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Success of companies and satisfaction of customers heavily depend on system reliability
performance. System design improvements and higher efficiency exist directly from the proper
distribution of reliability overhead resources. The extensive application domain of Reliability
Redundancy Allocation Problems (RRAPs) includes fundamental challenges in various real-life
situations such as software design along with cost optimization and development. The system
reliability optimization problem is recognized as NP-Hard, and its resolution demands planned
and effective solution approaches since there doesn’t exist a polynomial-time method for finding
optimal solutions. This research utilizes Grasshopper Optimization (GOA) due to its ability to
solve complex constrained optimization problems effectively and its high accuracy in obtaining
good solutions. Eight system reliability block diagrams were used, varying in their difficulty
from simple to complex problems. Results showed that system reliability comprised a significant
increase when GOA-based optimization was applied compared to other algorithms. GOA
achieved higher performance using the eight system reliability block diagrams, and its results
validated both the efficiency and the solution-delivering capabilities of the algorithm for

enhancing overall software reliability.
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1. Introduction

The continuous progress of technology has led to
significant industrial growth during the recent period.
Production processes alongside systems now reach high
complexity levels for attaining necessary productivity goals.
The concept of system reliability has gained absolute
importance in industrial operations. System efficiency during
its operational lifetime demands this fundamental requirement
due to modern high technology and escalating system
complexity. The goal of reliability is to reach planned
reliability standards in intricate systems by performing tests
and verification together with planning processes. The
redundancy and reliability allocation problem (RRAP)
optimizes system reliability by managing cost limitations and
weight and dimension requirements. Traditional optimization
methods serve as the solution approach for these problems and
utilize linear programming together with integer programming
and fast gradient descent and sequential quadratic
programming and gradient descent methods [1]. However,
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these methods exhibit significant limitations, including
challenges in managing unexplored search spaces, a tendency
to converge to single solutions, and weaknesses in local
optimization processes [2]. Such shortcomings highlight the
need for advanced intelligent optimization techniques to
address the complexities inherent in real-life issues [3].

Software engineering relies heavily on the reliable nature
of processes and products that include company-based research
along with interests and decision-making activities. Reliability
determines both customer choices and company achievement
levels in business operations. According to [4] reliability refers
to the statistical measure of how likely a part performs its
requirements under predetermined situations over a defined
timespan. The real-world problems which link closely with
redundancy form an essential part of reliability studies. A
subsystem's reliability improves when the quantity of redundant
components grows directly impacting system reliability at the
same time. This concept justifies adopting low-cost component
designs with redundant backup systems although it reduces
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overall reliability levels. RBD results when the composition of
RBD system components reaches a complicated stage.
Reliability control problems can be analyzed through
mathematical modeling which enables selection of suitable
approaches to their solution. Different real-world problems
exhibit diverse characteristics which fall into two main groups
as static or dynamic and linked or separate systems and single-
objective or multi-objective requirements together with
constrained or unconstrained status. Complexity alongside the
numerous challenges in problem domains leads to poor
performance rates when using traditional optimization
algorithms [5].

Considering these challenges, Metaheuristic algorithms
have received significant attention in the evolutionary
computing community due to their remarkable speed,
accuracy, and relatively low computational complexity. These
algorithms have proven effective in addressing complex
optimization problems across a variety of application domains
[6].

Metaheuristic algorithms include evolutionary-based
algorithms, inspired by natural evolutionary processes, such as
Swarm Intelligence, tabu search, simulated annealing and
others. A particularly interesting branch is swarm-based
algorithms, inspired by swarming behavior observed in nature,
which reproduce the self-organizing drifts of social
individuals. A prominent example is the artificial bee colony
(ABC) method [7], which mimics the foraging behavior of
honeybee colonies.

Swarm algorithms have been used to find solutions to
various types of problems in many diverse fields of science and
technology. Some of them have been used to solve software
reliability modeling [8], detection of diabetic diseases [9].
Moreover, Al-Isawi and Al-Saati also addressed swarm
intelligence in finding the best control strategies to reduce risk
management using the Spotted Hyenas optimization
Algorithm [10].

The Grasshopper Optimization Algorithm (GOA) is a
nature inspired metaheuristic, first presented by Saremi et al.
(2017), which describes swarm behavior of grasshoppers in
their native settings. Recently, GOA has experienced renewed
interest and broad improvement making it one of the
competitive swarm-based algorithms in optimization research
[11]. GOA mimics both the long-range social interaction and
the short-range repulsion in the grasshoppers producing a
natural balance of finding the solution space between
exploration, and exploitation.

One of the major advantages of GOA relates to the
absence in its mechanism of the use of derivatives, which
enables it to solve linear and non-linear, convex and non-
convex tasks of continuous and discrete nature. In addition, its
adaptive behavior to converge allows it to dynamically
transform from wide exploration to fine exploitation as it
approaches the best solution [12].

GOA has exhibited promising outcomes in various
challenging engineering issues including multi-objective
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reliability optimization, feature selection, energy efficient
scheduling and design of fault-tolerant systems. Modern
variants (multi-objective GOA (MOGOA) and hybrid GOA
structures (such as GOA-GA, GOA-PSO), have demonstrated
success in solving NP-hard problems to improve robustness and
generalization speed [13]. The ability of the algorithm to keep
away from premature convergence and sustain population
diversity also improves its suitability for reliability redundancy
allocation problems (RRAP) and other real world optimization
problems which need cost effective and robust system design,
In addition, there are several applications of the hybrid
algorithms in various software engineering fields such as
classification [14] , medicine [15] even in planning a model to
guide the establishment of a long-term human habitat on the
Moon [16].

The main contribution of this study is to investigate the use
of the GOA model, given its efficiency and robustness, in
solving the RRAP problem, seeking to improve the overall
reliability of systems under specific constraints. This research
will be conducted using eight Reliability Block Diagrams
(RBDs) of varying size and complexity.

The remainder of this paper is presented as follows: First,
the problem statement is explained, followed by a detailed
discussion of the criteria used to improve reliability in previous
studies. Next, the concept of Grasshopper Optimization (GOA)
is presented, along with its algorithm, and the results and
comparisons obtained are presented. Finally, a conclusion is
given regarding the proposed work and future work.

2. Related Work

Many researchers have used different approaches and
techniques to solve RRAP problems. In 2018, Ghambari and
Rahati established an improved artificial bee colony algorithm
for reliability optimization problems through implementing a
new search operator, they made available an improved user
interface which led to better solutions for the reliability
optimization problem [17] The authors Filho and Bessani
introduced a linear multi-objective framework for RRAP in
2021 [18]. Al-Saati employed the wild horse algorithm for
RRAP in 2022 resulting in superior maximum reliability than
earlier works [19]. Kundu et al. introduced advances in hybrid
algorithms through their work in 2022, they employed fitness
metrics within their Hybrid Salp Swarm Algorithm with
Teaching-Learning Based Optimization (HSSATLBO) method
to show its effectiveness on a combination of benchmark
problems [20]. In 2022, significant improvements were made to
the optimization approach, as well as the methodology used by
Yeh et al., which recorded several key metrics using the BAT-
SSOA3 algorithm, Yeh et al. found results indicating that
combining two algorithms consisting of a binary addition tree
and small-sampled orthogonal tri-objective matrices produces
results on strategic connectivity within a single integrated
framework [21]. Maintaining consistency in this field, Khalil
and Saleh in 2024 demonstrated the use of machine learning
methods in estimating and predicting software reliability [22].
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Krishna used serial and parallel redundancies to increase the
dependability of cloud systems and services in 2024 using an
Improved Modified Harmony Search (IMHS) combined with
Modified Differential Evolution (MDE) [23], recently,
Choudhary et al. used the Mayfly algorithm to solve the
nonlinear mixed integer RRAP [24]. Also, Choudhary et al.
considered the Cuckoo Search Algorithm (CSA) for solving
the RRAPs in their study [25].

3. Mathematical Formulation of Rbd

Problems

High reliability approaches need improved methodologies
because systems become progressively complex. Measuring
different optimization algorithm efficiency requires evaluating
Reliability Block Diagram (RBD) problems as part of their
assessment. The RBD problems that serve as fundamental
elements during reliability method development are analyzed
in this section. The formula of the general form can be
demonstrated as follows:

Max R = f(n, 1),
s.t. G(n,r) < U
n; € +veintegers,0<r; <1, 1<i<m

where 7; denotes the i" subsystem's reliability and n; is
the number of components in the i*® subsystem. Global
dependability is represented by R, while the model's
restrictions utilizing the upper bound U are represented by G.
On the other hand, m stands for the number of subsystems. To
optimize the reliability of the entire system, the goal is to
ascertain the number of components and their dependability in
each subsystem. This falls within the category of mixed-option
nonlinear constrained integer optimization problems.

The basic Series System (RBD1) benchmark problem is
the first one being examined, in which the system reliability is
equal to the product of component reliabilities. It is important
to remember that this is a fundamental difficulty that leads to
more complex dependability issues [26]. In this study, the
formula for this group has been used as Eq. (1) [17].
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where the physical parameters for each subsystem are
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represented by the symbols v;, a;, B; and w;.

A Series-Parallel System (RBD2), which combines
elements of both parallel and series systems [27], is used in the
second issue. Its formula is shown in Eq. (2):

Max fitness(n,r) =1— (1= RyR,)[1— (1 — (1 = R3)(1 — Ry))Rs]
5

s.t, G = anui <V.

) (o)

5
S+ o)
i=1

5

Bi
@

n; € Z*.

Following this, the third problem, which is called Complex
System (RBD3), presents a challenging complex challenge that
requires advanced optimization due to its many pieces and
possibilities. Examining the level of optimality in resolving
intricate dependability issues might make this issue more
significant [20]. The following

formula was used:
Max fitness(n,7) = RyR, + R3R, + R{R,Rs + R,R3Rs — R{R,R3R,

—R,R,R3Rs — RyR,R,Rs — RyR3R,Rs — RyR3R,Rs + 2R, R,RsR,R<

5

s.t, Gy = Znizvi <V.

5
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GZZZai(nl+e )(ln(ri))
i=1
5
(%)
G3=Zniwie 9 <W
i=1
vVi=12,..5 1<n;<50<nr<1 n; € Z*.

The fourth issue pertains to the Overspeed System (RBD4)
in unique circumstances when operational characteristics
impact dependability.  Scalability is measured by this
benchmark and is significant in real-world applications [20], the
formula for it as below:

Max fitness(n,r) = 1_[[1 -1 =r)"]

i=1
m

s.t, Gy = Znizvi <V.

i=1

C)

o=y o o) (5]

4

i=1
Vi=12,.,m1<n<m,05<r,<1-10"°%n;, € Z*.

Conversely, the Convex Quadratic System (RBD5) allows
for the employment of many optimization approaches that
investigate convexity features since its reliability functions are
likewise convex [17].
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10
Max fitness(n,r) = 1_[ 1— (1 —r)m
i=1

10
s.t, G = l_[(nizaﬁ +n,C;) < b; (5)
i=1
i=12,..,10.,j = 1,23,4. ,n; is + ve integer,n, € [1,6].

where 08<7r,<099 is
distribution so as to 0 < aji,

generated by the uniform
Cj; < 10 given that a;, Cj; are

+ve integers and b; = [2.0  10%3,3.1 % 1012,5.7 «

10%3,9.3 x 10'2].

A Mixed Series-Parallel System (RBD6) is a problem with
a complicated series and a parallel system. The behavior of the
optimization methods under different settings can be captured
by this benchmark problem [20]. Its formula is as follows:

max fGr) =] Jn-a-ry
i=1

m

Z n;c; < 400

i=1

s.t, hy

m

hz = Z nin. < 414

i=1
05<r;<1,n,€Z*,n,>1,m=15.

(6)

The Large-Scale System (RBD7) deals with the
difficulties of maximizing the dependability of large systems
with many different parts [28]. It may be proven to be as
follows:

Max fitness(n, 1) = 1_[[1 -1 =r)"]
i=1

m 9 m
o= ) mr= (14 3gg) D <0 2
i=1 i=1
m 6 m
=D 5= (14 555) Vi < 0
i=1 i=1
1<n;<10,i=1,..,m where m = 50, n; € Z*.

here [; means the lower bound of n;, usually 8 = 0.33,[; = n;
,095<1,< 1—-10"%,m =50.
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b; = (543; 352; 1040; 2048),n; = 1Vibut n; =2 when

i = (4; 10; 15; 21; 33; 42; 45)

and Vi=1,...,50:

a; =(8;10;10;6;7;10;9;9;7;6;6;10;9;10;7;10;10;8;10;7;6;6;7;8;
9:8:;8;9;10;9;7,9;6,7,6;10;9;10;6;8;10,8;8;6,6;8;7;10;8;10
).

B, =(4:4;4:3;1;4;2:3:4:4;5;3;1;4:4;2;1;3;5;4;2;2;,2:5;5;1;3;3; 15

2:5;5;3:3;5;5;5;5;2:3;5:3;1;4:4;1;4;2;3;2).

Y, =(13;16;12;12;13;16;19;15;12;16;14;15;17;20;14;13;15;19;
18;13;15;12;20;19;15;18;16;15;18;19;15;11;15;14;15;17,
19;11;17;17;17;18;18;19;13;19;14;19;15;11).

6; =(26;32;23;24;26;31;38;29;23;31;28;30;34;39;28;25;29;38;
36;26;30;24;40;38;29;35,32;29;35;37,28;22;29;27;29;33;
37,22;34;33,33;35;35;38;26;37;28;37;30;22).

The Incomplete Fault Detecting System (RBDS), which
analyzes the dependability of systems in which not all defects
can be identified, is the last issue. It may be expressed [17] as:
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Where n; € [1,6] fori = 1,2,4 but n; € [1,5]. R;(n;)

can be evaluated as the following

ny{—1

Ri(n)) =1- Q1(ﬂ1 +q:(1— ﬁ1))
Q2B + 432p2 (1 — B)™

R,(n,)=1-—
2(n2) P2+ q25

Ry(n3) =1— CI? €))

Ry(ny) =1-— Q4(ﬁ4 +q,(1— 54))

ng—1

4. Biological Life of Grasshopper Optimization
Algorithm (Goa)

Among hemimetabolous insects, the grasshopper group
predominates in the Caelifera suborder Figure 1 research on
grasshoppers continues because they possess outstanding
behavioral abilities that allow shifts between single and swarm
phases. Grasshopper mobility remains limited together with
their individual patterns when habitat density levels are low.
The population expands during suitable environmental
conditions which leads to polyphenic transformation that results
in the emergence of social swarming groups across expansive
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ranges [29]. Biology demonstrates that grasshopper swarms
perform dynamic movements through visual communications
that are enhanced by mechanical signals combined with
chemical signals. The movement of these individuals is
controlled by three basic factors. [30][31]

» Through social contact, grasshoppers can escape isolation
or congestion by adjusting their position to maintain an
ideal distance from neighbors.

* The gravitational pull imitates the inclination to gravitate
toward the earth or below.

* The external environmental influence that changes their
trajectory is represented by wind advection.

Figure 1. Grasshopper in nature.

The Grasshopper Optimization Algorithm (GOA) bases
its operations on treating grasshopper swarms as solution
populations while using balance dynamics to express
exploration with wide food searches and exploitation with
local food refinement. The mathematical models developed by
GOA derive from entomological and biomechanical research
studies for replicating attractive-repulsive systems.

The grangerization process starts with neurophysiological
responses to serotonin levels, according to recent biological
studies that affect swarm dynamics. The phenomenon appears
in GOA because this algorithm manages solution interaction
strength [32]. Grasshopper swarms show complex biological
structures that enable them to resist stagnation while remaining
adaptable when faced with their environment, just as
optimization algorithms need these qualities. The biological
model of grasshopper motion provides numerous ideas for
developing search heuristics that possess self-regulation and
multi-modality and optimize the process by escaping local
optima. The processes in GOA are ideally suited for complex
optimization problems, including RRAP [33].

5. The Grasshopper Optimization Algorithm
(Goa)

In 2017 Saremi along with Mirjalili and Lewis established
the Grasshopper Optimization Algorithm (GOA) as a meta-
heuristic inspired by nature. Mathematical modeling of
grasshopper collective movement behavior throughout their
life cycle allowed researchers to develop the GOA. Its
attraction-repulsion behavior provides biologically valid
coordination among individuals because it matches the natural
movements grasshoppers use to stay spaced appropriately with
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peers and respond to environmental forces [31].

GOA uses each potential solution as a grasshopper that moves
in a dimension space of D size. The three determining elements
guide the movement of each grasshopper throughout space.

* Gravity force (G): Pulls each grasshopper toward the center
of mass (often the current best solution) see Figure 1(a).

* Wind advection (W) enables stochastic exploration to
maintain global search ability while promoting diversity
across the search domain see Figure 1(a).

e The relationship between grasshoppers (S) utilizes
exponential decay to calculate their overall attraction and
repulsive forces shown in Figure 2(b).

Social interaction

s

(]
e
aiN—w
P i —"— Wind advection

Social Interaction with Safety Radius, when £ = 1.8

=0
=01
f=02 | |
=03
=04
=05 | |
=06
=07
=08 |
=09
=1

.
0 5 10 15
distance

(®)
Figure 2. (a)The effect of attractive and repulsive forces on

a grasshopper's decision-making. (b) The social interaction
distance, the small circles represent the comfort zone [31].

GOA presents a distinctive approach through flexible
positional updates that enables an automatic transition between
discovery-focused exploration and exploitation of best
solutions without predefined guidelines [29]. Date from
benchmark studies demonstrates GOA's excellent performance
abilities both in restricted conditions and unrestricted scenarios.
presented GOA as having powerful capabilities for global
searching and fast convergence in addition to flexible mixed-
integer optimization of redundancy allocation problems.

Sluggish movement and small steps are the main
characteristics of the swarm at the larval stage. On the contrary,
what sets the adult swarm apart is its sudden, long-range
migration. The next important factor regarding grasshopper
swarms is their search for food sources. Exploration and
exploitation are the two logical dispositions into which the
search process is divided for nature-inspired algorithms. The
search agents would much rather travel locally when exploiting,
but during exploration, they are encouraged to move quickly.
Apart from target findings, the two tasks are also carried out
automatically by grasshoppers [31].
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The versatility of GOA has increased due to researchers
developing multi-objective and hybrid frameworks extending
from GOA-PSO and GOA-GWO that enable the efficient
solution of complex RRAP cases which require cost and
reliability and repeatability maintenance [33], GOA
incorporates these three main characteristics:

* Biologically based swarm behavior.

* The optimization method adapts itself dynamically through
uncomplex parameter control mechanisms.

« It effectively processes optimization problems having high
dimensions, multiple restrictions and discrete components.

GOA has become a leading option to handle the complex
nature and multi-modality found within the RRAP systems.

6. Goa Mathematical Framework

GOA is an algorithm developed out of the behavior of
grasshoppers during exploration and exploitation.  The
principle states that when two operators are relatively close to
one another (less than 2.079 units), they repel one another, and
the operator is in the repulsion region or within the repulsion
distance; when the two operators are exactly 2.079 units apart,
there is neither an attractive nor a repulsive force; this is known
as the comfort zone or the comfortable distance; conversely,
when two operators are farther apart than 2.079 units, they
attract one another; consequently, this distance is known as the
attraction region or the distance of attraction [34].There is no
absolute division between global and local optimization. When
the process of increasing iteration times progresses, the size of
the search region reduces, and the optimization process
undergoes a change from large-scale global to refined
localized processes. According to (10) [35].

) <o 5
ij

The current grasshopper operator x; is defined by the
grasshopper operator x;, where d;; is the spatial separation

(10)

between the current i™ and j™ grasshopper operators. The
parameters m and n, which stand for the strength of attraction
and the geographical scale of attraction, are used to assess how
other agents affect the agent. The point to which the i

grasshopper operator goes next in the k" dimension is denoted
by x¥ in (11), [35].

N k

ulk - flk k .x]' - xg(
Z C2 2 P(dij) dlkj

j=1

Xy =0

+TF (A1)

which also defines the next position of the grasshopper
operator x;; The top and lower bounds of the agent in the kh

dimension are denoted by ulj, and fl, respectively; N is the
total number of grasshopper operators; The current positions

of the i* and j** grasshoppers in the k™" dimension are
represented by x¥ and xj’-‘, respectively; df-‘j indicates the spatial
distance between the it" and j™ grasshoppers in the k™
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dimension; The adaptive shrinkage parameters c; and c,,
which preserve the relative balance between global and local
optimization, are represented by T";, which is the component of

the best solution discovered thus far in the k" dimension. The
linear change of ¢; and c,, denoted by ¢, may be computed as

in (12) [35].

Cmax — Cmin

(12)

c Cmax tmax
where t denotes a number of a current iteration, t,,,,notes

a maximum number of iterations; c,,, the largest of the

adaptive shrinkage parameter values whereas c,,;, the adaptable

shrinkage parameter minimum [35] The Main Phases upon

which this algorithm is dependent on:

Phase 1: Initialization: Generate random locust locations
within the search boundary.

Phase 2: Evaluation: Calculate the objective function for each
locust.

Phase 3: An equation updates the locust positions.

The algorithm needs to be checked for both maximum
iteration limits and when the best value of the fitness function
stabilizes.

While the pseudo-code for this algorithm can be presented as:

Pseudo-Code: Grasshopper Optimization (GOA)
Place the initial values of population x; wherei ranges from
1toN.
Evaluate fitness of each x;
While (t < Max_iterations)
For each grasshopper x;
Calculate social interaction S
Compute gravity G and wind W
Update position x;
End For
Evaluate fitness of updated Xi
Update global best solution
t=t+1
End While
Return best solution found

7. The Parameters Employed in the Algorithm

In this section, an investigation is conducted to find values
of the parameters that achieve the best possible results, in the
context of finding better solutions to RBDs. Parameters were
modified experimentally to suit the problem at hand, as in
Table 1.

Table 1. Goa Parameters.

Parameter Value
Cmax 1
Cmin 0.00004
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8. Results And Comparisons

After applying GOA, results were compared with those of
previous work to demonstrate the efficiency and validity of the
used algorithm. The optimal fitness values indicate the
maximum reliability of the system (typically ranging between
0 and 1), and these values show significant differences among
algorithms across different studies in the comparison. The

2 provides a detailed comparison of GOA with other algorithms
for the first four relatively simple RBD algorithms. Table 3
shows the results of comparing GOA with other algorithms for
the second four complex RBD algorithms. Some values of 7;
and n; were not available for some of the compared algorithms,
making it impossible to recalculate and verify the acquired
system reliability. These values are listed as unavailable in
Tables 2 and 3.

previous work considered in the comparisons are INGHS [36]
and HSSATLBO [20]. The RBDs were grouped according to
their complexity into simple RBDs and complex RBDs. Table

Table 2. Comparing Reliability with Different Methods for Simple Problems.

RBD
Method RBD1 RBD2 RBD3 RBD4
Rs= 0.931682388 Rs= 0.999976649 Rs= 0.999889636 Rs= 0.9999546743
1= [0.7793988710, 1= [0.8198118626, 1= [0.8279847911, 1= [0.9015565830,
0.8718370210, 0.8449506842, 0.8956701585, | 0.8576796813,0.9141564522, | 0.8882438856, 0.9481110971,
INGHS [36] 0.9028853550, 0.8952327069, 0.868438057445] | 0.6484814055, 0.7048654988] 0.8499817375]
0.7114025151, n=1[2,2,2,2,4] n=1[3,3,2,4,1] n=1[5,5,4, 6]
0.787799488032]
n=[3,2,23,3]
Rs= 0.9999863372
r,=[0.7753618512628, Rs= 0.99995467466432
HSSATLBOY[ Rs=0.931678 0.8714241422773, Rs=0.9998896373815054 = [0.901623877,
201 = [N/A] 0.8903702230415, = [N/A] 0.849936249, 0.948146758,
n= [N/A] 0.8914438741116, n = [N/A] 0.888204712]
0.8630261550595] n=[5, 6, 4, 5]
n=[3,222 4]
Rs=0.93168 Re= Rse Re=
ri:O[ gﬁ?ﬁé@gﬁ?f 0.999986337 0.999966754 0.999954675
GOA 0'9(7)3] 59505800350 r=[ 0.7715408, 0.863469348 r=[ 0.82923432, r=[ 0.898515815
0711475948663 177 0.89425877,3 0.893388044 0.85822909, 0.913372226 0.88561945,3 0.91540182
0.787719475235226] 0.865666241] 0.64706684, 0.70431201] 0.886067313]
n=[3, 1,4, 4, 5] n=1[3,2,2,2,4] n=(3,3,2,4,1] n=[5,6,4,5]
Table 3. Comparing System Reliability with Different Methods for Complex Problems.
RBD
Method RBD5 RBD6 RBD7 RBDS
Rs=0.80884419 Rs=0.9 415\]6//13358 RS_Of“I)\?/f“S Rs=0.9745652160
INGHS [36] T, =[ N/A] 1 =[N/A] B 1 =[N/A] r, =[ N/A]
n=22.2,1,1.2.32,1.2] n; =[ 3,4,6,4,3, n; =1 for all i except [4, 10, 15,21, i =[3.3.2.3]
S a5 2,4,54,2.3,4,54,5] 33,42,45] VTV 7
Rs= 0.4069547451370713
1=[0.995,0.974,0.965,0.971,0.968,
0.997,0.98,0.982,0.996,0.962,
Rs=0.8088441896327347 | Rs=0.9456133574581371 0.972,0.979,0.961,0.987,0.962,
. o 0.963,0.979,0.977,0.973,0.972,
r;=[ 0.81, 0.93, 0.92, 0.96, | r;=[0.90 0.75 0.65 0.80 0.85 0.07.0.973.0.982.0.9870.994
HSSATLB 0.99, 0.89, 0.85, 0.83, | 0.930.78 0.66 0.78 0.91 0.79 LT IO TOLT IO T
0.971,0.978,0.983,0.998,0.969, -
[20] 0.94, 0.92] 0.77 0.67 0.79 0.67] 0.979.0.977.0.97.0.974.0.991.,
=22, le] 1,2,3,2, | ni=[3, 4§6;‘4;3;12;]4’ 42, 0.981,0.995,0.981,0.998,0.985,
’ v 0.977,0.96,0.988,0.974,0.962,
0.985,0.964,0.968,0.962,0.987]
n; =1 for all i excepti=[ 4, 10, 15,21,
33,42, 45]is VIV
Rs= 0.991075959 Rs=0.99999688 Rs=0.802192803 Rs=0.9745652164
1,=[10 of 0.99] 1 =[15 of 0.99] 1, =[50 of 0.97938 value] 1=[2.903881207164253
GOA n,=[6, 6, 6,6,6,6,6,6,6,| n;=[4,3,4,4,4,4,3,4,4,3, | n=1foralli excepti=[4, 10, 15,21, | 2.881642360003297
6] 4,4, 4,4,4] 33,42,45]is VIV 2.295041021864859
3.175162277797285]
n=[3323]

Note: VTV (Variable taking value 2) is a position sequence of vector elements of the variables which take the value = 2 in the
optimal case, while all the other variables take in the optimal case, the value = 1
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As shown in Table 2, the results obtained are highly
comparable to those of previous studies (shown in bold face)
for 3 out of 4 RBD systems in terms of maximum achieved
reliability, this clearly demonstrates its high performance
combined with its extreme flexibility due to the influential
parameter values applied to solve these problems.

The results in Table 3 validate the effectiveness of GOA in
solving larger and more complex RBD problems, achieving
very high reliability values for all RBD problems compared
to all other algorithms, with the best results indicated in bold
face. The two tables demonstrate the outstanding
performance of GOA in achieving very high reliability
values, it achieves the best reliability for all four problems
despite the problems being associated with more complex
RBD problems, providing important insights into the high
performance and efficiency of GOA's application to RRAPs.

Conclusion and Future Work

This paper has conducted an examination of RRAP
through swarm intelligent methods to maximize system
reliability with RBDs encompassing both parallel and series
system designs. RRAPs belong to the class of NP-Hard
problems, they seek to enhance reliability by meeting cost
and weight, and volume restrictions. GOA was employed as
a suitable solution method because of its recognized
efficiency and effectiveness for this problem. Eight RBDs
served as test models in this research, where systems
consisted of simple, small designs in addition to complex
and large ones. System reliability significantly increased
based on results from this algorithm, as it proved to be very
successful when compared with other methods in delivering
results while managing exploration and exploitation phases.
Although the GOA algorithm is powerful in solving
optimization problems, it can fall to a local optimum and has
a somewhat slow convergence speed. Future research should
focus on finding solutions to such problems. In addition, this
work has focused on homogeneous replication types only,
future work may consider heterogeneous replication
systems. A variety of swarm algorithms should be
researched to demonstrate their effectiveness at providing
better solutions for this problem class.
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