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In the given paper, we investigate the integrability of a mathematical model of a 3D biological
system. Our results show that the system admits a polynomial first integrals for some parameters,
an invariant algebraic surface with an exponential factor, and Darboux first integral. The proof was
realized with the help of weight homogeneous polynomials. A model combining virus therapy and
chemotherapy holds promise for improving the efficacy of cancer treatments. Virus therapy can
target and destroy cancer cells, while chemotherapy can enhance the immune response and sensitize
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1. Introduction

Ordinary differential equation theory represents a key
area in mathematics the fundamental instruments of
mathematical science, it can be used Across numerous
scientific  disciplines covering areas like applied
mathematics, physics, and more generally, the applied
sciences. Throughout the last 50 years, we have witnessed a
growing interest in understanding autonomous differential
systems, owing to their numerous applications in the natural
sciences. Conservation of biological systems is of first
priority among scientists and researchers; however, their
actual dynamical behaviour is hard to monitor and analyze.
Below is the mathematical framework for viral therapy in
conjunction with chemotherapeutic treatment for cancer,
adopting chemotherapy features from the original model [1].
In this study, the components will virus-infected tumor cells,
non-virus-infected tumor cells and medication levels denoted
as x,y and z respectively. There is a lot of research on the
effects of cancer cells on the virus [2, 3], Within this
framework, r; follows a logistic growth pattern for the tumor
cells not affected by infection, d; represents the death rate of
uninfected tumor cells,  represents the spread level of a
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virus, a represents the speed of expansion for the chemical-
based therapy drug, r, rate of growth for logistic of tumor
cells affected by infection, d, rate of deaths for infected
tumor cell, k maximum capacity that tumor cells occupied,
v is amount of medication, and y the reduction rate of
chemotherapy medication. Mathematically, the framework
of viral treatment cancer treatment through chemotherapy
may be stated in the formula below:

x+
x=P(x,,2) =r1x(1 —Ty>—d1x—ﬁxy—az

X+
y=0xy,2) =ny (1 - Ty) ~dyy—pry U
z=R(x,y,2) =v—vyz
In 1878, Darboux [4, 5]. Had shown the method for obtaining
the first integrals of a 2D differential system may are created
along with sufficient invariant algebraic curves. Particularly,
he possessed demonstrated which an autonomous
polynomial system of degree m that possesses a first integral

[m(nz1+ 1)

should at least have a number + 1] invariant

algebraic curves, having a straightforward expression in
conformity with its invariant algebraic curves. This study
delivers an invariant of system (1.1), which includes the
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Darboux first integral and polynomial first integrals. Since
our system has no first integral [6]. Reducing the reality of
its dynamic behavior, the existence of Darboux first integrals
completely resolves the problem of phase diagrams
determination.

2. Preliminary Concepts

Recall some definitions, theorems, notions and tools as
follow.
Definition 2.1. [7, 8]: The vector field y associated to the

differential system (1.1), is defined by
X=PxY,2) 7+ Q01,2 5+ R, 2) 5,
(x,y,7) € R3.

Definition 2.2. [9]: A Let W be an open subset of R®. A non-

constant function

H:W — R is a first integral of the polynomial vector field y

on W if it is constant on all orbits (x(t),y(t),z(t)) of y

contained in W; i.e. H(x(t),y(t),z(t)) = constant for all

values of t. His a first integral of y on W if and only if

(2.2)

dH _ . _,OH ~OH  OH _ o (2.3)
at =P TGt R, =

OnWW.

Definition 2.3. [10]: Let h(x,y,z) € R3%a non-zero

polynomial. The algebraic surface h(x,y,z) =0 is an
invariant algebraic surface of the polynomial differential
system (1.1), if for some polynomial K(x,y,z) € R3,we
have
" Pah oh Rah Kh
xn= 8x+Q6y+ dz
The polynomial K(x,y,z) is called the cofactor of the
invariant algebraic surface h = 0. Since the polynomial
differential system has degree m, any cofactor has degree at
mostm — 1.

Definition 2.4. [11]: If h,g € R3are coprime, then the
g

(2.4)

function E' = ek is an exponential factor of vector field y if
there exists a polynomial Ly of degree at most m — 1 such
that
0E o0E 0E

)(E—Pax+Qay+RaZ—ELE.
The polynomials Ly called cofactor of the Exponential factor
E.
Definition 2.5. [12]: we say that the polynomial differential
system (1.1), is quasi(weight)-homogeneous, if there is s =
(51,52,53) € Z and d € Z such that for arbitrary
€ RY,P(utx, us2y, u%z) = p*1="*4p(x,y,2),
Q(u®rx, us2y, u%z) = p2~*4Q(x,y, z) and
R(uStx, us2y, u®3z) = us3~*4R(x,y,z). We call
s = (51,54, 53) the weight exponent of system (1.1), and d
the weight degree with respect to the weight exponent s.

(2.5)

g
Proposition 2.6. [13]: If E = er is an exponential factor of
polynomial differential system (1.1), and h is a nonconstant
polynomial then A = 0 is an invariant algebraic surface and

85

finally, e9 can be exponential factor resulting of the
multiplicity of the infinite invariant plane.
9j

g1
Lemma 2.7. [14]: Assume that e”1, ...,e"/ are exponential

factors of the polynomial differential system (1.1), with
cofactors L; for j = 1,...,7. Then eb = eh1" Fhr s also an

exponential factor of polynomial differential system (1.1),
with cofactor L = Y7, L;.

Theorem 2.8. [15]: Suppose that a polynomial vector field y
of degree d in R? admits p irreducible invariant algebraic
surfaces f; = 0 such that the f; are pairwise relatively prime
with cofactors K; for i = 1,...,p and q exponential factors

9j

e"i with cofactors L; for j =1,...,q. There exist 4;,u; € R
not all zero such that

Ld a (2.6)
i=1 j=1
If and only if function
2.7)

o (AT ),

Is a first integral of system (1.1).
Definition 2.9. [15]: A first integral is called Darboux first
integral if it is of the form (2.6).

3. Main Results and Their Proofs of The
Biological System
Proposition 3.1. System (3.1), has an invariant algebraic

surface h(x,y,z) =y + (dz;—rZ)K
2

p=-3

K
Proof. The system (1.1), after collecting it changes to
biological system

2
. T X
x=(—;1—ﬁ)xy—1T+(r1—d1)x—az

with cofactor — % y, where

. 2 7y?

y= ( ” ,B)xy ” + (= dy)y (3.8)
Z=V—Yz

Let h(x,y,z) = Yo hi(x,y)z' be an invariant algebraic of

system (3.1), where h;(x,y)z" is a homogeneous

polynomial of degree i, and we assume that h,, # 0 with

n = 1. Since the system contains the quartic term, then the

cofactor K of an invariant algebraic surface must be of the

form K = ko + kyx + kpy + k32, for some k; € R, and

j=0,..3.

Then by Eq (2.3), we find that

<(—%—,8)xy—%+(r1—d1)x—
) () +((-2-

dz)y> (&) + v =72 (2) = o + ko +

2
ny
K

Yy

3.9
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k,y + ksz)h.

Computing the coefficient of z**1 in Eq (3.2),

oh
(-a)(52) = G)h @10
Then

ha(9) = fie ™ (3.11)

where f; (v) is any function in the variable y. Since

h, (x,y) is a homogeneous polynomial, then we must have
k; = 0. Now, we want to show that ky = k; = 0 and k, =
% we apply the change of variables

x=X, y=utY, z=u1Z,
R\{0}

Then system (3.1) becomes
X==2ux? — (24 B)XY + (ry — dux — az
K K

t = uT, where u €

. T T

V=-2yi- (;2 +B)uXY + (r, — dppy 312
7 = p*v—yuZ.

where the dot indicates the variable's derivative.

Let F(X,Y,Z) = ph(X,uY,uZ) = ¥  u'F;(X,Y, Z), where

F;(X,Y,Z) is the weight homogeneous part with weight

degree n — i of F and n is the weight degree of F with

weight exponent s = (0, —1, —1).We also set K(X,Y,Z) =

uK (X, 1Y, uz) = u(k X + ko) + k,Y.

Since F(X,Y, Z) is an invariant algebraic surface of system

(2.1), then Eq (2.3), we write as

(—2ux? = (24 4) XY + (ry — dy)pX —
az) (Siont 53) + (- 2v* - (2 +

,3) uXyY + (rp — dz)#Y) ( i=o0 M"%) +

(W?v —yuz) ( =0 M"@) = (kX + ko) +

0z
koY) (Xizo 1'Fy).
Computing the coefficient of u° in the Eq (3.6), we obtain

(o= prv—ez) (32)-(27) (59 -

(3.13)

koY Fy (3.14)
The above differential equation has a solution
FO (XP Y; Z) =
; ) _ﬁx+r1+r2 Kok
BKXY +11 XY +1, XY +akZ)Y 2 -
f (Z' Br+T1+477 ) v @19

In the biological system must be the power of variable is
positive, then k, = — % and B = — % ,then Fy(X,Y,Z) =
Go(Z)Y, Now computing the coefficient of u* in the Eq

(3.6), and substitution k, = _%2’ — _%z and

Fo(X,Y,Z) = Gy(Z)Y, we obtain
1

: <(% Go(Z)Y) X((dy — ry)ic +1X) +
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(%Fl(x, Y, Z)) ((ry — )XY + ch)) -
DR (=

rz) K+ rZX) (% GO(Z)Y)> -

a
vZ (a—z Go(2)Y) +2YF(X,Y,2) — (kuX +

ko) (Go(2)Y).
The above differential equation has a solution

F(X,Y,Z) = — KaKG@X |

r1—-273

I
f1 <Z, (rlXY+zxZ)Y T2> Y +

(3.16)

xy(d%co (Z))Z

2

+

1

ax?Go(2) K%Go(2)

Kk(dy—13+ko)Go(Z) + <_r1(r1—2r2) 21172 >k1Z. (3- 17)

T2 Y
We must the power of Y is positive, then G,(Z) = 0 or
k, = 0,if Go(Z) = 0 is a contradiction, then must be k; =
0.
Again, computing the coefficient of u? in the Eq (3.6), and
2 2

substitution k, = -2, ===,

Fo(X,Y,Z) = Go(Z)Y ky =0 and F,(X,Y,Z) =

i a
+f, (Z, (r1 XY +ax2)Y Tz) vt xY(deo(Z)>Z + K(dz—r2+k0)ao(z)’

1 T2 2
we obtain
d
1 ( 3 K'V(EGO(Z))Z
—| | | 6@y + ———+

k(dy—12+k0)Go(Z)

T2

X((d1 —1)K + rlX)

1 [7]
- ((5 F (XY, Z)) ((p — )XY + aKZ)) -
5 (:—YFZ (x,y,z))y2

K

vy 3 Ky(diZGO(Z))Z
Y((—7X+dz—rz)x+r2X) 77| G1@r+ =

r2

 Kk(da-12 +k0)G0(Z)>

K

d
KY<d_Go(Z)>Z _
—yZ 9 GI(Z)Y'F z +K(d2 T2+ko)Go(Z)
0z T2 T2

+v (= GO(Z)Y) —ko| G, (DY +

(3.18)
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a 2 (3.22)
Ky<dZGO(Z)>Z + Kk(dz—12+ko)Go(Z) . <(_ % - ,8) Xy — % + (ry —dy)x —
T2 T2
ag(x,y.2) T2
The above differential equation has a solution az ) ( ax ) + ((_ * B )
1 Z
(rXY+ax2)Y T2 "V(EGl(Z))Z 8g(x,y.2) 9g(x.y.2)
FXXYJ)=ﬁ<Z—L—Z———>Y+——j;—— d,)y (ﬁlli)+@ y)(ﬁlli) L.
Kkdy1y—KrZ+K1oko )Gy (Z)+KVT: (iG (Z)) where L = g + 41X + A,y + A32.
_|_( 2T2HTE HRTzko) 21 \az Now, we want to show that for n > 2, has no exponential
2 factor of polynomial differential system (3.1).
) (y2x2+yx2d2—y;<2r2+2yx2ko)<%ao(z)) We apply the change of variables
+5 o =u X, y=uY, z=pu"1Z t=uT,where
© € R\{0}
. yzkz(:—ZZZGO(Z))ZZ+(k0d2K—k0rzk2+k§k2)GO(Z) 319 Then the system (3.1), becomes
1 . . T,
ty 277 ' X=- +(r1—d1)yX—(;1+,8)uzXY—auZ
2
We must the power of Y is positive, then must be y =2t ya (ry — d)uY — (T_Z " ﬁ) Xy (3.23)
(‘}/ZKZ+‘}/K2dz—yK2T2+2]/K2k0)<%GO(Z)> Kk 7= v — ]/Il;
+= + = '
Y 27y where the dot indicates the variable's derivative.
1 YZKZ(:—ZZZGO(Z)>ZZ+(kod2x—k0rzK2+k§x2)GO(Z) Let F(X,Y,Z) = l{h(l/‘_lxr.:“y'ﬂ_lz) =Xiso .UlFi()_(: Y,2),
1 =0. where F;(X,Y, Z) is the weight homogeneous part with
Y 21y

weight degree n — i of F and n is the weight degree of F

After Solving the above ordinary differential equation, we with weight exponent s = (0,—1, —1).We also set

get K(X,Y,Z) = )2K(u™ X, u¥, u=12) = ury + 1, X +
_ko da=Ta+kg uiAY + A5Z.
Go(D)=c1Z YV +cZ ¥ . (3.20) Since F(X,Y,Z) is an invariant algebraic surface of system
We must the power of Z is positive, then k, = 0 and ¢, = 0 G '1);(2then Eq (3.15), can be written as
, then Go(2) = c;. (=25 + (= dux — (24 5) uxy —
Theorem 3.2. The next two statements hold for system [ 9F; o o
(3.1). anz) (Zioi aX)+(__Y + (= dyJut =
i For a # 0, the exponential factor of polynomial 9% _
or @ # ponentia. “actor of POty (% +5>XY>( ot 51) + (vis? (3.24)
differential system (3.1), is e, with the cofactor 5
Ve, — yeyz. YuZ) (Z iy az) = (#/10+/11X+u Y +
il. For @ = 0, the exponential factor of polynomial 3Z) Yo 1'F;.
differential system (3.1), is e**, with the cofactor Calculate the coefficients of u° in the Eq (3.17), we obtain
a a
v —YyZ. r (—F (X,Y,Z))XZ (Br+r )(—F (X,Y,Z))XY
14 _ mexo K B 2 ay: S AX— (3.25)
Proof. Let F = e9™¥2) and g(x, y, z) satisfies the equation AsZ =
(2.4) (3.21) The above differential equation has a solution
2 . Br+r
(_ P !3) Xy =+ (r; — dy)x — ety nGo-f(vx™ Tz
o P (3.26)
e , Fo(X,Y,Z) = — - +
0e9\ XYz T2 T2y 1
“Z>(—ax )+((—r Jxy—E+ fad
X
9e9xy.2) aeg(xyZ)
(r; dZ)y) ( ) +(v-r2) ( ) - Since Fy(X,Y,Z) is a weight homogeneous then we must
Le9xy?), A =0, 2 =0and g =2
) Now calculate the coefficients of u' in the equation (3.17)
The above equation becomes and substitution 1, = 0,13 = 0, 8 = — rll-rz and

Fo(X,Y,Z) = f,(Z), we obtain
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x((dl—rl)XﬂzZ)(%fl (z)>+r1 (%Fl (x,y,z))x2

K
K((dl—ﬁ))(%ﬁ (Z)>+r1 (aixﬂ (X.Y,Z)>Y

d
: -y (£r®) -
/‘lo = 0
The above differential equation has a solution
rcy(%fl (z)>+ao
F(X,Y,2) = f,(XY,2) + ———"—. (3.28)
1

Since F; (X, Y, Z) is a weight homogeneous then we must
Ao = 0 and since k # 0 and y # 0, then :—Zfl(Z) =0, and
we can say that f; (Z) = c¢;,then which is contradiction.
Then the polynomial differential system (3.1), has an
exponential factor of n < 2.

Therefore g(x, v, 2) = go(x,y) + g.(x, ¥)z, the Eq (3.15)
becomes

<(_%_ﬁ) Xy — n +(—dy)x—

K

s (L0 (-2 )y -

24 (r, - dz)y> (ool e)D)

K ay

(v —y2) (a(go(x.y)+g1(x.y)2) (3.29)

oz ):A(]‘l'/'llx+

Ay + A3z
Case (i) In this case a # 0 and the Eq (3.22), becomes

2
(e

o (2521002 1 (-2 )y -

ry? 9(go(x,y)+g1(x,y)z)
P (r, — dz)y) (—ay ) +

v —yz) (a(go(x.y)+g1(x.y)z) (3.30)

- ) =20+ Lix +

Ay + A3z,

Calculate the coefficients of z%,i = 0,1,2 , the following
equations will obtain:

i=2: —a (%gﬂx,y)) =0. (.31
i=1: <(—%— )xy—rl:z + (r, —

dax) (0 9) - (3900 +
A

dz))’) (aa_yg1(x' )’)> —vg:1(x,y) — 43 = 0. (3.32)

i= :<(—%—ﬁ)xy_r1;2+(r1_

(3.27)
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d1)x) (%go(x' }’)) + ((_% - ﬁ) Xy —

re” + (= dz))’) (%go(x: )’)> +

K

(3.33)
vg1(x,y) — lix — Ay — Ao = 0.
From Eq (3.24), results
91(x,y) = g.(). (3.34)
After substitution Eq (3.27), in Eq (3.25), we get
<(—% —B)xy =4 (ry - dz)y> (59:00) -
]
a(ago(x,y)) ~79:1(0) =43 =0. (3.35)
From equation (3.28) results
Jo(x,y) = (3.36)

2 2 d
(Wﬂizkxy—rz rxy+22Zir xy2>(d—ygl(y)

ak
yxxglg/}3+l3rcx + g (y)

Now substitution Eq (3.27) , (3.29), in Eq (3.26), we get

1

2ak?

2((—,81( —r)x+ (ry —dy)k —

rzy) ((—Kﬁzﬂ) x+ (r, —dy)k —
rzy) xy? (dd—yzz 9:)) +2((=pr —ry)x +

(r; —dy)x — 7’2}’)}’ <(_ w) x+

2
(—By-y—di—dy+r+r)k—(rn +

207 ) % (., 3)) + 2% ((—ﬁk —ry)x +

(r, — dy)k — ny)ay (diygz()’)) + (rlyxz -
((—,By —dy + 1)K — Tl}’)]/x + aKV)g1(Y) +
Tl /13X2 + (ﬁ/l:),y - 0(/11 + d1A.3 - T1/13)K +

A - A,y+ A1 = 0.
L1 3y>x ax(d,y 0) (3.37)

Now collect the Eq (3.30), with respect to x and compute
the coefficients of x!,i = 0,1,2,3.
Fori = 3:

T (2(—BK —rp) (B y (%g (y)) +

2(=Br =)y (— W) (%gl(y)» =0.

After solving the above ordinary differential equation, we
get

(3.38)

__2r 3.39
9:1(0) = ¢1 + oy PriTz, ( )
We must the power of y is integer then we must ¢, = 0,
then

9:1(y) =¢cy. (3.40)
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Fori = 2:
A

(=Br — 1) ((r, — dp)k —

)y (j—igl(y)) +2((0 - dyre -

roy)y (= B2 o+ (B — )y ((—By -
y—di—dy+r+n)k—(rn+

27"2)}’)) (%91(}’)) + 2k(riyg.(y) +

(3.41)

r1/13)> =0

Now substitution the Eq (3.33), in the Eq (3.34), we get

2k(rvg:(y) + 1143) = 0. (3.42)
Since k # 0, then A; = —cyv.
Fori =1:
1 2 d?

Py 2((7'2 —dy)k — rz)’) y? (d_yzg1(J’)) +

2((7'2 —dy)Kk — Tz)’)Y((_ﬁy —y—dy—d, +

)k —(n + Zrz)}’) ( 91(}’))

(3.43)

2k (((x(—ﬁk —12)y) (diygz(J’)) - ((_By -
dy + 1)K — r13’)V91(3’) + (BAzy —ai; +
diA; — A3k + r1/13y> =0.

After substitution g, (y) = c;and A3 = —c;y in Eq (3.36),
we get

i (—=(=Br —r)yci — ey — cryr)y — (3.44)
(r, —dykycy + (—ycidy +yeyry —
al)k = 0.
Then A; = 0.
Fori =0:
d
i(((r2 — dy)k — 1Y) (Egz(y)>y +
axvg, () — ax(d,y + 10)) =0 (3.45)

After substitution the g, (y) = ¢; , in Eq (3.38), we get
1 d
;(((7’2 —dy))k —ny)a (d_ygz()’)>y +

akve; — ax(Ay + Ao)) =0 (3.46)

Now solving the above ordinary differential equation, we
get
k(vey — Ay — Ao)

y(kd, — kry + 1Y)

9:(») =f dy+ ¢z (3.47)

89

After solving the above integration, we get

9.(y) =

((—ver+KA2+20) T2 —Kd2 A7) In((—K+Y)12+Kd2 ) +72 In(¥) (Ver — /10)

(3.48)

r2(d2—T12)
Since g, (y) is a polynomial function depends on variable y,
then we must
(—vey + KAy + Ag)ry, — kdyA, = 0 and ve; — A9 = 0, then
Ao = vcq and A, = 0, Hence g(x, v, z) = ¢,z with cofactor
L=vc, —ycz.
Case (ii) Similarly we can prove that, the exponential factor
of polynomial differential system (3.1), is e*¥*Z, with the
cofactor v — yz.
Proposition 3.3. when a # 0, a set of all exponential
factors for the biological system (3.1), consists of the
following three:
(((dz—rz)+yz)1c+r2 (z+1)y)

i The exponential factor with
(dz—12)K+12Y

cofactor yz and with parameters y =1, — d,,
v=0.

il. The exponential factor
(6(1/3—y3z+v3))<2+2(((—z3—1)y—x)y2+z((3vz+y)y+a)y—3v2yz+%)r2k—ar22yz)

6y2 (}/K—Ly)}(

with cofactor 222% 4 yz + M and with
parameters r; = 0, d, = 6y, d2 =r,—3y.

iil. The exponential factor
6ky?+(—1o(28+1)y—6Kyz)y+127YZ

6y2K-y12y

With cofactor yz and with parameters v = 0,
dz =T — 6y

Theorem 3.4. The biological system (3.1), has a Darboux
first integral of the form

745 24(-12(20+1)y—6Ky2)y+12YYZ a1
H(x,y.Z):< ) ifA=0

6v2k—y12y
V= 0,61 = 0, Ez = alwhere /1, (Xl,fl, 62 € R.

Proof. By Proposition 3.1, Theorem 3.2, and Proposition
3.3, the system (3.1), has an invariant algebraic surface of
(dz—12)K
T2
exponential factor of the form e?
(6(}/3—y3z+v3)k2+2(((—z3—1)y x) +z((3vz+y)y+a)y 3v2yz+%Y )rzx arzyz)

e 6y2 (yx—ﬂ);c

the form y +

6Ky2+(-15(28+1)y—6Ky2)y+12VY2Z
6vZk—yray

v(arz 3y 2k)

and e with cofactors

2r2x

vV—yz——+yz+

By Darboux Theorem there exist A, a4,¢1,&, € R, such that
A( rzy)+a1(v—yz) +§1(—+yz+
o) | -0

3ky?
Then by theorem (2.8),

and yz respectively,

(3.49)
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A
d-,—
H(xy,2) = (y+9225) (e9)

(s(y3 ~y3z+v3)K2+2 (((—23 - 1)y—x)y2 +z((3Vz+y)y+a)y—3v2yz+%)rz k—ar} yz)\
e

6y2 (yk—rz—y);{

3

6y2Kk—yr2y

6Ky2+(-12(28+1)y—6Ky2)y+r27Y2Z $2
(3 ) . (3.50)

Is a Darboux first integral of the system (3.1), after solving
the Eq (3.42),

we getthen A = 0,v=10,§ =0,&, = a; and by
proposition 3.2 § = _Trz, after substitutions the A = 0,v =
0' fl = 0'

S =ay, B= ‘T”in the Eq (3.43), then

Table 1. The system (2) exhibits with 3D projection.

Parameters | Unit Description Parameter
value
n day™! The growth rate of non- 1072
infected tumor cells
K cell The maximum capacity 30
that tumor cells can occupy
dy cell day™' | Uninfected tumor cells 3x1073
death rate
B day™! The rate of spread of the 147
virus x 1073
a day™?! Parts of tumor cells killed 1078
by chemotherapy
7 day™! The growth rate of infected 2
tumor cells
d, cell day™' | The rate of death of 2
infected tumor cells
y day™! The rate of decline in the 9x 107t
concentration of
chemotherapy
H(x,y,z) =
24 61y 2+ (=15 (26+1)y—6Kyz)y+royyz\ T (3 51)
(e ' 6Y2K—yT2y

Now, by definition of first integral (2.2), H(x, y, z) satisfies
(rox (1 -52) = dux + 252 — az) (37) +

(rox (1 -=2) + 22 = ) (55) +

0H
-2 (5) =o.
Then the system (3.1), has a Darboux first integral of the
form

H(x,y,z) = (e

(3.52)

ay

74 6ky2+(=12(20+1)y—6Ky2)y+7r2vYZ
N 6Y2K-yr2y

90

Remark 3.5. The following statements true for the
biological system (3.1), has a polynomial first integral of
the form.

i. H(x,yz)=xy*?—x?y+xy+1 if and only if

a=0,f=-2 g =20y
d, = -
ii. HQ,yz)=xy+1 if and only if a =0, =
_rl::rz’ di=rn+r—d,.
The Table 2. shows the system (2) exhibits with 3D
projection and by choosing a different value for each of the
parameter’s 14, K, d4, 8, a, 1, d,and y, for a particular set of

beginning conditions, 3D projection of the system (2) was
plotted.

1000
2000
4000 3000

0
»i) <)

Figure 1. Local phase portraits of system (2) for initial
conditions x(0) = 15, y(0) = 7.5,and z(0) = 4,1, =
1072,k =30,d; =3x103,=147%x 1073, a =
10°%,r, =2,d, = 2andy = 1071: On the x, y, and z
planes, there is a 3D projection.

Conclusion

The results of this study lead to the following

conclusions. First, system (3.1) has exactly one invariant
. dy—

algebraic surface y + (zr—rz)'f’ where f = — % (see Theorem
2

3.1), secondly, the biological system (3.1) includes just one
initial integral and a few exponential elements (see Theorem
3.2 and Proposition 3.3). Finally, the system (1.1) has a
Darboux first integral (see Theorem 3.4).
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