 37 13 35
1000 13 37 13 35
5000 13 37 13 35
4 11 28 11 28
10 11 28 11 28
100 12 30 12 30
Beale
500 12 30 12 30
1000 12 30 12 30
5000 12 30 12 30
4 8 45 7 36
10 13 58 13 52
100 49 185 50 165
Osp.
500 112 353 107 309
1000 156 473 152 438
5000 256 774 254 765
Table 2. Overall Performance Comparison of Hs and New Scg Methods.
Method NOI NOF
HS 100% 100%
New SCG 91.92 % 87.85 %
Rate of Improvement (%) 8.08 % 12.15%

From Table 1: Overall, the results suggest that the New
SCG method demonstrates promising performance
compared to the HS method. Several trends can be
observed:

Iteration Efficiency: In many test problems and
dimensions, the New SCG method required fewer
iterations to reach a solution compared to the HS
method (as seen in problems like G-Central,
Wood, Sum, and Osp. at certain dimensions).

Function  Evaluation  Efficiency: The
superiority of New SCG is more pronounced in
the number of function evaluations required. In
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problems such as G-Central, Wood, and Sum,
New SCG consumed significantly fewer function
evaluations, indicating higher computational
efficiency per iteration or faster convergence.

Table 2 provides a summary of the average performance
of the two methods across all tested problems. The
performance of the HS method is normalized to 100%, and
the performance of the New SCG method is expressed as a
percentage thereof. The results indicate that the New SCG
method achieved an average improvement of 8.08% in the
NOI and 12.15% in the NOF compared to the HS method.

Based on the numerical data provided, it can be
academically concluded that the proposed New SCG method
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generally exhibits superior performance compared to the HS
method on the tested set of problems. The advantage is
particularly evident in the reduction of the NOF required,
suggesting greater computational efficiency. Furthermore,
New SCG demonstrates better robustness in certain cases.
While the performance of the two methods was comparable
on some problems, the significant improvements observed in
others, especially at higher dimensions, support the
effectiveness of the proposed new method as a promising
alternative to traditional conjugate gradient methods like HS.

1

n9%

(IR=E 3

ny

n6%

s

p0)

N4%

D3 F

—+— PNew SCG
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Figures 1 and 2 illustrate the performance profiles of the
HS and New SCG methods with respect to NOI and NOF,
respectively. These plots offer a visual and quantitative
comparison of the relative efficiency and robustness of both
methods across the benchmark test set.
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In Figure 1, which reflects iteration-based performance:

e  The performance curve of the New SCG method lies
consistently above that of the HS method across all
values of the performance ratio 1.

e The value ps(1)for New SCG is close to 1,
indicating that it was the most efficient solver (in
terms of iteration count) on nearly all test problems.

e The steep and early rise of the New SCG curve
demonstrates its strong consistency and iteration
efficiency across a wide range of problem
dimensions.

e In contrast, the HS method shows a more gradual
increase, reflecting less consistent performance and
higher iteration counts on many problems.

In Figure 2, which presents the performance based on the
NOF:

e The advantage of the New SCG method becomes
even more pronounced. Its curve remains well
above that of the HS method across all t\taut values.

e The high value of pg(1) again confirms that New
SCG was the most function-efficient solver on the
vast majority of problems.

e The early and rapid growth of the New SCG profile
indicates faster convergence and fewer function
evaluations required, highlighting its computational
efficiency.

These performance profiles support the conclusion that
the New SCG method exhibits superior overall behavior
compared to the HS method. It is not only more efficient in
terms of iterations and function calls, but also more robust
across diverse problem settings. This visual evidence
complements the numerical results and reinforces the New
SCG method’s potential as a competitive and reliable
approach for optimization problems.

Conclusion

This paper introduces a novel SCG method developed
for solving unconstrained optimization problems. The
proposed method features an innovative mechanism for
presenting a development search direction, which uses
spectral properties in combination with a conjugate
coefficient derived from established conjugacy condition to
enhance numerical stability. Theoretical analysis confirms
that the search directions of the SCG method satisfy the
descent condition a fundamental requirement to ensure
convergence to a minimum. The practical performance of the
proposed method extensive numerical experiments was
conducted on a diverse set of standard benchmark functions.
The numerical results of SCG method were systematically
compared with those of the well-known Hestenes-Stiefel
(HS) method. In most test cases, the SCG method
consistently outperformed HS, especially in reducing the
number of function evaluations while maintaining
computational efficiency in high-dimensional optimization
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tasks. These result findings highlight the robustness and
ability of the proposed method as a reliable solution for large-
scale unconstrained optimization problems. Several
directions for future research are envisioned. One promising
avenue involves extending the SCG framework to deal with
the constrained optimization problems. Additionally,
merging SCG with stochastic techniques or adaptive
strategies could enhance its performance in dynamic or
uncertain environments. The real-world applications are a
wide range of fields, including signal and image processing
(such as denoising and reconstruction), deep learning (e.g.,
training neural networks), structural optimization, and
control engineering. Such applications would further
demonstrate the versatility and resilience of the new method.
These investigations are expected to deepen theoretical
understanding and also to broaden the practical utility of
spectral conjugate gradient methods in solving complex real-
world challenges.
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Appendix: Benchmark Test Functions

This appendix presents a selected set of classical test

functions unconstrained optimization problems used to
evaluate the numerical performance of the optimization
method. Each function has distinct structural and numerical
challenges, making it a esay way to test for assessing
convergence behavior, robustness, and scalability.

1.  Wolfe: xy = (—-1,...,—1)7,
X1

flx) = (—x1 (3 2) +2x, — 1)2
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+ Z (Xk—1
i=1
-x.(3- %Jr 20y — 1))2

+ (s =2 (3-2) 1)

2. Central: xy = (1,2,2,2,...,1,2,2,2)7,
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