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     Conjugate gradient methods have been favored to use for their efficiency in solving large-scale 
unconstrained optimization problems, primarily because of their low memory requirements and 
exclusive to use the first-order derivative information.  In this paper, we introduce a spectral conjugate 
gradient method that enhances the classical approach by merge a spectral property directly into the 
determination of the search direction.  At the core of our method lies a developed formulation of a 
spectral search direction and a more precisely adjusted conjugate gradient coefficient, both derived as 
extensions of established conjugacy condition. To ensure numerical stability, we also include a 
correction term that accounts for the limitations of machine precision. Our theoretical analysis confirms 
that the developed method generates search directions satisfying the descent condition, which is critical 
for ensuring convergence. To assess its real-world effectiveness, we subjected the spectral conjugate 
gradient method to an extensive set of numerical experiments and benchmarked its performance against 
that of a standard conjugate gradient method. By using range of test problems, our method consistently 
delivered superior results, particularly in reducing the number of function evaluations and exhibiting 
improved scalability in higher-dimensional settings. These findings strongly indicate the spectral 
conjugate gradient method’s potential as a reliable and efficient tool for optimization. Future research 
may explore further refinements to the method’s theoretical foundations, investigate its performance 
in constrained or stochastic environments, and apply it to practical optimization challenges such as 
neural network training, signal recovery, structural design, and control system calibration. 
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1. Introduction 

Unconstrained optimization represents a fundamental 
concept within mathematical modeling, frequently 
encountered across various scientific and engineering 
disciplines. These problems focus on minimizing an 
objective function 𝑓𝑓(𝑥𝑥), defined over  𝑥𝑥 ∈  𝑅𝑅𝑛𝑛, without 
imposing explicit constraints on the decision variable 𝑥𝑥. 
Unconstrained optimization problems lie at the heart of both 
theoretical advancements and the development of practical, 
efficient optimization algorithms. Their direct formulation 
and widespread occurrence in real-world applications make 
them foundational to the field. 

    Their direct formulation and popular occurrence in real-

world applications make them foundational to the field. 
Proposing reliable and computationally efficient algorithms 
is particularly pivotal when solving large-scale 
unconstrained problems. Classical methods often struggle 
with such challenges because of the excessive memory 
demands or slow convergence rates. Among the most widely 
used methods are first-order iterative methods, such as quasi-
Newton (QN) and conjugate gradient (CG) algorithms. 
These methods are chosen for their ability to deal with large 
datasets while maintaining relatively low memory. 
     Unconstrained optimization arises in numerous real-
world applications practical. For instance, in medical 
imaging, it plays a key role in reconstructing magnetic 
resonance (MR) images by formulating the inverse problem 
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as an optimization task [1]. In finance, such methods are 
central to portfolio optimization models that aim to balance 
expected returns with associated risks [2,3]. In robotics, 
motion control problems are frequently modeled as 
unconstrained minimization problems [4]. also, in signal 
processing and computer vision, applications such as 
compressed sensing and image restoration often rely on 
solving unconstrained optimization problems to recover 
accurate signals or images from incomplete or noisy [5,6,7]. 
     Moreover, the fast progress in machine learning and 
artificial intelligence has significantly high the importance 
of unconstrained optimization, particularly in the training of 
deep neural networks. These training problems typically 
involve highly nonconvex objective functions defined over 
extremely high-dimensional, demanding optimization 
techniques that are fast converging and also robust and 
stable [8,9,10]. Consequently, improving optimization 
algorithms remains an active and evolving research, with 
ongoing efforts directed toward improve convergence, 
enhancing generalization performance, and computational 
efficiency. 
    Motivated by these considerations, this paper focuses on 
unconstrained optimization problems, formally described as 
the minimization of function defined over  𝑅𝑅𝑛𝑛, with no 
restrictions on the domain variables: 
𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓(𝑥𝑥), 𝑥𝑥 ∈  𝑅𝑅𝑛𝑛},                                                       (1) 
where the objective function 𝑓𝑓 ∶  𝑅𝑅𝑛𝑛  →  𝑅𝑅 possesses 
continuous partial derivatives, and its gradient, denoted by 
𝛻𝛻𝛻𝛻 (𝑥𝑥)  =  𝑔𝑔(𝑥𝑥), is available. 
    Our goal is to contribute to this field by proposing 
developed a new method that combines spectral properties 
with the conjugate gradient framework to enhance 
convergence and numerical performance. 
    CG methods constitute a prominent class of iterative 
algorithms widely employed for solving large-scale 
optimization problems (1) due to their simple iterative 
structure, relatively fast convergence properties, and low 
memory requirements. The iterative steps of the classical 
CG method are defined by: 
𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘,                                                            (2) 
and the search direction dk is given by: 

𝑑𝑑𝑘𝑘+1 = �−𝑔𝑔1, 𝑘𝑘 = 0
−𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘, 𝑘𝑘 ≥ 1,                                     (3) 

where 𝑔𝑔𝑘𝑘 = 𝑔𝑔(𝑥𝑥𝑘𝑘), and 𝛽𝛽𝑘𝑘 is the conjugate parameter, and 
𝛼𝛼𝑘𝑘 is the step length determined by an appropriate exact or 
inexact line search. Numerous researchers have investigated 
the convergence properties of CG methods under various 
line search conditions, with some employing exact line 
search (ELS) and others utilizing the strong Wolfe line 
search (SWL) conditions, defined as:  

�
𝑓𝑓(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘) ≤ 𝑓𝑓(𝑥𝑥𝑘𝑘) + 𝛿𝛿𝛼𝛼𝑘𝑘𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘′
𝑔𝑔(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘)𝑇𝑇𝑑𝑑𝑘𝑘 ≥ 𝜎𝜎𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘

                              (4) 

or the SWL 

�
𝑓𝑓(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘) ≤ 𝑓𝑓(𝑥𝑥𝑘𝑘) + 𝛿𝛿𝛼𝛼𝑘𝑘𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘 ,
|𝑔𝑔(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘)𝑇𝑇𝑑𝑑𝑘𝑘| ≤ 𝜎𝜎|𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘|,

                              (5) 

where the parameters 0 < 𝛿𝛿 < 𝜎𝜎 < 1  are typically required. 
Different choices for the conjugate parameter 𝛽𝛽𝑘𝑘lead to 
different CG methods with varying numerical performance 
and convergence behavior [17]. Well-known formulas for βk 
include those proposed by Hestenes and Stiefel (HS) [11], 
Fletcher and Reeves (FR) [12], Polak, Ribière, and Polyak 
(PRP) [13, 14], Dai and Yuan (DY) [15], Liu-Storey (LS) 
[16], Conjugate-Descent (CD) methods [17], given 
respectively by: 

𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

                                                                     (6) 

𝛽𝛽𝑘𝑘𝐹𝐹𝐹𝐹 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑔𝑔𝑘𝑘
𝑔𝑔𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘

                                                                     (7) 

𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑔𝑔𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘

                                                                    (8) 

𝛽𝛽𝑘𝑘𝐷𝐷𝐷𝐷 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑔𝑔𝑘𝑘
𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

                                                                     (9) 

𝛽𝛽𝑘𝑘𝐿𝐿𝐿𝐿 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
−𝑔𝑔𝑘𝑘

𝑇𝑇𝑑𝑑𝑘𝑘
,                                                                   (10) 

𝛽𝛽𝑘𝑘𝐶𝐶𝐶𝐶 = ∥∥𝑔𝑔𝑘𝑘+1∥∥
2

−𝑔𝑔𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘

,                                                                  (11) 

where 𝑦𝑦𝑘𝑘 = 𝑔𝑔𝑘𝑘+1 − 𝑔𝑔𝑘𝑘 and  ∥⋅∥ denotes the Euclidean norm 
in 𝑅𝑅𝑛𝑛. Theoretically, when an exact minimization rule is 
employed, all these choices of 𝛽𝛽𝑘𝑘 are equivalent for strongly 
convex quadratic functions. However, for non-quadratic 
objective functions, each choice of 𝛽𝛽𝑘𝑘 can result in 
significantly different numerical performance [18]. 
     It is established that the FR and DY CG methods possess 
favorable global convergence properties. However, their 
numerical performance in practice is often not optimal. 
Conversely, the PRP and HS methods typically exhibit 
excellent performance in practical computations, but 
establishing their global convergence properties can be 
challenging. To address these limitations of classical CG 
methods, considerable research has focused on developing 
improved CG methods with enhanced theoretical properties 
and numerical performance, as exemplified by the methods 
presented in References [19, 20, 21,22,23,24,25,26]. 
    Despite the numerous successes of classical conjugate 
gradient methods, they face challenges in efficiently 
handling high-dimensional and strongly nonlinear problems. 
Achieving convergence often requires accurate line search 
properties, and the performance of these methods can be 
sensitive to the choice of the conjugate parameter. 
Furthermore, ensuring the sufficient descent property, which 
is fundamental for strong global convergence, is not always 
guaranteed in practice, especially with inexact line searches. 
    Given these limitations, spectral gradient methods have 
emerged as a promising alternative that seeks to incorporate 
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spectral information from previous iterations with the aim 
of accelerating convergence and improving numerical 
performance. These methods leverage eigenvalues or 
approximations of the Hessian of the objective function to 
define more effective search directions. However, there 
remains a need for the development of new spectral 
conjugate gradient methods that combine practical 
efficiency with strong theoretical properties, such as 
guaranteeing the sufficient descent property at each 
iteration. 
      In [27, 28], Barzilai, Borwein, and Raydan 
independently introduced and analyzed spectral gradient 
methods for unconstrained optimization. Subsequently, 
drawing inspiration from spectral gradient methods, 
significant efforts have been directed towards modifying 
traditional CG methods. Brigin and Martínez [29] proposed 
a spectral CG method where the search direction is defined 
as: 
𝑑𝑑𝑘𝑘+1 = −𝜃𝜃𝑘𝑘𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑣𝑣𝑘𝑘 ,𝑑𝑑1 = −𝜃𝜃1𝑔𝑔1,                        (12) 
where 𝜃𝜃𝑘𝑘 and 𝛽𝛽𝑘𝑘 named a spectral parameter and a CG 
parameter, respectively, are given by 

𝜃𝜃𝑘𝑘 = 𝑣𝑣𝑘𝑘
𝑇𝑇𝑣𝑣𝑘𝑘

𝑣𝑣𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

,                                                                       (13) 

 𝛽𝛽𝐾𝐾𝐵𝐵𝐵𝐵1 = (𝜃𝜃𝑘𝑘𝑦𝑦𝑘𝑘−𝑣𝑣𝑘𝑘)𝑇𝑇𝑔𝑔𝑘𝑘+1
𝑣𝑣𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

.                                                 (14) 

𝛽𝛽𝐾𝐾𝐵𝐵𝐵𝐵2 = 𝜃𝜃𝑘𝑘𝑦𝑦𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘+1

𝛼𝛼𝑘𝑘𝜃𝜃𝑘𝑘−1𝑔𝑔𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘

,                                                        (15) 

𝛽𝛽𝐾𝐾𝐵𝐵𝐵𝐵3 = 𝜃𝜃𝑘𝑘𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑔𝑔𝑘𝑘+1

𝛼𝛼𝑘𝑘𝜃𝜃𝑘𝑘−1𝑔𝑔𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘

,                                                        (16) 

    The experimental results obtained using the Wolfe line 
search strategy on the three CG formulas indicate that the 
coefficient 𝛽𝛽𝐾𝐾𝐵𝐵𝐵𝐵1 delivers the most favorable numerical 
performance. Based on certain reasonable assumptions, 
Birgin and Martínez [28] demonstrated that their spectral 
CG method achieves global convergence. Nevertheless, it is 
important to note that spectral CG approaches do not 
inherently guarantee descent directions [29]. To address this 
limitation, Andrei [30] introduced a scaled CG algorithm 
designed to ensure descent properties under the Wolfe line 
search conditions. Subsequently, Jiang et al. [31] developed 
a spectral CG method with sufficient descent properties, 
building upon the modified CG approach proposed by 
Zhang et al. [32], where the search direction was defined 
using the  𝛽𝛽𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃coefficient. 
 

𝜃𝜃𝑘𝑘 = 𝑦𝑦𝑘𝑘−1𝑑𝑑𝑘𝑘−1
𝑇𝑇

‖𝑔𝑔𝑘𝑘−1‖2
− 𝑔𝑔𝑘𝑘

𝑇𝑇𝑔𝑔𝑘𝑘𝑑𝑑𝑘𝑘−1
𝑇𝑇 𝑔𝑔𝑘𝑘−1

‖𝑔𝑔𝑘𝑘‖2‖𝑔𝑔𝑘𝑘−1‖2
,                                        (17) 

𝛽𝛽𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑔𝑔𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘−1

‖𝑔𝑔𝑘𝑘−1‖2
  ,                                                              (18)                                  

    In this context, the vector 𝑦𝑦𝑘𝑘−1 = 𝑔𝑔𝑘𝑘 − 𝑔𝑔𝑘𝑘−1,represents 
the difference between successive gradients. The 
corresponding algorithm was implemented using a modified 
Armijo-type line search strategy, and it was later shown to 

be globally convergent under certain mild assumptions. 
Building upon this, Liu and Jiang [33] introduced a spectral 
conjugate gradient method known as SCD, which is derived 
from the classical CD method. The SCD algorithm is notable 
for maintaining the sufficient descent property regardless of 
the line search technique employed, and its global 
convergence has been established under the strong Wolfe 
line search conditions. The method is defined by the 
following expressions: 

𝜃𝜃𝑘𝑘 = 1 − 𝑔𝑔𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘−1

𝑔𝑔𝑘𝑘−1
𝑇𝑇 𝑑𝑑𝑘𝑘−1

,                                                           (19) 

𝛽𝛽𝐾𝐾𝐶𝐶𝐶𝐶 = ‖𝑔𝑔𝑘𝑘‖2

𝑑𝑑𝑘𝑘−1
𝑇𝑇 𝑔𝑔𝑘𝑘−1

.                                                               (20) 

   Subsequently, Liu et al. [34] proposed another variant of 
the spectral CG method, which integrates the CD and DY 
methods. In this formulation, the CG coefficient is computed 
as: 
𝛽𝛽𝑘𝑘 = 𝛽𝛽𝐾𝐾𝐶𝐶𝐶𝐶 + min{0,𝜓𝜓𝑘𝑘 ,𝛽𝛽𝐾𝐾𝐶𝐶𝐶𝐶},                                          (21) 

𝜃𝜃𝑘𝑘 = 1 − 𝑔𝑔𝑘𝑘−1
𝑇𝑇 𝑑𝑑𝑘𝑘−1
𝑔𝑔𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘−1

,                                                           (22) 

 𝜓𝜓𝑘𝑘 = − 𝑔𝑔𝑘𝑘−1
𝑇𝑇 𝑑𝑑𝑘𝑘−1

𝑑𝑑𝑘𝑘−1(𝑔𝑔𝑘𝑘−1−𝑔𝑔𝑘𝑘),                                                     (23)    

    In 2010, Andrei [35] introduced another spectral CG 
method where the search direction is given by: 
𝑑𝑑𝑘𝑘+1 = −𝜃𝜃𝑘𝑘+1𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑁𝑁𝑠𝑠𝑘𝑘,𝑑𝑑1 = −𝑔𝑔1.     (24) 
with 

𝛽𝛽𝑘𝑘N = ‖𝑔𝑔𝑘𝑘+1‖2

𝑦𝑦𝑘𝑘
T𝑠𝑠𝑘𝑘

− ‖𝑔𝑔𝑘𝑘+1‖2𝑠𝑠𝑘𝑘
T𝑔𝑔𝑘𝑘+1

�𝑦𝑦𝑘𝑘
T𝑠𝑠𝑘𝑘�

2  ,                                        (25) 

and 

𝜃𝜃𝑘𝑘+1 = 1
𝑦𝑦𝑘𝑘
T𝑔𝑔𝑘𝑘+1

�‖𝑔𝑔𝑘𝑘+1‖2 −
‖𝑔𝑔𝑘𝑘+1‖2𝑠𝑠𝑘𝑘

T𝑔𝑔𝑘𝑘+1
𝑦𝑦𝑘𝑘
T𝑠𝑠𝑘𝑘

�.                    (26) 

    The directions yielded by Equations (24)-(26) possess 
descent property as follows: 

𝑔𝑔𝑘𝑘+1T 𝑑𝑑𝑘𝑘+1 ⩽ −(𝜃𝜃𝑘𝑘+1 − 1/4)‖𝑔𝑔𝑘𝑘+1‖2.                           (27) 
    This shows that the direction is descent only in case 
𝜃𝜃𝑘𝑘+1 > 1/4. Therefore, to obtain descent in any case, Andrei 
[35] reset 𝜃𝜃𝑘𝑘+1 = 1 in case 𝜃𝜃𝑘𝑘+1 ⩽ 1/4. 
     Further examples of spectral CG methods based on the 
structure of Equation (12) can be found in References [36, 
37]. 
    While numerous numerical experiments have 
demonstrated the superior numerical performance of spectral 
CG methods compared to traditional CG methods, ensuring 
the descent property, particularly the sufficient descent 
property, for the search directions in spectral CG methods 
remains a challenge. This motivates further research into the 
development of more robust spectral CG methods. 
     The primary objective of this study is to develop a novel 
(SCG) method specifically designed to improve the 
numerical efficiency of solving large-scale unconstrained 
optimization problems. The main contributions of this work 
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can be summarized as follows. First, we propose the 
development of a new conjugate parameter, derived from a 
modified form of the Dai–Liao conjugacy condition, which 
is integrated within the structure of the proposed spectral 
CG framework. Second, we prove that the resulting search 
directions satisfy both the (descent and sufficient descent) 
conditions, and we ensure that the spectral parameter 
remains bounded an essential aspect for establishing global 
convergence. Third, we validate the effectiveness of the 
proposed method through comprehensive numerical 
experiments, demonstrating its superior performance 
relative to existing methods on a broad set of standard large-
scale benchmark problems. 
     The structure of the paper is organized as follows. In 
Section tow introduces the mathematical preliminaries and 
outlines the assumptions employed in constructing the new 
method. In Section 3, the derivation of the search directions 
and provide theoretical results confirming that they satisfy 
the descent and sufficient descent properties are present. 
Section 4 is dedicated to analyzing the boundedness of the 
spectral parameter, which plays a critical role in 
guaranteeing global convergence. Section 5 reports the 
results of numerical experiments that compare the proposed 
method with several state-of-the-art optimization 
techniques. Finally, Section 6 summarizes the main findings 
and outlines potential directions for future research. 
 

2.  Derivation of a Developed SCG Method and 
Its Algorithm 
In this section, we present the development and 

derivation  of a new SCG method designed to solve 
optimization problems of the form defined in equation (1). 
The proposed method introduces a novel spectral search 
direction defined as: 
𝑑𝑑𝑘𝑘+1 = −𝜃𝜃𝑘𝑘𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘, 𝑑𝑑1 = −𝜃𝜃1𝑔𝑔1,                          (28) 

where 𝜃𝜃𝑘𝑘 = 𝑣𝑣𝑘𝑘
𝑇𝑇𝑣𝑣𝑘𝑘

𝑣𝑣𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

 is the spectral parameter and 𝑣𝑣𝑘𝑘 = 𝑥𝑥𝑘𝑘+1 −

𝑥𝑥𝑘𝑘 = 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘. This parameter plays a central role in controlling 
the direction and efficiency of the iterative optimization 
process. For the method to be both theoretically sound and 
practically robust, it is crucial that 𝜃𝜃𝑘𝑘 remains bounded 
throughout the iterations. Boundedness ensures stable 
behavior of the generated directions and supports the 
convergence analysis. 
     To enhance the method’s performance, particularly in 
large-scale or ill-conditioned problems, we construct the 
algorithm to ensure that each search direction satisfies both 
the (descent and sufficient descent) conditions, which are 
fundamental for global convergence and numerical stability. 
    We define a modified gradient-difference vector inspired 
by [38] as follows: 

𝑦𝑦𝑘𝑘∗ = 𝑦𝑦𝑘𝑘 + (0.2−𝜌𝜌𝑘𝑘)
(1−𝜌𝜌𝑘𝑘)

�‖𝑣𝑣𝑘𝑘‖−2√𝜖𝜖𝑚𝑚(1+‖𝑥𝑥𝑘𝑘+1‖)
2√𝜖𝜖𝑚𝑚(1+‖𝑥𝑥𝑘𝑘+1‖)

� 𝑦𝑦𝑘𝑘 ,      

(29)                               
where 0.2 < 𝜌𝜌𝑘𝑘 < 1 and 𝜖𝜖𝑚𝑚 is error machine used for 
accuracy which is the smallest positive < 1. Extending the 
conjugacy condition originally proposed by Dai and Liao [39], 
we adopt the following modified form: 
𝑑𝑑𝑘𝑘+1𝑇𝑇 𝑦𝑦𝑘𝑘∗ = 𝑑𝑑𝑘𝑘+1𝑇𝑇 𝑦𝑦𝑘𝑘(1 + 𝐾𝐾1𝐾𝐾2) = −𝑡𝑡𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑣𝑣𝑘𝑘 ,                         (30) 
Based on Equation 30, we arrive at the following result:  

𝑑𝑑𝑘𝑘+1𝑇𝑇 𝑦𝑦𝑘𝑘 = − 𝑡𝑡𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑣𝑣𝑘𝑘

(1+𝐾𝐾1𝐾𝐾2)
                                                  (31) 

where 𝐾𝐾1 = (0.2−𝜌𝜌𝑘𝑘)
(1−𝜌𝜌𝑘𝑘)

 and 𝐾𝐾2 = �‖𝑣𝑣𝑘𝑘‖−2√𝜖𝜖𝑚𝑚(1+‖𝑥𝑥𝑘𝑘+1‖)
2√𝜖𝜖𝑚𝑚(1+‖𝑥𝑥𝑘𝑘+1‖)

�. 

     By multiplying the search direction defined in Equation 
(28) by 𝑦𝑦𝑘𝑘, and using the conjugacy condition given in 
Equation (31), we derive the following expression for the 
developed conjugate parameter: 

𝛽𝛽𝑘𝑘𝑁𝑁𝑁𝑁𝑁𝑁 =
𝜃𝜃𝑘𝑘𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑦𝑦𝑘𝑘−
𝑡𝑡𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑣𝑣𝑘𝑘

(1+𝐾𝐾1𝐾𝐾2)

𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

,                                                

     This yields the following: 

𝛽𝛽𝑘𝑘𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜃𝜃𝑘𝑘𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻 −
𝑡𝑡𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑣𝑣𝑘𝑘
(1+𝐾𝐾1𝐾𝐾2) 𝑑𝑑𝑘𝑘

𝑇𝑇𝑦𝑦𝑘𝑘
.                                      (32) 

where 𝛽𝛽𝑘𝑘𝐻𝐻𝐻𝐻denotes the classical Hestenes–Stiefel parameter 
defined in (6). 
    Based on the proposed spectral search direction (28) and the 
updated conjugate parameter (32), we now outline the 
algorithmic steps for the new SCG method. 

 
Algorithm: Steps of the Developed New SCG Method 

Step; 1 . Given 𝑥𝑥0 ∈ 𝑅𝑅𝑛𝑛  
Step; 2 . set 𝑑𝑑0 = −𝑔𝑔0, 𝑘𝑘 = 0. If  ‖𝑔𝑔𝑘𝑘‖ = 0 stop, otherwise 

continue. 
Step; 3 . Compute the 𝛼𝛼𝑘𝑘 by using minimize 𝑓𝑓(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘). 
Step; 4 . Determine 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘 . 
Step; 5 . Compute 𝑔𝑔𝑘𝑘+1, if  ‖𝑔𝑔𝑘𝑘+1‖ ≤ 10−5 stop, else 

continue to Step 6. 
Step; 6 . Determine 𝑑𝑑𝑘𝑘+1 by using (28) and (32). 

Step; 7 . If ‖𝑔𝑔𝑘𝑘+1‖2 ≤  �𝑔𝑔𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘+1�
0.2

 is satisfied go to step 3,  

else  𝑘𝑘 = 𝑘𝑘 + 1 and go to step 3. 
 

3. The Descent Properties of the Developed 
SCG Method  
In this section, we aim to prove that the proposed New 

SCG method satisfies both the descent condition and the 
sufficient descent property. To ensure the global convergence 
of the method, it is essential to demonstrate that the search 
direction fulfills these two key properties, as they are 
fundamental to the theory of unconstrained optimization. 

Theorem 1: The search direction 𝑑𝑑𝑘𝑘+1 of the New SCG 
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method, generated by (28) where 𝛽𝛽𝑘𝑘 is defined in (32), 
satisfies the descent condition: 
𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1 ≤ 0                                                                 (33) 

    Proof: Multiplying both sides of equation (28) by 𝑔𝑔𝑘𝑘+1𝑇𝑇 , 
we get: 
𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1 = −𝜃𝜃𝑘𝑘𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑔𝑔𝑘𝑘+1𝑇𝑇  𝑑𝑑𝑘𝑘,                     (34) 
substituting the definition of  𝛽𝛽𝑘𝑘 from equation (32):  

𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1 = −𝜃𝜃𝑘𝑘𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑔𝑔𝑘𝑘+1 + 𝜃𝜃𝑘𝑘
𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

𝑔𝑔𝑘𝑘+1𝑇𝑇  𝑑𝑑𝑘𝑘  

                                            − 𝑡𝑡𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑣𝑣𝑘𝑘

(1+𝐾𝐾1𝐾𝐾2) 𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘,           (35) 

since the above equation satisfying the descent condition if 
the search direction is exact, i.e.   
𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1 = −𝜃𝜃𝑘𝑘𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑔𝑔𝑘𝑘+1 ≤ 0.                                    (36) 
     Because 𝜃𝜃𝑘𝑘 ≥ 0. However, if the search direction (35) is 
inexact we will prove that (33). 
    Since in general the inequality 𝑔𝑔𝑘𝑘+1𝑇𝑇  𝑑𝑑𝑘𝑘 ≤ 𝑑𝑑𝑘𝑘𝑇𝑇𝑦𝑦𝑘𝑘  true and 
by using the Cauchy-Schwarz inequality 𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑦𝑦𝑘𝑘 ≤
∥∥𝑔𝑔𝑘𝑘+1∥∥∥∥𝑦𝑦𝑘𝑘∥∥, we have 

𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1 ≤ −𝜃𝜃𝑘𝑘‖𝑔𝑔𝑘𝑘+1‖2 + 𝜃𝜃𝑘𝑘∥∥𝑔𝑔𝑘𝑘+1∥∥∥∥𝑦𝑦𝑘𝑘∥∥ −
𝑡𝑡 𝑣𝑣𝑘𝑘

𝑇𝑇𝑦𝑦𝑘𝑘
(1+𝐾𝐾1𝐾𝐾2) 

,                                                                                        

                                                                                          (37) 
simplify 

𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1 ≤ −𝜃𝜃𝑘𝑘‖𝑔𝑔𝑘𝑘+1‖2(1− ∥∥𝑦𝑦𝑘𝑘∥∥

∥∥𝑔𝑔𝑘𝑘+1∥∥
) − 𝑣𝑣𝑘𝑘

𝑇𝑇𝑦𝑦𝑘𝑘
(1+𝐾𝐾1𝐾𝐾2) 

,         (38) 

since, 1 − ∥∥𝑦𝑦𝑘𝑘∥∥

∥∥𝑔𝑔𝑘𝑘+1∥∥
≥ 0. So, equation (38) can be write as 

𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1 ≤ − 𝑡𝑡 𝑣𝑣𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

(1+𝐾𝐾1𝐾𝐾2) 
,                                               (39) 

clearly, 𝑡𝑡, 𝑣𝑣𝑘𝑘𝑇𝑇𝑦𝑦𝑘𝑘 are non-negative and given that  0.2 < 𝜌𝜌𝑘𝑘 <
1, , it follows that 𝐾𝐾1 < 0. Also, since 
 0 < ‖𝑣𝑣𝑘𝑘‖ = ‖𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖ ≤ ‖𝑥𝑥𝑘𝑘+1‖, 

 ⇒ 0 ≤ ‖𝑣𝑣𝑘𝑘‖
2√𝜔𝜔1+‖𝑥𝑥𝑘𝑘+1‖)

≤ 1 . This implies 𝐾𝐾2 < 0 . 

Therefore, since both𝐾𝐾1 < 0 and 𝐾𝐾2 < 0 it follows that: 
𝐾𝐾1𝐾𝐾2 > 0, the right-hand side is non-positive. Thus, the 
descent condition is satisfied: 
𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑑𝑑𝑘𝑘+1 ≤ 0.    
    Hence, the proof is complete 
 

4. The Global Convergence Property of the 
Developed SCG Method 
In this section, we aim to establish the global 

convergence property of the proposed New SCG method. To 
achieve this, we introduce the following standard 
assumptions: 

 

    Assumption:  
I. The level set 𝑆𝑆 is bounded 𝑆𝑆 =  {𝑥𝑥 |𝑓𝑓(𝑥𝑥)  ≤  𝑓𝑓(𝑥𝑥0)}. 

II. The objective function 𝑓𝑓 is continuously differentiable in a 
neighborhood 𝑁𝑁 of some point 𝑆𝑆 and its gradient is Lipschitz 
continuous on 𝑆𝑆 with Lipschitz constant 𝐿𝐿 >  0, that is, 
‖𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑦𝑦)‖ ≤ 𝐿𝐿‖𝑥𝑥 − 𝑦𝑦‖  ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝑆𝑆                         (40) 
    As a consequence of these assumptions, there exists a 
constant 𝑏𝑏, such that 
‖𝑔𝑔(𝑥𝑥)‖ ≤ 𝑏𝑏   ∀𝑥𝑥 ∈ 𝑆𝑆.                                                     (41) 
    Building upon these conditions, we proceed to establish the 
global convergence of the New SCG algorithm as follows. 

Lemma 1: [39] Assume that conditions (I)–(II) hold. Let 
the iterative sequence be generated by methods (2) and (10), 
where the search direction 𝑑𝑑𝑘𝑘+1 is a descent and the 𝛼𝛼𝑘𝑘 
satisfies the Wolfe conditions. If the condition 

∑ 1
‖𝑑𝑑𝑘𝑘+1‖2

 
𝑘𝑘≥1 = ∞.                                                           (42) 

Then,           
 𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘→∞

𝑖𝑖𝑖𝑖𝑖𝑖 ‖𝑔𝑔𝑘𝑘+1‖ = 0.                                                    (43)                                                                                      

 In light of this result and the previous discussion, the 
global convergence of the proposed New SCG algorithm is 
thereby established. 

Theorem 3: If assumptions (I)–(II) are true and the 
corresponding sequences of {𝑥𝑥𝑘𝑘}, {𝑑𝑑𝑘𝑘}, {𝑔𝑔𝑘𝑘}, {𝛼𝛼𝑘𝑘} are 
generated by new SCG-Algorithm, then we arrive at the 
conclusion that 
𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘→∞

𝑖𝑖𝑖𝑖𝑖𝑖 ‖𝑔𝑔𝑘𝑘+1‖ = 0.                                                     (44) 

Proof: From the search direction (28), and the new parameter 
𝛽𝛽𝑘𝑘 in (32), we have 

‖𝑑𝑑𝑘𝑘+1‖ ≤ �𝑣𝑣𝑘𝑘
𝑇𝑇𝑣𝑣𝑘𝑘

𝑣𝑣𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

 � ‖𝑔𝑔𝑘𝑘+1‖ + �𝑣𝑣𝑘𝑘
𝑇𝑇𝑣𝑣𝑘𝑘

𝑣𝑣𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

 � �𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

 � ‖ 𝑑𝑑𝑘𝑘‖ +

� 𝑡𝑡 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑣𝑣𝑘𝑘 

(1+𝑀𝑀1𝑀𝑀2) 𝑑𝑑𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

 � ‖ 𝑑𝑑𝑘𝑘‖,                                                    (45) 

since 𝑔𝑔𝑘𝑘+1𝑇𝑇  𝑣𝑣𝑘𝑘 ≤ 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘𝑇𝑇𝑦𝑦𝑘𝑘 and by using the Lipschitz Condition 
‖𝑦𝑦𝑘𝑘‖ ≤ 𝐿𝐿‖𝑣𝑣𝑘𝑘‖ along with the fact that  𝑦𝑦𝑘𝑘𝑇𝑇𝑣𝑣𝑘𝑘 ≥ 𝜗𝜗∥∥𝑣𝑣𝑘𝑘∥∥

2, we 
obtained 

‖𝑑𝑑𝑘𝑘+1‖ ≤
1
𝜗𝜗
‖𝑔𝑔𝑘𝑘+1‖ +   𝐿𝐿𝛼𝛼𝑘𝑘 ‖𝑔𝑔𝑘𝑘+1‖

𝜗𝜗2‖𝑣𝑣𝑘𝑘‖
+ � 𝑡𝑡𝛼𝛼𝑘𝑘 

(1+𝑀𝑀1𝑀𝑀2) 
 � ‖ 𝑑𝑑𝑘𝑘‖,     (46) 

from Equation (32), we get that the norm of the gradient is 
bounded: 

‖𝑑𝑑𝑘𝑘+1‖ ≤
1
𝜗𝜗
𝑏𝑏 +   𝐿𝐿𝐿𝐿𝛼𝛼𝑘𝑘

𝜗𝜗2‖ 𝑣𝑣𝑘𝑘‖
+ 𝑡𝑡 

(1+𝑀𝑀1𝑀𝑀2) 
‖ 𝑣𝑣𝑘𝑘‖,                         (47) 

let  𝐷𝐷 = 𝑚𝑚𝑚𝑚𝑚𝑚{‖𝑣𝑣𝑘𝑘‖ = ‖𝑥𝑥 − 𝑥𝑥𝑘𝑘‖} ,∀ 𝑥𝑥, 𝑥𝑥𝑘𝑘 ∈ 𝑅𝑅}.                  
    Hence the inequality in Equation (47), becomes 

‖𝑑𝑑𝑘𝑘+1‖ ≤
1
𝜗𝜗
𝑏𝑏 +   𝐿𝐿𝐿𝐿𝛼𝛼𝑘𝑘

𝜗𝜗2𝐷𝐷
+ 𝑡𝑡 

(1+𝑀𝑀1𝑀𝑀2) 
𝐷𝐷 = ∅,                         (48) 

⇒ ∑ 1
‖𝑑𝑑𝑘𝑘+1‖2

 
𝑘𝑘≥1 ≥ ∑ 1

∅2
 
𝑘𝑘≥1 = ∞ ,                                    (49) 
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⇒ ∑ 1
‖𝑑𝑑𝑘𝑘+1‖2

 
𝑘𝑘≥1 = ∞.                                                      (50) 

   By using lemma (1), we get 𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘→∞

𝑖𝑖𝑖𝑖𝑖𝑖‖𝑔𝑔𝑘𝑘+1‖ = 0. which 
completes the proof.     

                                                                             

5. Numerical Results 
In this section, we present the numerical evaluation of 

our proposed method (denoted by New SCG for short) on a 
set of well-established the optimization test problems [40] of 
varying dimensions are listed in the appendix. We compare 
its performance against the Hestenes-Stiefel (HS) method. 
All algorithms were implemented in FORTRAN 95. The step 
length for each iteration was determined using a cubic 
interpolation line search routine that utilized both function 
and gradient values. In the result tables, the letter "F" 
indicates that a particular method failed to satisfy the 
termination criteria within the maximum allowed number of 
iterations or function evaluations. The results presented in 
Table 1 and summarized in Table 2 are based on the [number 
of iterations, the number of function evaluations] write as 
[NOI, NOF] respectively, required to reach a solution. The 
experimental results reported in Table 2 suggest that the New 
SCG algorithm demonstrates superior performance compared 
to the HS algorithm in terms of both NOI and NOF. 

To provide a visual comparison of the algorithms' 
performance, we employed the performance profile tool 
introduced by Dolan and Moré [41]. This tool allows for a 
robust assessment of the relative efficiency of different 
solvers across a set of test problems. For a given set of 
problems 𝑃𝑃 with 𝑛𝑛𝑝𝑝 problems and a set of solvers 𝑆𝑆 with ns 
solvers, and for each problem 𝑝𝑝 ∈ 𝑃𝑃 and solver 𝑠𝑠 ∈ 𝑆𝑆, we 

define 𝑡𝑡𝑝𝑝,𝑠𝑠 as the value of a specific performance metric (NOI, 
NOF) required by solver 𝑠𝑠 to solve problem 𝑝𝑝. The 
performance ratio for solver 𝑠𝑠 on problem 𝑝𝑝 is then defined as: 

𝑟𝑟𝑝𝑝,𝑠𝑠 = 𝑡𝑡𝑝𝑝,𝑠𝑠

min
𝑠𝑠′∈𝒮𝒮

 �𝑡𝑡𝑝𝑝,𝑠𝑠′�
.                                                               (51) 

The performance profile of a solver 𝑠𝑠 is given by the 
function 𝜌𝜌𝑠𝑠(𝜏𝜏), which represents the fraction of problems for 
which the performance ratio of solver 𝑠𝑠 is within a factor 𝜏𝜏 of 
the best performance achieved by any solver on that problem: 

𝜌𝜌𝑠𝑠(𝜏𝜏) = 1
𝑛𝑛𝑝𝑝

size�𝑝𝑝 ∈ 𝒫𝒫 ∣ 𝑟𝑟𝑝𝑝,𝑠𝑠 ≤ 𝜏𝜏�.                                  (52) 

    In the performance profile plots, the value 𝜌𝜌𝑠𝑠(𝜏𝜏) on the y -
axis represents the percentage of problems solved by 
algorithm 𝑠𝑠 with a performance within a factor 𝜏𝜏 (on the x-
axis) of the best performing algorithm. An algorithm whose 
curve appears at the top of the plot is considered to have better 
overall performance compared to the other algorithms in the 
comparison for the given metric. Furthermore, the value of 
𝜌𝜌𝑠𝑠(1) indicates the percentage of problems for which 
algorithm 𝑠𝑠 was the most efficient. The value of 𝜌𝜌𝑠𝑠(𝜏𝜏) as 𝜏𝜏 
increases towards the right shows the robustness of the 
algorithm, i.e., the percentage of problems solved within a 
certain tolerance of the best performance. 
     Figures 1 and 2 illustrate the performance profiles of the 
compared algorithms based on the NOI and NOF metrics, 
respectively. In Figure 1, the curves depict the performance of 
all algorithms with respect to NOI, while Figure 2 displays the 
performance profile based on the NOF. The algorithm with the 
curve positioned highest in these figures demonstrates the 
most favorable performance for the respective metric across 
the tested problem set.

 
 

Table 1. Numerical Comparison of Hs and New Scg Methods on Selected Test Functions. 
Method HS New SCG 

Test Function Dimensions NOI NOF NOI NOF 

Wolfe 

4 11 24 11 29 

10 32 65 32 71 

100 49 99 43 90 

500 52 105 44 91 

1000 70 141 45 94 

5000 165 348 151 308 

G-Central 

4 22 159 18 78 

10 22 159 18 78 

100 22 159 19 85 

500 23 171 21 100 

1000 23 171 21 100 

5000 28 248 24 113 

Nondiagonal 4 24 64 24 64 
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10 26 72 26 72 

100 29 79 29 79 

500 F F 29 79 

1000 29 79 29 79 

5000 30 81 30 81 

Powell 

4 37 102 30 120 

10 37 102 30 120 

100 40 117 30 120 

500 44 136 36 130 

1000 44 136 36 130 

5000 44 136 36 130 

Rosen 

4 30 83 29 79 

10 30 83 29 79 

100 30 83 29 79 

500 30 83 29 79 

1000 30 83 29 79 

5000 30 83 29 79 

Miele 

4 28 85 28 85 

10 31 102 31 102 

100 33 114 33 114 

500 40 146 40 146 

1000 46 176 46 176 

5000 54 211 54 211 

Wood 

4 30 68 25 62 

10 30 68 25 62 

100 30 68 27 66 

500 30 68 27 66 

1000 30 68 27 66 

5000 30 68 27 66 

Sum 

4 3 11 3 11 

10 6 34 6 30 

100 14 81 14 73 

500 21 124 18 88 

1000 23 128 23 105 

5000 31 159 27 124 

Edger 

4 5 14 5 15 

10 5 14 5 15 

100 5 14 5 15 

500 6 16 5 15 

1000 6 16 5 15 

5000 6 16 5 15 

Shallow 4 8 21 8 21 
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10 8 21 8 21 

100 8 21 8 21 

500 8 21 8 21 

1000 9 24 9 24 

5000 9 24 9 24 

Cubic 

4 12 35 12 33 

10 13 37 12 33 

100 13 37 12 33 

500 13 37 13 35 

1000 13 37 13 35 

5000 13 37 13 35 

Beale 

4 11 28 11 28 

10 11 28 11 28 

100 12 30 12 30 

500 12 30 12 30 

1000 12 30 12 30 

5000 12 30 12 30 

Osp. 

4 8 45 7 36 

10 13 58 13 52 

100 49 185 50 165 

500 112 353 107 309 

1000 156 473 152 438 

5000 256 774 254 765 

 
 

Table 2. Overall Performance Comparison of Hs and New Scg Methods. 
Method NOI NOF 

HS 100% 100% 

New SCG 91.92 % 87.85 % 

Rate of Improvement (%) 8.08 % 12.15 % 

 
     From Table 1: Overall, the results suggest that the New 
SCG method demonstrates promising performance 
compared to the HS method. Several trends can be 
observed: 

• Iteration Efficiency: In many test problems and 
dimensions, the New SCG method required fewer 
iterations to reach a solution compared to the HS 
method (as seen in problems like G-Central, 
Wood, Sum, and Osp. at certain dimensions). 

• Function Evaluation Efficiency: The 
superiority of New SCG is more pronounced in 
the number of function evaluations required. In 

problems such as G-Central, Wood, and Sum, 
New SCG consumed significantly fewer function 
evaluations, indicating higher computational 
efficiency per iteration or faster convergence. 
 

     Table 2 provides a summary of the average performance 
of the two methods across all tested problems. The 
performance of the HS method is normalized to 100%, and 
the performance of the New SCG method is expressed as a 
percentage thereof. The results indicate that the New SCG 
method achieved an average improvement of 8.08% in the 
NOI and 12.15% in the NOF compared to the HS method. 
     Based on the numerical data provided, it can be 
academically concluded that the proposed New SCG method 
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generally exhibits superior performance compared to the HS 
method on the tested set of problems. The advantage is 
particularly evident in the reduction of the NOF required, 
suggesting greater computational efficiency. Furthermore, 
New SCG demonstrates better robustness in certain cases. 
While the performance of the two methods was comparable 
on some problems, the significant improvements observed in 
others, especially at higher dimensions, support the 
effectiveness of the proposed new method as a promising 
alternative to traditional conjugate gradient methods like HS. 

 

 

Figure 1. Performance Profile Outputs Based On 
(Noi). 

 
Figure 2. Performance profile outputs based on 

(NOF). 
   
     Figures 1 and 2 illustrate the performance profiles of the 
HS and New SCG methods with respect to NOI and NOF, 
respectively. These plots offer a visual and quantitative 
comparison of the relative efficiency and robustness of both 
methods across the benchmark test set. 

In Figure 1, which reflects iteration-based performance: 
• The performance curve of the New SCG method lies 

consistently above that of the HS method across all 
values of the performance ratio τ. 

• The value  𝜌𝜌𝑠𝑠(1) for New SCG is close to 1, 
indicating that it was the most efficient solver (in 
terms of iteration count) on nearly all test problems. 

• The steep and early rise of the New SCG curve 
demonstrates its strong consistency and iteration 
efficiency across a wide range of problem 
dimensions. 

• In contrast, the HS method shows a more gradual 
increase, reflecting less consistent performance and 
higher iteration counts on many problems. 
 

   In Figure 2, which presents the performance based on the 
NOF: 

• The advantage of the New SCG method becomes 
even more pronounced. Its curve remains well 
above that of the HS method across all τ\tauτ values. 

• The high value of  𝜌𝜌𝑠𝑠(1) again confirms that New 
SCG was the most function-efficient solver on the 
vast majority of problems. 

• The early and rapid growth of the New SCG profile 
indicates faster convergence and fewer function 
evaluations required, highlighting its computational 
efficiency. 
 

These performance profiles support the conclusion that 
the New SCG method exhibits superior overall behavior 
compared to the HS method. It is not only more efficient in 
terms of iterations and function calls, but also more robust 
across diverse problem settings. This visual evidence 
complements the numerical results and reinforces the New 
SCG method’s potential as a competitive and reliable 
approach for optimization problems. 
 

Conclusion  
This paper introduces a novel SCG method developed 

for solving unconstrained optimization problems. The 
proposed method features an innovative mechanism for 
presenting a development  search direction, which uses 
spectral properties in combination with a conjugate 
coefficient derived from established conjugacy condition to 
enhance numerical stability. Theoretical analysis confirms 
that the search directions of the SCG method satisfy the 
descent condition a fundamental requirement to ensure 
convergence to a minimum. The practical performance of the 
proposed method extensive numerical experiments was 
conducted on a diverse set of standard benchmark functions. 
The numerical results of SCG method were systematically 
compared with those of the well-known Hestenes-Stiefel 
(HS) method.  In most test cases, the SCG method 
consistently outperformed HS, especially in reducing the 
number of function evaluations while maintaining 
computational efficiency in high-dimensional optimization 
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tasks. These result findings highlight the robustness and 
ability of the proposed method as a reliable solution for large-
scale unconstrained optimization problems. Several 
directions for future research are envisioned. One promising 
avenue involves extending the SCG framework to deal with 
the constrained optimization problems. Additionally, 
merging SCG with stochastic techniques or adaptive 
strategies could enhance its performance in dynamic or 
uncertain environments. The real-world applications are a 
wide range of fields, including signal and image processing 
(such as denoising and reconstruction), deep learning (e.g., 
training neural networks), structural optimization, and 
control engineering. Such applications would further 
demonstrate the versatility and resilience of the new method. 
These investigations are expected to deepen theoretical 
understanding and also to broaden the practical utility of 
spectral conjugate gradient methods in solving complex real-
world challenges. 
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Appendix: Benchmark Test Functions 
This appendix presents a selected set of classical test 

functions unconstrained optimization problems used to 
evaluate the numerical performance of the optimization 
method. Each function has distinct structural and numerical 
challenges, making it a esay way to test for assessing 
convergence behavior, robustness, and scalability. 

1. Wolfe: 𝑥𝑥0 = (−1, … ,−1)𝑇𝑇 , 

𝑓𝑓(𝑥𝑥) = �−𝑥𝑥1 �3 −
𝑥𝑥1
2
� + 2𝑥𝑥2 − 1�

2

+ ��𝑥𝑥𝑘𝑘−1

𝑛𝑛−1

𝑖𝑖=1

− 𝑥𝑥𝑘𝑘 �3 −
𝑥𝑥𝑘𝑘
2

+ 2𝑥𝑥𝑘𝑘+1 − 1��
2

+ �𝑥𝑥𝑛𝑛−1 − 𝑥𝑥𝑛𝑛 �3 −
𝑥𝑥𝑛𝑛
2
� − 1�

2
.   

2. Central: 𝑥𝑥0 = (1,2,2, 2, … ,1,2,2,2)𝑇𝑇 , 

𝑓𝑓(𝑥𝑥) = �(𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥4𝑘𝑘−3 + 𝑥𝑥4𝑘𝑘−2)4 + 100((𝑥𝑥4𝑘𝑘2 − 𝑥𝑥4𝑘𝑘−1)6
𝑛𝑛
4�

𝑘𝑘=1
+ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎((𝑥𝑥4𝑘𝑘2 − 𝑥𝑥4𝑘𝑘−1)4
+ 𝑥𝑥4𝑘𝑘−3).                                                   

3. Non-Diagonal: 𝑥𝑥0(−1, … ,−1)𝑇𝑇 

𝑓𝑓(𝑥𝑥) = �(100(𝑥𝑥1 − 𝑥𝑥𝑘𝑘2)2 + (1 − 𝑥𝑥𝑘𝑘)2)
𝑛𝑛

𝑘𝑘=2

.                      

4. Powell: 𝑥𝑥0 = (3,−1,0,1, … ,3,−1,0,1)𝑇𝑇 , 

𝑓𝑓(𝑥𝑥) = �((𝑥𝑥4𝑘𝑘−3 − 10𝑥𝑥4𝑘𝑘−2)2 + 5(𝑥𝑥4𝑘𝑘−1 − 𝑥𝑥4𝑖𝑖)2
𝑛𝑛
4�

𝑘𝑘=1
+ (𝑥𝑥4𝑘𝑘−2 − 2𝑥𝑥4𝑘𝑘−1)4 + 10(𝑥𝑥4𝑘𝑘−3 − 𝑥𝑥4𝑘𝑘)4). 

5. Rosen: 𝑥𝑥0 = (−1.2,1, … ,−1.2,1)𝑇𝑇 , 

𝑓𝑓(𝑥𝑥) = �(100(𝑥𝑥2𝑘𝑘 − 𝑥𝑥2𝑘𝑘−12 )2 + (1 − 𝑥𝑥2𝑘𝑘−1)2)

𝑛𝑛
2�

𝑘𝑘=1

. 

6. Mile: 𝑥𝑥0 = (1,2,2, … ,1,2,2)𝑇𝑇 , 

𝑓𝑓(𝑥𝑥) = �((𝑒𝑒𝑥𝑥4𝑘𝑘−3 + 10𝑥𝑥4𝑘𝑘−2)2 + 100(𝑥𝑥4𝑘𝑘−2 + 𝑥𝑥4𝑘𝑘−1)6
𝑛𝑛
4�

𝑘𝑘=1
+ (tan(𝑥𝑥4𝑘𝑘−1 − 𝑥𝑥4𝑘𝑘))4 + (𝑥𝑥4𝑘𝑘−3)8
+ (𝑥𝑥4𝑘𝑘 − 1)2).    

7. Wood: 𝑥𝑥0 = (−3,−1, … ,−3,−1)𝑇𝑇 

𝑓𝑓(𝑥𝑥) = �(100(𝑥𝑥4𝑘𝑘−32 − 𝑥𝑥4𝑖𝑖−2)2 + (𝑥𝑥4𝑘𝑘−3 − 1)2
𝑛𝑛
4�

𝑘𝑘=1
+ 90(𝑥𝑥4𝑘𝑘−12 − 𝑥𝑥4𝑘𝑘)2 + (1 − 𝑥𝑥4𝑘𝑘−1)2
+ 10.1(𝑥𝑥4𝑘𝑘−2 − 1)2 + (𝑥𝑥4𝑘𝑘 − 1)2  
+ 19.8(𝑥𝑥4𝑘𝑘−2 − 1)(𝑥𝑥4𝑘𝑘 − 1)). 

8. Sum: 𝑥𝑥0 = (1,1, … ,1)𝑇𝑇 , 

𝑓𝑓(𝑥𝑥) = �(𝑥𝑥𝑘𝑘 − 𝑘𝑘)4
𝑛𝑛

𝑘𝑘=1

.   

9. Edger: 𝑥𝑥0 = (1,0, … ,1,0)𝑇𝑇 , 

𝑓𝑓(𝑥𝑥) = �((𝑥𝑥2𝑘𝑘−1 − 2)2 + (𝑥𝑥2𝑘𝑘−1 − 2)2𝑥𝑥2𝑘𝑘2 + (𝑥𝑥2𝑘𝑘 + 1)2)

𝑛𝑛
2�

𝑘𝑘=1

. 

10. Shallow: 𝑥𝑥0 = (−2,−2, … ,−2,−2)𝑇𝑇 , 

𝑓𝑓(𝑥𝑥) = �([𝑥𝑥2𝑘𝑘−12 − 𝑥𝑥2𝑘𝑘]2 + (1 − 𝑥𝑥2𝑘𝑘−1)2)

𝑛𝑛
2�

𝑘𝑘=1

.     

11. Cubic: 𝑥𝑥0 = (−1.2,1, … ,−1.2,1)𝑇𝑇 , 

𝑓𝑓(𝑥𝑥) = �(100(𝑥𝑥2𝑘𝑘 − 𝑥𝑥2𝑘𝑘−13 )2
𝑛𝑛
2�

𝑘𝑘=1
+ (1 − 𝑥𝑥2𝑘𝑘)2).                                                

12. Beal: 𝑥𝑥0 = (0,0)𝑇𝑇 , 
𝑓𝑓(𝑥𝑥) = ((1.5 − 𝑥𝑥1 + 𝑥𝑥1𝑥𝑥2)2 + (2.25 − 𝑥𝑥1 + 𝑥𝑥1𝑥𝑥22)2

+ (2.625 − 𝑥𝑥1 + 𝑥𝑥1𝑥𝑥23)2).                      
13. OSP: 𝑥𝑥0 = (1, … ,1)𝑇𝑇 ,  

𝑓𝑓(𝑥𝑥) = ��𝑘𝑘(𝑥𝑥𝑘𝑘)2
𝑛𝑛

𝑘𝑘=1

�
2

.                     
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