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     Success of companies and satisfaction of customers heavily depend on system reliability 
performance. System design improvements and higher efficiency exist directly from the proper 
distribution of reliability overhead resources. The extensive application domain of Reliability 
Redundancy Allocation Problems (RRAPs) includes fundamental challenges in various real-life 
situations such as software design along with cost optimization and development. The system 
reliability optimization problem is recognized as NP-Hard, and its resolution demands planned 
and effective solution approaches since there doesn’t exist a polynomial-time method for finding 
optimal solutions. This research utilizes Grasshopper Optimization (GOA) due to its ability to 
solve complex constrained optimization problems effectively and its high accuracy in obtaining 
good solutions. Eight system reliability block diagrams were used, varying in their difficulty 
from simple to complex problems. Results showed that system reliability comprised a significant 
increase when GOA-based optimization was applied compared to other algorithms. GOA 
achieved higher performance using the eight system reliability block diagrams, and its results 
validated both the efficiency and the solution-delivering capabilities of the algorithm for 
enhancing overall software reliability. 
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1. Introduction 

The continuous progress of technology has led to 
significant industrial growth during the recent period. 
Production processes alongside systems now reach high 
complexity levels for attaining necessary productivity goals. 
The concept of system reliability has gained absolute 
importance in industrial operations. System efficiency during 
its operational lifetime demands this fundamental requirement 
due to modern high technology and escalating system 
complexity. The goal of reliability is to reach planned 
reliability standards in intricate systems by performing tests 
and verification together with planning processes. The 
redundancy and reliability allocation problem (RRAP) 
optimizes system reliability by managing cost limitations and 
weight and dimension requirements. Traditional optimization 
methods serve as the solution approach for these problems and 
utilize linear programming together with integer programming 
and fast gradient descent and sequential quadratic 
programming and gradient descent methods [1]. However, 

these methods exhibit significant limitations, including 
challenges in managing unexplored search spaces, a tendency 
to converge to single solutions, and weaknesses in local 
optimization processes [2]. Such shortcomings highlight the 
need for advanced intelligent optimization techniques to 
address the complexities inherent in real-life issues [3]. 

Software engineering relies heavily on the reliable nature 
of processes and products that include company-based research 
along with interests and decision-making activities. Reliability 
determines both customer choices and company achievement 
levels in business operations. According to [4] reliability refers 
to the statistical measure of how likely a part performs its 
requirements under predetermined situations over a defined 
timespan. The real-world problems which link closely with 
redundancy form an essential part of reliability studies. A 
subsystem's reliability improves when the quantity of redundant 
components grows directly impacting system reliability at the 
same time. This concept justifies adopting low-cost component 
designs with redundant backup systems although it reduces 
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overall reliability levels. RBD results when the composition of 
RBD system components reaches a complicated stage. 
Reliability control problems can be analyzed through 
mathematical modeling which enables selection of suitable 
approaches to their solution. Different real-world problems 
exhibit diverse characteristics which fall into two main groups 
as static or dynamic and linked or separate systems and single-
objective or multi-objective requirements together with 
constrained or unconstrained status. Complexity alongside the 
numerous challenges in problem domains leads to poor 
performance rates when using traditional optimization 
algorithms [5]. 

Considering these challenges, Metaheuristic algorithms 
have received significant attention in the evolutionary 
computing community due to their remarkable speed, 
accuracy, and relatively low computational complexity. These 
algorithms have proven effective in addressing complex 
optimization problems across a variety of application domains 
[6]. 

Metaheuristic algorithms include evolutionary-based 
algorithms, inspired by natural evolutionary processes, such as 
Swarm Intelligence, tabu search, simulated annealing and 
others. A particularly interesting branch is swarm-based 
algorithms, inspired by swarming behavior observed in nature, 
which reproduce the self-organizing drifts of social 
individuals. A prominent example is the artificial bee colony 
(ABC) method [7], which mimics the foraging behavior of 
honeybee colonies. 

Swarm algorithms have been used to find solutions to 
various types of problems in many diverse fields of science and 
technology. Some of them have been used to solve software 
reliability modeling [8], detection of diabetic diseases [9]. 
Moreover, Al-Isawi and Al-Saati also addressed swarm 
intelligence in finding the best control strategies to reduce risk 
management using the Spotted Hyenas optimization 
Algorithm [10]. 

The Grasshopper Optimization Algorithm (GOA) is a 
nature inspired metaheuristic, first presented by Saremi et al. 
(2017), which describes swarm behavior of grasshoppers in 
their native settings. Recently, GOA has experienced renewed 
interest and broad improvement making it one of the 
competitive swarm-based algorithms in optimization research 
[11]. GOA mimics both the long-range social interaction and 
the short-range repulsion in the grasshoppers producing a 
natural balance of finding the solution space between 
exploration, and exploitation. 

One of the major advantages of GOA relates to the 
absence in its mechanism of the use of derivatives, which 
enables it to solve linear and non-linear, convex and non-
convex tasks of continuous and discrete nature. In addition, its 
adaptive behavior to converge allows it to dynamically 
transform from wide exploration to fine exploitation as it 
approaches the best solution [12]. 

GOA has exhibited promising outcomes in various 
challenging engineering issues including multi-objective 

reliability optimization, feature selection, energy efficient 
scheduling and design of fault-tolerant systems. Modern 
variants (multi-objective GOA (MOGOA) and hybrid GOA 
structures (such as GOA-GA, GOA-PSO), have demonstrated 
success in solving NP-hard problems to improve robustness and 
generalization speed [13]. The ability of the algorithm to keep 
away from premature convergence and sustain population 
diversity also improves its suitability for reliability redundancy 
allocation problems (RRAP) and other real world optimization 
problems which need cost effective and robust system design, 
In addition, there are several applications of the hybrid 
algorithms in various software engineering fields such as 
classification [14] , medicine [15] even in planning a model to 
guide the establishment of a long-term human habitat on the 
Moon [16]. 

The main contribution of this study is to investigate the use 
of the GOA model, given its efficiency and robustness, in 
solving the RRAP problem, seeking to improve the overall 
reliability of systems under specific constraints. This research 
will be conducted using eight Reliability Block Diagrams 
(RBDs) of varying size and complexity. 

The remainder of this paper is presented as follows: First, 
the problem statement is explained, followed by a detailed 
discussion of the criteria used to improve reliability in previous 
studies. Next, the concept of Grasshopper Optimization (GOA) 
is presented, along with its algorithm, and the results and 
comparisons obtained are presented. Finally, a conclusion is 
given regarding the proposed work and future work. 

 

2. Related Work 
Many researchers have used different approaches and 

techniques to solve RRAP problems. In 2018, Ghambari and 
Rahati established an improved artificial bee colony algorithm 
for reliability optimization problems through implementing a 
new search operator, they made available an improved user 
interface which led to better solutions for the reliability 
optimization problem [17] The authors Filho and Bessani 
introduced a linear multi-objective framework for RRAP in 
2021 [18]. Al-Saati employed the wild horse algorithm for 
RRAP in 2022 resulting in superior maximum reliability than 
earlier works [19]. Kundu et al. introduced advances in hybrid 
algorithms through their work in 2022, they employed fitness 
metrics within their Hybrid Salp Swarm Algorithm with 
Teaching-Learning Based Optimization (HSSATLBO) method 
to show its effectiveness on a combination of benchmark 
problems [20]. In 2022, significant improvements were made to 
the optimization approach, as well as the methodology used by 
Yeh et al., which recorded several key metrics using the BAT-
SSOA3 algorithm, Yeh et al. found results indicating that 
combining two algorithms consisting of a binary addition tree 
and small-sampled orthogonal tri-objective matrices produces 
results on strategic connectivity within a single integrated 
framework [21]. Maintaining consistency in this field, Khalil 
and Saleh in 2024 demonstrated the use of machine learning 
methods in estimating and predicting software reliability [22]. 
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Krishna used serial and parallel redundancies to increase the 
dependability of cloud systems and services in 2024 using an 
Improved Modified Harmony Search (IMHS) combined with 
Modified Differential Evolution (MDE) [23], recently, 
Choudhary et al. used the Mayfly algorithm to solve the 
nonlinear mixed integer RRAP [24]. Also, Choudhary et al. 
considered the Cuckoo Search Algorithm (CSA) for solving 
the RRAPs in their study [25]. 
 

3. Mathematical Formulation of Rbd 
Problems  
High reliability approaches need improved methodologies 

because systems become progressively complex. Measuring 
different optimization algorithm efficiency requires evaluating 
Reliability Block Diagram (RBD) problems as part of their 
assessment. The RBD problems that serve as fundamental 
elements during reliability method development are analyzed 
in this section. The formula of the general form can be 
demonstrated as follows: 
 

𝑀𝑀𝑀𝑀𝑀𝑀  𝑅𝑅𝑠𝑠 = 𝑓𝑓(𝑛𝑛, 𝑟𝑟),
𝑠𝑠. 𝑡𝑡.  𝐺𝐺(𝑛𝑛, 𝑟𝑟) ≤ 𝑈𝑈

    𝑛𝑛𝑖𝑖 ∈  +𝑣𝑣𝑣𝑣 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 0 ≤ 𝑟𝑟𝑖𝑖 ≤ 1,   1 ≤ 𝑖𝑖 ≤ 𝑚𝑚
 

 

where 𝑟𝑟𝑖𝑖 denotes the 𝑖𝑖𝑡𝑡ℎ subsystem's reliability and 𝑛𝑛𝑖𝑖 is 
the number of components in the 𝑖𝑖𝑡𝑡ℎ subsystem. Global 
dependability is represented by 𝑅𝑅𝑠𝑠, while the model's 
restrictions utilizing the upper bound U are represented by G. 
On the other hand, m stands for the number of subsystems. To 
optimize the reliability of the entire system, the goal is to 
ascertain the number of components and their dependability in 
each subsystem. This falls within the category of mixed-option 
nonlinear constrained integer optimization problems. 

The basic Series System (RBD1) benchmark problem is 
the first one being examined, in which the system reliability is 
equal to the product of component reliabilities.  It is important 
to remember that this is a fundamental difficulty that leads to 
more complex dependability issues [26]. In this study, the 
formula for this group has been used as Eq. (1) [17]. 
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where the physical parameters for each subsystem are 

represented by the symbols 𝑣𝑣𝑖𝑖 ,  𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑖𝑖. 
A Series-Parallel System (RBD2), which combines 

elements of both parallel and series systems [27], is used in the 
second issue. Its formula is shown in Eq. (2): 
 

𝑀𝑀𝑀𝑀𝑀𝑀    𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛, 𝑟𝑟) = 1 − (1 − 𝑅𝑅1𝑅𝑅2)�1 − �1 − (1 − 𝑅𝑅3)(1 − 𝑅𝑅4)�𝑅𝑅5�

𝑠𝑠. 𝑡𝑡,   𝐺𝐺1 = �𝑛𝑛𝑖𝑖2𝑣𝑣𝑖𝑖

5

𝑖𝑖=1

≤ 𝑉𝑉.                                                                                    

𝐺𝐺2 = �𝛼𝛼𝑖𝑖 �𝑛𝑛𝑖𝑖 + 𝑒𝑒�
𝑛𝑛𝑖𝑖
4 �� �

−1000
ln(𝑟𝑟𝑖𝑖)

�
𝛽𝛽𝑖𝑖5

𝑖𝑖=1

≤ 𝐶𝐶.                                                     (2)

𝐺𝐺3 = �𝑛𝑛𝑖𝑖𝑤𝑤𝑖𝑖𝑒𝑒
�𝑛𝑛𝑖𝑖4 �

5

𝑖𝑖=1

≤ 𝑊𝑊.                                                                                         

∀𝑖𝑖 = 1,2, … ,5;   1 ≤ 𝑛𝑛𝑖𝑖 ≤ 5, 0 ≤ 𝑟𝑟𝑖𝑖 ≤ 1, 𝑛𝑛𝑖𝑖 ∈ 𝑍𝑍+.
 

                      

 

 
Following this, the third problem, which is called Complex 

System (RBD3), presents a challenging complex challenge that 
requires advanced optimization due to its many pieces and 
possibilities. Examining the level of optimality in resolving 
intricate dependability issues might make this issue more 
significant [20]. The following 
 formula was used: 
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The fourth issue pertains to the Overspeed System (RBD4) 

in unique circumstances when operational characteristics 
impact dependability.  Scalability is measured by this 
benchmark and is significant in real-world applications [20], the 
formula for it as below: 

𝑀𝑀𝑀𝑀𝑀𝑀    𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛, 𝑟𝑟) = �[1 − (1 − 𝑟𝑟𝑖𝑖)
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Conversely, the Convex Quadratic System (RBD5) allows 

for the employment of many optimization approaches that 
investigate convexity features since its reliability functions are 
likewise convex [17]. 



Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 2, 2025 (61-69)  

64 
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where  0.8 ≤ 𝑟𝑟𝑖𝑖 ≤ 0.99 is generated by the uniform 
distribution so as to  0 ≤ 𝑎𝑎𝑗𝑗𝑗𝑗 ,𝐶𝐶𝑗𝑗𝑗𝑗 ≤ 10 given that  𝑎𝑎𝑗𝑗𝑗𝑗,𝐶𝐶𝑗𝑗𝑗𝑗 are 
+𝑣𝑣𝑣𝑣 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑏𝑏𝑗𝑗 = [2.0 ∗ 1013, 3.1 ∗ 1012, 5.7 ∗
1013, 9.3 ∗ 1012]. 
 

A Mixed Series-Parallel System (RBD6) is a problem with 
a complicated series and a parallel system. The behavior of the 
optimization methods under different settings can be captured 
by this benchmark problem [20]. Its formula is as follows: 
 

𝑀𝑀𝑀𝑀𝑀𝑀    𝑓𝑓(𝑛𝑛, 𝑟𝑟) = �[1 − (1 − 𝑟𝑟𝑖𝑖)
𝑛𝑛𝑖𝑖]
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0.5 < 𝑟𝑟𝑖𝑖 < 1 , 𝑛𝑛𝑖𝑖 ∈ 𝑍𝑍+, 𝑛𝑛𝑖𝑖 ≥ 1 ,𝑚𝑚 = 15.        

 

 
The Large-Scale System (RBD7) deals with the 

difficulties of maximizing the dependability of large systems 
with many different parts [28]. It may be proven to be as 
follows: 
 

𝑀𝑀𝑀𝑀𝑀𝑀    𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛, 𝑟𝑟) = �[1 − (1 − 𝑟𝑟𝑖𝑖)
𝑛𝑛𝑖𝑖]                    

𝑚𝑚

𝑖𝑖=1

ℎ1 = �𝑛𝑛𝑖𝑖2𝛼𝛼𝑖𝑖

𝑚𝑚

𝑖𝑖=1

− �1 +
𝜃𝜃

100
��𝑙𝑙𝑖𝑖

2𝛼𝛼𝑖𝑖

𝑚𝑚

𝑖𝑖=1

≤ 0                           

ℎ2 = �𝑒𝑒�
𝑛𝑛𝑖𝑖
2 �𝛽𝛽𝑖𝑖

𝑚𝑚

𝑖𝑖=1

− �1 +
𝜃𝜃

100
��𝑒𝑒�

𝑙𝑙𝑖𝑖
2�𝛽𝛽𝑖𝑖

𝑚𝑚

𝑖𝑖=1

≤ 0                   

ℎ3 = �𝑛𝑛𝑖𝑖 𝛾𝛾𝑖𝑖

𝑚𝑚

𝑖𝑖=1

− �1 +
𝜃𝜃

100
��𝑙𝑙𝑖𝑖𝛾𝛾𝑖𝑖

𝑚𝑚

𝑖𝑖=1

≤ 0                          (7) 

ℎ4 = �𝛿𝛿𝑖𝑖�𝑛𝑛𝑖𝑖

𝑚𝑚

𝑖𝑖=1

− �1 +
𝜃𝜃

100
���𝑙𝑙𝑖𝑖𝛿𝛿𝑖𝑖

𝑚𝑚

𝑖𝑖=1

≤ 0                      

1 ≤ 𝑛𝑛𝑖𝑖 ≤ 10, 𝑖𝑖 = 1, … ,𝑚𝑚  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝑚𝑚 = 50, 𝑛𝑛𝑖𝑖 ∈ 𝑍𝑍+.

  

 

 
here 𝑙𝑙𝑖𝑖 means the lower bound of 𝑛𝑛𝑖𝑖, usually 𝜃𝜃 = 0.33, 𝑙𝑙𝑖𝑖 = 𝑛𝑛𝑖𝑖 
, 0.95 ≤ 𝑟𝑟𝑖𝑖 ≤  1 − 10−8 , 𝑚𝑚 = 50. 
 

𝑏𝑏𝑖𝑖 = (543;  352;  1040;  2048),𝑛𝑛𝑖𝑖 = 1 ∀ 𝑖𝑖 ,but 𝑛𝑛𝑖𝑖 = 2  when 
𝑖𝑖 = (4;  10;  15;  21;  33;  42;  45) 
and  ∀ 𝑖𝑖 = 1, … ,50 : 
𝛼𝛼𝑖𝑖 =(8;10;10;6;7;10;9;9;7;6;6;10;9;10;7;10;10;8;10;7;6;6;7;8;

9;8;8;9;10;9;7;9;6;7;6;10;9;10;6;8;10;8;8;6;6;8;7;10;8;10
). 

𝛽𝛽𝑖𝑖 =(4;4;4;3;1;4;2;3;4;4;5;3;1;4;4;2;1;3;5;4;2;2;2;5;5;1;3;3;1;
2;5;5;3;3;5;5;5;5;2;3;5;3;1;4;4;1;4;2;3;2). 
𝛾𝛾𝑖𝑖 =(13;16;12;12;13;16;19;15;12;16;14;15;17;20;14;13;15;19;

18;13;15;12;20;19;15;18;16;15;18;19;15;11;15;14;15;17;
19;11;17;17;17;18;18;19;13;19;14;19;15;11). 

𝛿𝛿𝑖𝑖 =(26;32;23;24;26;31;38;29;23;31;28;30;34;39;28;25;29;38;
36;26;30;24;40;38;29;35;32;29;35;37;28;22;29;27;29;33;
37;22;34;33;33;35;35;38;26;37;28;37;30;22). 

 
The Incomplete Fault Detecting System (RBD8), which 

analyzes the dependability of systems in which not all defects 
can be identified, is the last issue. It may be expressed [17] as: 
 

𝑀𝑀𝑀𝑀𝑀𝑀    𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛) = �𝑅𝑅𝑖𝑖(𝑛𝑛𝑖𝑖)                               
4

𝑖𝑖=1

𝑠𝑠. 𝑡𝑡,    𝐺𝐺1 = �𝑛𝑛𝑖𝑖2𝑑𝑑1𝑖𝑖

4

𝑖𝑖=1

≤ 100                                        

𝐺𝐺2 = ��𝑛𝑛𝑖𝑖 + 𝑒𝑒�
𝑛𝑛𝑖𝑖
4 �� 𝑑𝑑

2𝑖𝑖

4

𝑖𝑖=1

≤ 150

𝐺𝐺3 = ��𝑛𝑛𝑖𝑖 + 𝑒𝑒�
𝑛𝑛𝑖𝑖
4 �� 𝑑𝑑3𝑖𝑖

4

𝑖𝑖=1

≤ 160

                                   (8)

 

 
Where 𝑛𝑛𝑖𝑖 ∈ [1,6] 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2,4  𝑏𝑏𝑏𝑏𝑏𝑏  𝑛𝑛3 ∈ [1,5].  𝑅𝑅𝑖𝑖(𝑛𝑛𝑖𝑖) 

can be evaluated as the following  
 

𝑅𝑅1(𝑛𝑛1) = 1 − 𝑞𝑞1�𝛽𝛽1 + 𝑞𝑞1(1 − 𝛽𝛽1)�
𝑛𝑛1−1                         

 𝑅𝑅2(𝑛𝑛2) = 1 −
𝑞𝑞2𝛽𝛽2 + 𝑞𝑞2

𝑛𝑛2𝑝𝑝2(1 − 𝛽𝛽2)𝑛𝑛2
𝑝𝑝2 + 𝑞𝑞2𝛽𝛽2

                            

𝑅𝑅3(𝑛𝑛3) = 1 − 𝑞𝑞3
𝑛𝑛3                                                               (9)

𝑅𝑅4(𝑛𝑛4) = 1 − 𝑞𝑞4�𝛽𝛽4 + 𝑞𝑞4(1− 𝛽𝛽4)�
𝑛𝑛4−1                           

 

 
4. Biological Life of Grasshopper Optimization 

Algorithm (Goa) 
Among hemimetabolous insects, the grasshopper group 

predominates in the Caelifera suborder Figure 1 research on 
grasshoppers continues because they possess outstanding 
behavioral abilities that allow shifts between single and swarm 
phases. Grasshopper mobility remains limited together with 
their individual patterns when habitat density levels are low. 
The population expands during suitable environmental 
conditions which leads to polyphenic transformation that results 
in the emergence of social swarming groups across expansive 
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ranges [29]. Biology demonstrates that grasshopper swarms 
perform dynamic movements through visual communications 
that are enhanced by mechanical signals combined with 
chemical signals. The movement of these individuals is 
controlled by three basic factors. [30][31] 
• Through social contact, grasshoppers can escape isolation 

or congestion by adjusting their position to maintain an 
ideal distance from neighbors. 

• The gravitational pull imitates the inclination to gravitate 
toward the earth or below. 

• The external environmental influence that changes their 
trajectory is represented by wind advection. 

 
 

 

 

Figure 1. Grasshopper in nature. 
 

The Grasshopper Optimization Algorithm (GOA) bases 
its operations on treating grasshopper swarms as solution 
populations while using balance dynamics to express 
exploration with wide food searches and exploitation with 
local food refinement. The mathematical models developed by 
GOA derive from entomological and biomechanical research 
studies for replicating attractive-repulsive systems. 

The grangerization process starts with neurophysiological 
responses to serotonin levels, according to recent biological 
studies that affect swarm dynamics. The phenomenon appears 
in GOA because this algorithm manages solution interaction 
strength [32]. Grasshopper swarms show complex biological 
structures that enable them to resist stagnation while remaining 
adaptable when faced with their environment, just as 
optimization algorithms need these qualities. The biological 
model of grasshopper motion provides numerous ideas for 
developing search heuristics that possess self-regulation and 
multi-modality and optimize the process by escaping local 
optima. The processes in GOA are ideally suited for complex 
optimization problems, including RRAP [33]. 
 

5. The Grasshopper Optimization Algorithm 
(Goa) 
In 2017 Saremi along with Mirjalili and Lewis established 

the Grasshopper Optimization Algorithm (GOA) as a meta-
heuristic inspired by nature. Mathematical modeling of 
grasshopper collective movement behavior throughout their 
life cycle allowed researchers to develop the GOA. Its 
attraction-repulsion behavior provides biologically valid 
coordination among individuals because it matches the natural 
movements grasshoppers use to stay spaced appropriately with 

peers and respond to environmental forces [31]. 
GOA uses each potential solution as a grasshopper that moves 
in a dimension space of D size. The three determining elements 
guide the movement of each grasshopper throughout space. 
• Gravity force (G): Pulls each grasshopper toward the center 

of mass (often the current best solution) see Figure 1(a).  
• Wind advection (W) enables stochastic exploration to 

maintain global search ability while promoting diversity 
across the search domain see Figure 1(a). 

• The relationship between grasshoppers (S) utilizes 
exponential decay to calculate their overall attraction and 
repulsive forces shown in Figure 2(b).  

 

Figure 2. (a)The effect of attractive and repulsive forces on 
a grasshopper's decision-making. (b) The social interaction 
distance, the small circles represent the comfort zone [31]. 

 

GOA presents a distinctive approach through flexible 
positional updates that enables an automatic transition between 
discovery-focused exploration and exploitation of best 
solutions without predefined guidelines [29]. Date from 
benchmark studies demonstrates GOA's excellent performance 
abilities both in restricted conditions and unrestricted scenarios. 
presented GOA as having powerful capabilities for global 
searching and fast convergence in addition to flexible mixed-
integer optimization of redundancy allocation problems. 

Sluggish movement and small steps are the main 
characteristics of the swarm at the larval stage.  On the contrary, 
what sets the adult swarm apart is its sudden, long-range 
migration.  The next important factor regarding grasshopper 
swarms is their search for food sources.  Exploration and 
exploitation are the two logical dispositions into which the 
search process is divided for nature-inspired algorithms.  The 
search agents would much rather travel locally when exploiting, 
but during exploration, they are encouraged to move quickly.  
Apart from target findings, the two tasks are also carried out 
automatically by grasshoppers [31]. 
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The versatility of GOA has increased due to researchers 
developing multi-objective and hybrid frameworks extending 
from GOA-PSO and GOA-GWO that enable the efficient 
solution of complex RRAP cases which require cost and 
reliability and repeatability maintenance [33], GOA 
incorporates these three main characteristics: 
• Biologically based swarm behavior. 
• The optimization method adapts itself dynamically through 

uncomplex parameter control mechanisms. 
• It effectively processes optimization problems having high 

dimensions, multiple restrictions and discrete components. 
 

GOA has become a leading option to handle the complex 
nature and multi-modality found within the RRAP systems. 

 

6. Goa Mathematical Framework  
GOA is an algorithm developed out of the behavior of 

grasshoppers during exploration and exploitation.  The 
principle states that when two operators are relatively close to 
one another (less than 2.079 units), they repel one another, and 
the operator is in the repulsion region or within the repulsion 
distance; when the two operators are exactly 2.079 units apart, 
there is neither an attractive nor a repulsive force; this is known 
as the comfort zone or the comfortable distance; conversely, 
when two operators are farther apart than 2.079 units, they 
attract one another; consequently, this distance is known as the 
attraction region or the distance of attraction [34].There is no 
absolute division between global and local optimization. When 
the process of increasing iteration times progresses, the size of 
the search region reduces, and the optimization process 
undergoes a change from large-scale global to refined 
localized processes. According to (10) [35]. 

𝑝𝑝�𝑑𝑑𝑖𝑖𝑖𝑖� = �𝑚𝑚 𝑒𝑒−
𝑑𝑑𝑖𝑖𝑖𝑖
𝑛𝑛 − 𝑒𝑒−𝑑𝑑𝑖𝑖𝑖𝑖�   

𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖
𝑑𝑑𝑖𝑖𝑖𝑖

                              (10) 

The current grasshopper operator 𝑥𝑥𝑖𝑖 is defined by the 
grasshopper operator 𝑥𝑥𝑗𝑗, where 𝑑𝑑𝑖𝑖𝑖𝑖 is the spatial separation 
between the current 𝑖𝑖𝑡𝑡ℎ and 𝑗𝑗𝑡𝑡ℎ grasshopper operators. The 
parameters 𝑚𝑚 and 𝑛𝑛, which stand for the strength of attraction 
and the geographical scale of attraction, are used to assess how 
other agents affect the agent. The point to which the 𝑖𝑖𝑡𝑡ℎ 
grasshopper operator goes next in the 𝑘𝑘𝑡𝑡ℎ dimension is denoted 
by 𝑥𝑥𝑖𝑖

𝑘𝑘�  in (11), [35]. 
 

𝑥𝑥𝚤𝚤𝑘𝑘� = 𝑐𝑐1 ��𝑐𝑐2
𝑢𝑢𝑢𝑢𝑘𝑘 − 𝑓𝑓𝑓𝑓𝑘𝑘

2

𝑁𝑁

𝑗𝑗=1

 𝑝𝑝�𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘 �
𝑥𝑥𝑗𝑗𝑘𝑘 − 𝑥𝑥𝑖𝑖𝑘𝑘

𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘
� + 𝑇𝑇𝑔𝑔𝑘𝑘         (11) 

 
which also defines the next position of the grasshopper 

operator 𝑥𝑥𝑖𝑖; The top and lower bounds of the agent in the 𝑘𝑘𝑡𝑡ℎ 
dimension are denoted by 𝑢𝑢𝑙𝑙𝑘𝑘 and 𝑓𝑓𝑙𝑙𝑘𝑘, respectively; 𝑁𝑁 is the 
total number of grasshopper operators;  The current positions 
of the 𝑖𝑖𝑡𝑡ℎ and 𝑗𝑗𝑡𝑡ℎ grasshoppers in the 𝑘𝑘𝑡𝑡ℎ dimension are 
represented by 𝑥𝑥𝑖𝑖𝑘𝑘 and 𝑥𝑥𝑗𝑗𝑘𝑘, respectively; 𝑑𝑑𝑖𝑖𝑖𝑖

𝑘𝑘  indicates the spatial 
distance between the 𝑖𝑖𝑡𝑡ℎ and 𝑗𝑗𝑡𝑡ℎ  grasshoppers in the 𝑘𝑘𝑡𝑡ℎ 

dimension;  The adaptive shrinkage parameters 𝑐𝑐1 and 𝑐𝑐2, 
which preserve the relative balance between global and local 
optimization, are represented by 𝑇𝑇𝑔𝑔𝑘𝑘 , which is the component of 
the best solution discovered thus far in the 𝑘𝑘𝑡𝑡ℎ dimension.  The 
linear change of 𝑐𝑐1 and 𝑐𝑐2, denoted by 𝑐𝑐, may be computed as 
in (12) [35]. 
 

𝑐𝑐 = 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑡𝑡 
𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
                                                 (12) 

 

where 𝑡𝑡 denotes a number of a current iteration, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚notes 
a maximum number of iterations; 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 the largest of the 
adaptive shrinkage parameter values whereas 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 the adaptable 
shrinkage parameter minimum [35] The Main Phases upon 
which this algorithm is dependent on: 
Phase 1: Initialization: Generate random locust locations 

within the search boundary. 
Phase 2: Evaluation: Calculate the objective function for each 

locust. 
Phase 3: An equation updates the locust positions. 

The algorithm needs to be checked for both maximum 
iteration limits and when the best value of the fitness function 
stabilizes.  
While the pseudo-code for this algorithm can be presented as: 
 
Pseudo-Code: Grasshopper Optimization (GOA) 
Place the initial values of population 𝑥𝑥𝑖𝑖 where 𝑖𝑖 ranges from 
1 to 𝑁𝑁.  
Evaluate fitness of each 𝑥𝑥𝑖𝑖 
While (t < Max_iterations) 
     For each grasshopper  𝑥𝑥𝑖𝑖  
           Calculate social interaction S  
           Compute gravity G and wind W 
            Update position 𝑥𝑥𝑖𝑖   
  End For 
 Evaluate fitness of updated Xi  
Update global best solution 
 t = t + 1  
 End While  
Return best solution found 
 
 

7. The Parameters Employed in the Algorithm  
In this section, an investigation is conducted to find values 

of the parameters that achieve the best possible results, in the 
context of finding better solutions to RBDs. Parameters were 
modified experimentally to suit the problem at hand, as in 
Table 1. 
 

Table 1. Goa Parameters. 
Parameter Value 

cmax 1 

cmin 0.00004 
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8. Results And Comparisons 
After applying GOA, results were compared with those of 

previous work to demonstrate the efficiency and validity of the 
used algorithm. The optimal fitness values indicate the 
maximum reliability of the system (typically ranging between 
0 and 1), and these values show significant differences among 
algorithms across different studies in the comparison. The 
previous work considered in the comparisons are INGHS [36] 
and HSSATLBO [20]. The RBDs were grouped according to 
their complexity into simple RBDs and complex RBDs. Table 

2 provides a detailed comparison of GOA with other algorithms 
for the first four relatively simple RBD algorithms. Table 3 
shows the results of comparing GOA with other algorithms for 
the second four complex RBD algorithms. Some values of 𝑟𝑟𝑖𝑖 
and 𝑛𝑛𝑖𝑖 were not available for some of the compared algorithms, 
making it impossible to recalculate and verify the acquired 
system reliability. These values are listed as unavailable in 
Tables 2 and 3.  
 

Table 2. Comparing Reliability with Different Methods for Simple Problems. 
RBD 

Method RBD1 RBD2 RBD3 RBD4 

INGHS [36] 

Rs= 0.931682388 
ri= [0.7793988710, 

0.8718370210, 
0.9028853550, 
0.7114025151, 

0.787799488032] 
ni = [3, 2, 2, 3, 3] 

Rs= 0.999976649 
ri = [0.8198118626, 

0.8449506842, 0.8956701585, 
0.8952327069, 0.868438057445] 

ni = [2, 2, 2, 2, 4] 

Rs= 0.999889636 
ri = [0.8279847911, 

0.8576796813, 0.9141564522, 
0.6484814055, 0.7048654988] 

ni = [3, 3, 2, 4, 1] 

Rs= 0.9999546743 
ri = [0.9015565830, 

0.8882438856, 0.9481110971, 
0.8499817375] 
ni = [5, 5, 4, 6] 

HSSATLBO[
20] 

Rs= 0.931678 
ri= [N/A] 
ni= [N/A] 

Rs= 0.9999863372 
ri = [0.7753618512628, 

0.8714241422773, 
0.8903702230415, 
0.8914438741116, 
0.8630261550595] 
ni= [3, 2, 2, 2, 4] 

Rs= 0.9998896373815054 
ri = [N/A] 
ni = [N/A] 

Rs= 0.99995467466432 
ri= [0.901623877, 

0.849936249, 0.948146758, 
0.888204712] 
ni= [5, 6, 4, 5] 

GOA 

Rs= 0.93168 
ri=[ 0.778902828997295   

0.871855325826335   
0.903169505800350   
0.711475948663177   
0.787719475235226] 

ni= [3, 1, 4, 4, 5] 

Rs= 
0.999986337 

ri=[ 0.7715408,  0.863469348 
0.89425877,3  0.893388044  

0.865666241]   
ni= [3, 2, 2, 2, 4] 

Rs=  
0.999966754 

ri=[ 0.82923432, 
0.85822909, 0.913372226 
0.64706684, 0.70431201] 

ni= [3, 3, 2, 4, 1] 

Rs= 
0.999954675 

ri=[ 0.898515815 
0.88561945,3  0.91540182  

0.886067313] 
ni,= [5, 6,4, 5] 

Table 3. Comparing System Reliability with Different Methods for Complex Problems.
RBD 

Method RBD5 RBD6 RBD7 RBD8 

INGHS [36] 
Rs=0.80884419 

ri =[ N/A] 
ni=[2,2,2,1,1,2,3,2,1,2] 

Rs=0.945613358 
ri =[ N/A] 

ni =[ 3,4,6,4,3, 
2,4,5,4,2,3,4,5,4,5] 

Rs=0.40695475 
ri =[N/A] 

ni =1 for all i except [4, 10, 15,21, 
33,42,45] VTV 

Rs=0.9745652160 
ri =[ N/A] 

ni =[ 3,3,2,3] 

HSSATLB 
[20] 

Rs=0.8088441896327347 
ri =[ 0.81, 0.93, 0.92, 0.96, 

0.99, 0.89, 0.85, 0.83, 
0.94, 0.92] 

ni =[ 2, 2, 2, 1, 1, 2, 3, 2, 
1, 2] 

Rs=0.9456133574581371 
ri =[ 0.90 0.75 0.65 0.80 0.85 
0.93 0.78 0.66 0.78 0.91 0.79 

0.77 0.67 0.79 0.67] 
ni =[ 3, 4, 6, 4, 3, 2, 4, 5, 4, 2, 

3, 4, 5, 4, 5] 

Rs= 0.4069547451370713 
ri=[0.995,0.974,0.965,0.971,0.968, 

0.997,0.98,0.982,0.996,0.962, 
0.972,0.979,0.961,0.987,0.962, 
0.963,0.979,0.977,0.973,0.972, 
0.97,0.973,0.982,0.987,0.994, 
0.971,0.978,0.983,0.998,0.969, 
0.979,0.977,0.97,0.974,0.991, 
0.981,0.995,0.981,0.998,0.985, 
0.977,0.96,0.988,0.974,0.962, 

0.985,0.964,0.968,0.962,0.987] 
ni =1 for all i  except i=[ 4, 10, 15, 21, 

33, 42, 45] is VTV 

- 

GOA 

Rs= 0.991075959 
ri =[10 of 0.99] 

ni =[6, 6, 6, 6, 6, 6, 6, 6, 6, 
6] 

Rs=0.99999688 
ri =[15 of 0.99] 

ni =[4, 3, 4, 4, 4, 4, 3, 4, 4, 3, 
4, 4, 4, 4, 4] 

Rs=0.802192803 
ri =[50 of 0.97938 value] 

ni =1 for all i  except i= [4, 10, 15, 21, 
33, 42, 45] is VTV 

Rs=0.9745652164 
ri=[2.903881207164253   

2.881642360003297   
2.295041021864859   
3.175162277797285] 

ni =[3 3 2 3] 
Note: VTV (Variable taking value 2) is a position sequence of vector elements of the variables which take the value = 2 in the 
optimal case, while all the other variables take in the optimal case, the value = 1 
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As shown in Table 2, the results obtained are highly 
comparable to those of previous studies (shown in bold face) 
for 3 out of 4 RBD systems in terms of maximum achieved 
reliability, this clearly demonstrates its high performance 
combined with its extreme flexibility due to the influential 
parameter values applied to solve these problems. 
The results in Table 3 validate the effectiveness of GOA in 
solving larger and more complex RBD problems, achieving 
very high reliability values for all RBD problems compared 
to all other algorithms, with the best results indicated in bold 
face. The two tables demonstrate the outstanding 
performance of GOA in achieving very high reliability 
values, it achieves the best reliability for all four problems 
despite the problems being associated with more complex 
RBD problems, providing important insights into the high 
performance and efficiency of GOA's application to RRAPs. 

 

Conclusion and Future Work 
This paper has conducted an examination of RRAP 

through swarm intelligent methods to maximize system 
reliability with RBDs encompassing both parallel and series 
system designs. RRAPs belong to the class of NP-Hard 
problems, they seek to enhance reliability by meeting cost 
and weight, and volume restrictions. GOA was employed as 
a suitable solution method because of its recognized 
efficiency and effectiveness for this problem. Eight RBDs 
served as test models in this research, where systems 
consisted of simple, small designs in addition to complex 
and large ones. System reliability significantly increased 
based on results from this algorithm, as it proved to be very 
successful when compared with other methods in delivering 
results while managing exploration and exploitation phases. 
Although the GOA algorithm is powerful in solving 
optimization problems, it can fall to a local optimum and has 
a somewhat slow convergence speed. Future research should 
focus on finding solutions to such problems. In addition, this 
work has focused on homogeneous replication types only, 
future work may consider heterogeneous replication 
systems. A variety of swarm algorithms should be 
researched to demonstrate their effectiveness at providing 
better solutions for this problem class.  
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