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In the given paper, we investigate the integrability of a mathematical model of a 3D biological 
system. Our results show that the system admits a polynomial first integrals for some parameters, 
an invariant algebraic surface with an exponential factor, and Darboux first integral. The proof was 
realized with the help of weight homogeneous polynomials. A model combining virus therapy and 
chemotherapy holds promise for improving the efficacy of cancer treatments. Virus therapy can 
target and destroy cancer cells, while chemotherapy can enhance the immune response and sensitize 
the tumor to viral therapy. 
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1. Introduction 

Ordinary differential equation theory represents a key 
area in mathematics the fundamental instruments of 
mathematical science, it can be used Across numerous 
scientific disciplines covering areas like applied 
mathematics, physics, and more generally, the applied 
sciences. Throughout the last 50 years, we have witnessed a 
growing interest in understanding autonomous differential 
systems, owing to their numerous applications in the natural 
sciences. Conservation of biological systems is of first 
priority among scientists and researchers; however, their 
actual dynamical behaviour is hard to monitor and analyze. 
Below is the mathematical framework for viral therapy in 
conjunction with chemotherapeutic treatment for cancer, 
adopting chemotherapy features from the original model [1]. 
In this study, the components will virus-infected tumor cells, 
non-virus-infected tumor cells and medication levels denoted 
as 𝑥𝑥,𝑦𝑦 and 𝑧𝑧 respectively.  There is a lot of research on the 
effects of cancer cells on the virus [2, 3],. Within this 
framework, 𝑟𝑟1 follows a logistic growth pattern for the tumor 
cells not affected by infection, 𝑑𝑑1 represents the death rate of 
uninfected tumor cells, 𝛽𝛽 represents the spread level of a 

virus, 𝛼𝛼 represents the speed of expansion for the chemical-
based therapy drug, 𝑟𝑟2 rate of growth for logistic of tumor 
cells affected by infection, 𝑑𝑑2 rate of deaths for infected 
tumor cell, 𝜅𝜅  maximum capacity that tumor cells occupied, 
𝜈𝜈 is amount of medication, and 𝛾𝛾  the reduction rate of 
chemotherapy medication. Mathematically, the framework 
of viral treatment cancer treatment through chemotherapy 
may be stated in the formula below: 
 

𝑥̇𝑥 = 𝑃𝑃(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑟𝑟1𝑥𝑥 �1 −
𝑥𝑥 + 𝑦𝑦
𝜅𝜅

� − 𝑑𝑑1𝑥𝑥 − 𝛽𝛽𝛽𝛽𝛽𝛽 − 𝛼𝛼𝛼𝛼 

𝑦̇𝑦 = 𝑄𝑄(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑟𝑟2𝑦𝑦 �1 −
𝑥𝑥 + 𝑦𝑦
𝜅𝜅

� − 𝑑𝑑2𝑦𝑦 − 𝛽𝛽𝛽𝛽𝛽𝛽 (1. 1) 

𝑧̇𝑧 = 𝑅𝑅(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝜈𝜈 − 𝛾𝛾𝛾𝛾. 
In 1878, Darboux [4, 5]. Had shown the method for obtaining 
the first integrals of a 2D differential system may are created 
along with sufficient invariant algebraic curves. Particularly, 
he possessed demonstrated which an autonomous 
polynomial system of degree 𝑚𝑚 that possesses a first integral 
should at least have a number �𝑚𝑚(𝑚𝑚+1)

2
+ 1� invariant 

algebraic curves, having a straightforward expression in 
conformity with its invariant algebraic curves. This study 
delivers an invariant of system (1.1), which includes the 
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Darboux first integral and polynomial first integrals. Since 
our system has no first integral [6]. Reducing the reality of 
its dynamic behavior, the existence of Darboux first integrals 
completely resolves the problem of phase diagrams 
determination.  
 

2. Preliminary Concepts 
Recall some definitions, theorems, notions and tools as 

follow. 
Definition  2.1. [7, 8]: The vector field χ associated to the 
differential system (1.1), is defined by 
𝜒𝜒 = 𝑃𝑃(𝑥𝑥,𝑦𝑦, 𝑧𝑧) 𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑄𝑄(𝑥𝑥,𝑦𝑦, 𝑧𝑧) 𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑅𝑅(𝑥𝑥,𝑦𝑦, 𝑧𝑧) 𝜕𝜕

𝜕𝜕𝜕𝜕
 , 

(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ ℝ3. 

(2. 2) 

Definition 2.2. [9]: A Let 𝑊𝑊 be an open subset of ℝ3. A non-
constant function  
𝐻𝐻:𝑊𝑊 → ℝ is a first integral of the polynomial vector field 𝜒𝜒 
on 𝑊𝑊 if it is constant on all orbits �𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡)�  of 𝜒𝜒 
contained in 𝑊𝑊; i.e. 𝐻𝐻�𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡)� = constant for all 
values of 𝑡𝑡. 𝐻𝐻is a first integral of 𝜒𝜒 on 𝑊𝑊 if and only if  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜒𝜒𝜒𝜒 = 𝑃𝑃
𝜕𝜕𝜕𝜕 
𝜕𝜕𝜕𝜕

+ 𝑄𝑄
𝜕𝜕𝜕𝜕 
𝜕𝜕𝜕𝜕

+ 𝑅𝑅
𝜕𝜕𝜕𝜕 
𝜕𝜕𝜕𝜕

= 0 
(2. 3) 

On 𝑊𝑊. 
Definition 2.3. [10]: Let ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ ℝ3a non-zero 
polynomial. The algebraic surface ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0 is an 
invariant algebraic surface of the polynomial differential 
system (1.1), if for some polynomial 𝐾𝐾(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ ℝ3,we 
have 

𝜒𝜒ℎ = 𝑃𝑃
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

+ 𝑄𝑄
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

+ 𝑅𝑅
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

= 𝐾𝐾ℎ. 
(2. 4) 

The polynomial 𝐾𝐾(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is called the cofactor of the 
invariant algebraic surface ℎ = 0. Since the polynomial 
differential system has degree 𝑚𝑚, any cofactor has degree at 
most 𝑚𝑚 − 1. 
Definition 2.4.  [11]: If ℎ,𝑔𝑔 ∈ ℝ3are coprime, then the 
function 𝐸𝐸 = 𝑒𝑒

𝑔𝑔
ℎ is an exponential factor of vector field 𝜒𝜒 if 

there exists a polynomial 𝐿𝐿𝐸𝐸 of degree at most 𝑚𝑚 − 1 such 
that 

𝜒𝜒𝜒𝜒 = 𝑃𝑃
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑄𝑄
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑅𝑅
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐸𝐸𝐿𝐿𝐸𝐸 . 
(2. 5) 

The polynomials 𝐿𝐿𝐸𝐸 called cofactor of the Exponential factor 
𝐸𝐸. 
Definition 2.5. [12]: we say that the polynomial differential 
system (1.1), is quasi(weight)-homogeneous, if there is 𝑠𝑠 =
(𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3) ∈ ℤ and 𝑑𝑑 ∈ ℤ such that for arbitrary  
𝜇𝜇 ∈ ℝ+,𝑃𝑃(𝜇𝜇𝑠𝑠1𝑥𝑥, 𝜇𝜇𝑠𝑠2𝑦𝑦, 𝜇𝜇𝑠𝑠3𝑧𝑧) = 𝜇𝜇𝑠𝑠1−1+𝑑𝑑𝑃𝑃(𝑥𝑥,𝑦𝑦, 𝑧𝑧), 
𝑄𝑄(𝜇𝜇𝑠𝑠1𝑥𝑥, 𝜇𝜇𝑠𝑠2𝑦𝑦, 𝜇𝜇𝑠𝑠3𝑧𝑧) = 𝜇𝜇𝑠𝑠2−1+𝑑𝑑𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) and 
𝑅𝑅(𝜇𝜇𝑠𝑠1𝑥𝑥, 𝜇𝜇𝑠𝑠2𝑦𝑦, 𝜇𝜇𝑠𝑠3𝑧𝑧) = 𝜇𝜇𝑠𝑠3−1+𝑑𝑑𝑅𝑅(𝑥𝑥,𝑦𝑦, 𝑧𝑧). We call  
𝑠𝑠 = (𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3) the weight exponent of system (1.1), and 𝑑𝑑 
the weight degree with respect to the weight exponent 𝑠𝑠. 
Proposition 2.6. [13]: If 𝐸𝐸 = 𝑒𝑒

𝑔𝑔
ℎ is an exponential factor of 

polynomial differential system (1.1), and h is a nonconstant 
polynomial then ℎ = 0 is an invariant algebraic surface and 

finally, 𝑒𝑒𝑔𝑔 can be exponential factor resulting of the 
multiplicity of the infinite invariant plane. 

Lemma 2.7. [14]: Assume that 𝑒𝑒
𝑔𝑔1
ℎ1 , … , 𝑒𝑒

𝑔𝑔𝑗𝑗
ℎ𝑗𝑗  are exponential 

factors of the polynomial differential system (1.1), with 

cofactors 𝐿𝐿𝑗𝑗 for 𝑗𝑗 = 1, … , 𝑟𝑟. Then 𝑒𝑒𝐺𝐺 = 𝑒𝑒
𝑔𝑔1
ℎ1
+⋯+𝑔𝑔𝑟𝑟ℎ𝑟𝑟 is also an 

exponential factor of polynomial differential system (1.1), 
with cofactor 𝐿𝐿 = ∑ 𝐿𝐿𝑗𝑗𝑟𝑟

𝑗𝑗=1 . 
Theorem 2.8. [15]: Suppose that a polynomial vector field 𝜒𝜒 
of degree 𝑑𝑑 in ℝ3 admits 𝑝𝑝 irreducible invariant algebraic 
surfaces 𝑓𝑓𝑖𝑖 = 0 such that the 𝑓𝑓𝑖𝑖 are pairwise relatively prime 
with cofactors 𝐾𝐾𝑖𝑖 for 𝑖𝑖 = 1, … ,𝑝𝑝 and 𝑞𝑞 exponential factors 

𝑒𝑒
𝑔𝑔𝑗𝑗
ℎ𝑗𝑗 with cofactors 𝐿𝐿𝑗𝑗 for 𝑗𝑗 = 1, … , 𝑞𝑞. There exist 𝜆𝜆𝑖𝑖 , 𝜇𝜇𝑗𝑗 ∈ ℝ 

not all zero such that 

�𝜆𝜆𝑖𝑖𝐾𝐾𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ �𝜇𝜇𝑗𝑗𝐿𝐿𝑗𝑗

𝑞𝑞

𝑗𝑗=1

= 0. 
(2. 6) 

If and only if function 

𝑓𝑓1
𝜆𝜆1 … 𝑓𝑓𝑝𝑝

𝜆𝜆𝑝𝑝 ��𝑒𝑒
𝑔𝑔1
ℎ1�

𝜇𝜇1
… �𝑒𝑒

𝑔𝑔𝑞𝑞
ℎ𝑞𝑞�

𝜇𝜇𝑞𝑞

�. 
(2. 7) 

Is a first integral of system (1.1). 
Definition 2.9. [15]: A first integral is called Darboux first 
integral if it is of the form (2.6). 
 

3. Main Results and Their Proofs of The 
Biological System 

Proposition 3.1. System (3.1), has an invariant algebraic 
surface ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑦𝑦 + (𝑑𝑑2−𝑟𝑟2)𝜅𝜅

𝑟𝑟2
 with cofactor −𝑟𝑟2

𝜅𝜅
𝑦𝑦, where 

𝛽𝛽 = −𝑟𝑟2
𝜅𝜅

. 
Proof. The system (1.1), after collecting it changes to 
biological system 

𝑥̇𝑥 = �−
𝑟𝑟1
𝜅𝜅
− 𝛽𝛽�𝑥𝑥𝑥𝑥 −

𝑟𝑟1𝑥𝑥2

𝜅𝜅
+ (𝑟𝑟1 − 𝑑𝑑1)𝑥𝑥 − 𝛼𝛼𝛼𝛼 

𝑦̇𝑦 = �−
𝑟𝑟2
𝜅𝜅
− 𝛽𝛽�𝑥𝑥𝑥𝑥 −

𝑟𝑟2𝑦𝑦2

𝜅𝜅
+ (𝑟𝑟2 − 𝑑𝑑2)𝑦𝑦 

 
(3. 8) 

      
𝑧̇𝑧 = 𝜈𝜈 − 𝛾𝛾𝛾𝛾. 

Let ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = ∑ ℎ𝑖𝑖(𝑥𝑥,𝑦𝑦)𝑧𝑧𝑖𝑖𝑛𝑛
𝑖𝑖=0  be an invariant algebraic of 

system (3.1), where ℎ𝑖𝑖(𝑥𝑥,𝑦𝑦)𝑧𝑧𝑖𝑖 is a homogeneous 
polynomial of degree 𝑖𝑖, and we assume that ℎ𝑛𝑛 ≠ 0 with 
𝑛𝑛 ≥ 1. Since the system contains the quartic term, then the 
cofactor 𝐾𝐾 of an invariant algebraic surface must be of the 
form 𝐾𝐾 = 𝑘𝑘0 + 𝑘𝑘1𝑥𝑥 + 𝑘𝑘2𝑦𝑦 + 𝑘𝑘3𝑧𝑧 , for some 𝑘𝑘𝑗𝑗 ∈ ℝ, and 
𝑗𝑗 = 0, … ,3. 
Then by Eq (2.3), we find that 

��− 𝑟𝑟1
𝜅𝜅
− 𝛽𝛽�𝑥𝑥𝑥𝑥 − 𝑟𝑟1𝑥𝑥2

𝜅𝜅
+ (𝑟𝑟1 − 𝑑𝑑1)𝑥𝑥 −

𝛼𝛼𝛼𝛼� �𝜕𝜕ℎ
𝜕𝜕𝜕𝜕
� + ��− 𝑟𝑟2

𝜅𝜅
− 𝛽𝛽�𝑥𝑥𝑥𝑥 − 𝑟𝑟2𝑦𝑦2

𝜅𝜅
+ (𝑟𝑟2 −

𝑑𝑑2)𝑦𝑦��𝜕𝜕ℎ
𝜕𝜕𝜕𝜕
� + (𝜈𝜈 − 𝛾𝛾𝛾𝛾) �𝜕𝜕ℎ

𝜕𝜕𝜕𝜕
� = (𝑘𝑘0 + 𝑘𝑘1𝑥𝑥 +

 
 
 
 
 
(3. 9) 
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𝑘𝑘2𝑦𝑦 + 𝑘𝑘3𝑧𝑧)ℎ.  

Computing the coefficient of 𝑧𝑧𝑛𝑛+1 in Eq (3.2), 

(−𝛼𝛼) �
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕
� = (𝑘𝑘3)ℎ. 

(3. 10) 

Then  

ℎ𝑛𝑛(𝑥𝑥,𝑦𝑦) = 𝑓𝑓1(𝑦𝑦)𝑒𝑒−
𝑘𝑘3𝑥𝑥
𝛼𝛼 . (3. 11) 

where 𝑓𝑓1(𝑦𝑦) is any function in the variable 𝑦𝑦. Since 
ℎ𝑛𝑛(𝑥𝑥,𝑦𝑦) is a homogeneous polynomial, then we must have 
𝑘𝑘3 = 0. Now, we want to show that 𝑘𝑘0 = 𝑘𝑘1 = 0 and  𝑘𝑘2 =
𝑟𝑟2
𝜅𝜅

 we apply the change of variables 
𝑥𝑥 = 𝑋𝑋,   𝑦𝑦 = 𝜇𝜇−1𝑌𝑌,      𝑧𝑧 = 𝜇𝜇−1𝑍𝑍,     𝑡𝑡 = 𝜇𝜇𝜇𝜇, where 𝜇𝜇 ∈
ℝ\{0} 
Then system (3.1) becomes 

𝑋̇𝑋 = −
𝑟𝑟1
𝜅𝜅
𝜇𝜇𝑋𝑋2 − �

𝑟𝑟1
𝜅𝜅

+ 𝛽𝛽�𝑋𝑋𝑋𝑋 + (𝑟𝑟1 − 𝑑𝑑1)𝜇𝜇𝜇𝜇 − 𝛼𝛼𝛼𝛼 

𝑌̇𝑌 = −
𝑟𝑟2
𝜅𝜅
𝑌𝑌2 − �

𝑟𝑟2
𝜅𝜅

+ 𝛽𝛽�𝜇𝜇𝜇𝜇𝜇𝜇 + (𝑟𝑟2 − 𝑑𝑑2)𝜇𝜇𝜇𝜇 (3. 12) 

𝑍̇𝑍 = 𝜇𝜇2𝜈𝜈 − 𝛾𝛾𝛾𝛾𝛾𝛾. 
where the dot indicates the variable's derivative.  

Let 𝐹𝐹(𝑋𝑋,𝑌𝑌,𝑍𝑍) = 𝜇𝜇ℎ(𝑋𝑋, 𝜇𝜇𝜇𝜇, 𝜇𝜇𝜇𝜇) = ∑ 𝜇𝜇𝑖𝑖𝐹𝐹𝑖𝑖(𝑋𝑋,𝑌𝑌,𝑍𝑍)𝑛𝑛
𝑖𝑖=0 , where 

𝐹𝐹𝑖𝑖(𝑋𝑋,𝑌𝑌,𝑍𝑍) is the weight homogeneous part with weight 
degree 𝑛𝑛 − 𝑖𝑖 of 𝐹𝐹 and 𝑛𝑛 is the weight degree of 𝐹𝐹 with 
weight exponent 𝑠𝑠 = (0,−1,−1).We also set 𝐾𝐾(𝑋𝑋,𝑌𝑌,𝑍𝑍) =
𝜇𝜇𝜇𝜇(𝑋𝑋, 𝜇𝜇𝜇𝜇, 𝜇𝜇𝜇𝜇) = 𝜇𝜇(𝑘𝑘1𝑋𝑋 + 𝑘𝑘0) + 𝑘𝑘2𝑌𝑌. 
Since 𝐹𝐹(𝑋𝑋,𝑌𝑌,𝑍𝑍) is an invariant algebraic surface of system 
(2.1), then Eq (2.3), we write as 
�− 𝑟𝑟1

𝜅𝜅
𝜇𝜇𝑋𝑋2 − �𝑟𝑟1

𝜅𝜅
+ 𝛽𝛽�𝑋𝑋𝑋𝑋 + (𝑟𝑟1 − 𝑑𝑑1)𝜇𝜇𝜇𝜇 −

𝛼𝛼𝛼𝛼� �∑ 𝜇𝜇𝑖𝑖 𝜕𝜕𝐹𝐹𝑖𝑖
𝜕𝜕𝜕𝜕

𝑛𝑛
𝑖𝑖=0 �+ �− 𝑟𝑟2

𝜅𝜅
𝑌𝑌2 − �𝑟𝑟2

𝜅𝜅
+

𝛽𝛽�𝜇𝜇𝜇𝜇𝜇𝜇 + (𝑟𝑟2 − 𝑑𝑑2)𝜇𝜇𝜇𝜇� �∑ 𝜇𝜇𝑖𝑖 𝜕𝜕𝐹𝐹𝑖𝑖
𝜕𝜕𝜕𝜕

𝑛𝑛
𝑖𝑖=0 �+

(𝜇𝜇2𝜈𝜈 − 𝛾𝛾𝛾𝛾𝛾𝛾) �∑ 𝜇𝜇𝑖𝑖 𝜕𝜕𝐹𝐹𝑖𝑖
𝜕𝜕𝜕𝜕

𝑛𝑛
𝑖𝑖=0 � = (𝜇𝜇(𝑘𝑘1𝑋𝑋 + 𝑘𝑘0) +

𝑘𝑘2𝑌𝑌)(∑ 𝜇𝜇𝑖𝑖𝐹𝐹𝑖𝑖𝑛𝑛
𝑖𝑖=0 ).  

(3. 13) 

 Computing the coefficient of 𝜇𝜇0 in the Eq (3.6), we obtain 
�− 𝑟𝑟1

𝜅𝜅
𝑋𝑋𝑋𝑋 − 𝛽𝛽𝛽𝛽𝛽𝛽 − 𝛼𝛼𝛼𝛼� �𝜕𝜕𝐹𝐹0

𝜕𝜕𝜕𝜕
� − �𝑟𝑟2

𝜅𝜅
𝑌𝑌2� �𝜕𝜕𝐹𝐹0

𝜕𝜕𝜕𝜕
� −

𝑘𝑘0𝑌𝑌𝐹𝐹0.  

 
(3. 14) 

The above differential equation has a solution 
𝐹𝐹0(𝑋𝑋,𝑌𝑌,𝑍𝑍) =

𝑓𝑓1 �𝑍𝑍, (𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽+𝑟𝑟1𝑋𝑋𝑋𝑋+𝑟𝑟2𝑋𝑋𝑋𝑋+𝛼𝛼𝛼𝛼𝛼𝛼)𝑌𝑌
−𝛽𝛽𝛽𝛽+𝑟𝑟1+𝑟𝑟2𝑟𝑟2

𝛽𝛽𝛽𝛽+𝑟𝑟1+𝑟𝑟2
�𝑌𝑌−

𝑘𝑘2𝜅𝜅
𝑟𝑟2 .  

 
 
(3. 15) 

 In the biological system must be the power of variable is 
positive, then 𝑘𝑘2 = −𝑟𝑟2

𝜅𝜅
 and 𝛽𝛽 = − 𝑟𝑟2

𝜅𝜅
 , then 𝐹𝐹0(𝑋𝑋,𝑌𝑌,𝑍𝑍) =

𝐺𝐺0(𝑍𝑍)𝑌𝑌, Now computing the coefficient of 𝜇𝜇1 in the Eq 
(3.6), and substitution  𝑘𝑘2 = −𝑟𝑟2

𝜅𝜅
 , 𝛽𝛽 = −𝑟𝑟2

𝜅𝜅
  and  

𝐹𝐹0(𝑋𝑋,𝑌𝑌,𝑍𝑍) = 𝐺𝐺0(𝑍𝑍)𝑌𝑌, we obtain 

− 1
𝜅𝜅
�� 𝜕𝜕

𝜕𝜕𝜕𝜕
𝐺𝐺0(𝑍𝑍)𝑌𝑌�𝑋𝑋�(𝑑𝑑1 − 𝑟𝑟1)𝜅𝜅 + 𝑟𝑟1𝑋𝑋� +

 
 
 

� 𝜕𝜕
𝜕𝜕𝜕𝜕
𝐹𝐹1(𝑋𝑋,𝑌𝑌,𝑍𝑍)� �(𝑟𝑟1 − 𝑟𝑟2)𝑋𝑋𝑋𝑋 + 𝛼𝛼𝛼𝛼𝛼𝛼�� −

𝑟𝑟2
𝜅𝜅
𝑌𝑌2 � 𝜕𝜕

𝜕𝜕𝜕𝜕
𝐹𝐹1(𝑋𝑋,𝑌𝑌,𝑍𝑍)� − 𝑌𝑌

𝜅𝜅
���− 𝑟𝑟2𝑋𝑋

𝜅𝜅
+ 𝑑𝑑2 −

𝑟𝑟2� 𝜅𝜅 + 𝑟𝑟2𝑋𝑋� �
𝜕𝜕
𝜕𝜕𝜕𝜕
𝐺𝐺0(𝑍𝑍)𝑌𝑌�� −

𝛾𝛾𝛾𝛾 � 𝜕𝜕
𝜕𝜕𝜕𝜕
𝐺𝐺0(𝑍𝑍)𝑌𝑌� + 𝑟𝑟2

𝜅𝜅
𝑌𝑌𝐹𝐹1(𝑋𝑋,𝑌𝑌,𝑍𝑍) − (𝑘𝑘1𝑋𝑋 +

𝑘𝑘0)(𝐺𝐺0(𝑍𝑍)𝑌𝑌).  

 
 
 
 
 
 
 
(3. 16) 

 The above differential equation has a solution 
𝐹𝐹1(𝑋𝑋,𝑌𝑌,𝑍𝑍) = −𝑘𝑘1𝜅𝜅𝐺𝐺0(𝑍𝑍)𝑋𝑋

𝑟𝑟1−2𝑟𝑟2
+

𝑓𝑓1 �𝑍𝑍, (𝑟𝑟1𝑋𝑋𝑋𝑋+𝛼𝛼𝛼𝛼𝛼𝛼)𝑌𝑌
−𝑟𝑟1𝑟𝑟2

𝑟𝑟1
�𝑌𝑌 +

𝜅𝜅𝜅𝜅� 𝑑𝑑
𝑑𝑑𝑑𝑑𝐺𝐺0(𝑍𝑍)�𝑍𝑍

𝑟𝑟2
+

𝜅𝜅(𝑑𝑑2−𝑟𝑟2+𝑘𝑘0)𝐺𝐺0(𝑍𝑍)
𝑟𝑟2

+ �
− 𝛼𝛼𝜅𝜅2𝐺𝐺0(𝑍𝑍)
𝑟𝑟1(𝑟𝑟1−2𝑟𝑟2)−

𝜅𝜅2𝐺𝐺0(𝑍𝑍)
2𝑟𝑟1𝑟𝑟2

𝑌𝑌
� 𝑘𝑘1𝑍𝑍.   

 
 
 
 
 
(3. 17) 

 We must the power of  𝑌𝑌 is positive, then 𝐺𝐺0(𝑍𝑍) = 0 or  
𝑘𝑘1 = 0, if 𝐺𝐺0(𝑍𝑍) = 0 is a contradiction, then must be 𝑘𝑘1 =
0. 
Again, computing the coefficient of 𝜇𝜇2 in the Eq (3.6), and 
substitution 𝑘𝑘2 = −𝑟𝑟2

𝜅𝜅
 , 𝛽𝛽 = −𝑟𝑟2

𝜅𝜅
 , 

𝐹𝐹0(𝑋𝑋,𝑌𝑌,𝑍𝑍) = 𝐺𝐺0(𝑍𝑍)𝑌𝑌,𝑘𝑘1 = 0 and 𝐹𝐹1(𝑋𝑋,𝑌𝑌,𝑍𝑍) =

+𝑓𝑓1 �𝑍𝑍, (𝑟𝑟1𝑋𝑋𝑋𝑋+𝛼𝛼𝛼𝛼𝛼𝛼)𝑌𝑌
−𝑟𝑟1𝑟𝑟2

𝑟𝑟1
�𝑌𝑌 +

𝜅𝜅𝜅𝜅� 𝑑𝑑
𝑑𝑑𝑑𝑑𝐺𝐺0(𝑍𝑍)�𝑍𝑍

𝑟𝑟2
+ 𝜅𝜅(𝑑𝑑2−𝑟𝑟2+𝑘𝑘0)𝐺𝐺0(𝑍𝑍)

𝑟𝑟2
, 

we obtain 

− 1
𝜅𝜅

⎝

⎜
⎛
� 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐺𝐺1(𝑍𝑍)𝑌𝑌 +

𝜅𝜅𝜅𝜅� 𝑑𝑑
𝑑𝑑𝑑𝑑𝐺𝐺0(𝑍𝑍)�𝑍𝑍

𝑟𝑟2
+

𝜅𝜅(𝑑𝑑2−𝑟𝑟2+𝑘𝑘0)𝐺𝐺0(𝑍𝑍)
𝑟𝑟2

��𝑋𝑋�(𝑑𝑑1 − 𝑟𝑟1)𝜅𝜅 + 𝑟𝑟1𝑋𝑋�

⎠

⎟
⎞

  

− 1
𝜅𝜅
�� 𝜕𝜕

𝜕𝜕𝜕𝜕
𝐹𝐹1(𝑋𝑋,𝑌𝑌,𝑍𝑍)� �(𝑟𝑟1 − 𝑟𝑟2)𝑋𝑋𝑋𝑋 + 𝛼𝛼𝛼𝛼𝛼𝛼�� −

𝑟𝑟2�
𝜕𝜕
𝜕𝜕𝜕𝜕𝐹𝐹2(𝑋𝑋,𝑌𝑌,𝑍𝑍)�𝑌𝑌2

𝜅𝜅
  

−

𝑌𝑌��−𝑟𝑟2𝜅𝜅 𝑋𝑋+𝑑𝑑2−𝑟𝑟2�𝜅𝜅+𝑟𝑟2𝑋𝑋�

⎝

⎜
⎛ 𝜕𝜕
𝜕𝜕𝜕𝜕�𝐺𝐺1(𝑍𝑍)𝑌𝑌+

𝜅𝜅𝜅𝜅� 𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺0(𝑍𝑍)�𝑍𝑍

𝑟𝑟2
+𝜅𝜅

(𝑑𝑑2−𝑟𝑟2+𝑘𝑘0)𝐺𝐺0(𝑍𝑍)
𝑟𝑟2

�

⎠

⎟
⎞

𝜅𝜅
  

−𝛾𝛾𝛾𝛾� 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐺𝐺1(𝑍𝑍)𝑌𝑌 +

𝜅𝜅𝜅𝜅� 𝑑𝑑
𝑑𝑑𝑑𝑑𝐺𝐺0(𝑍𝑍)�𝑍𝑍

𝑟𝑟2
+ 𝜅𝜅(𝑑𝑑2−𝑟𝑟2+𝑘𝑘0)𝐺𝐺0(𝑍𝑍)

𝑟𝑟2
��  

 +𝜈𝜈 � 𝜕𝜕
𝜕𝜕𝜕𝜕
𝐺𝐺0(𝑍𝑍)𝑌𝑌� − 𝑘𝑘0 �𝐺𝐺1(𝑍𝑍)𝑌𝑌 +

 
 
 
 
(3. 18) 
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𝜅𝜅𝜅𝜅� 𝑑𝑑
𝑑𝑑𝑑𝑑𝐺𝐺0(𝑍𝑍)�𝑍𝑍

𝑟𝑟2
+ 𝜅𝜅(𝑑𝑑2−𝑟𝑟2+𝑘𝑘0)𝐺𝐺0(𝑍𝑍)

𝑟𝑟2
�. 

 The above differential equation has a solution 

𝐹𝐹2(𝑋𝑋,𝑌𝑌,𝑍𝑍) = 𝑓𝑓1 �𝑍𝑍, (𝑟𝑟1𝑋𝑋𝑋𝑋+𝛼𝛼𝛼𝛼𝛼𝛼)𝑌𝑌
−𝑟𝑟1𝑟𝑟2

𝑟𝑟1
�𝑌𝑌 +

𝜅𝜅𝜅𝜅� 𝑍𝑍𝑑𝑑𝑑𝑑𝐺𝐺1(𝑍𝑍)�𝑍𝑍

𝑟𝑟2
  

+
�𝜅𝜅𝑑𝑑2𝑟𝑟2−𝜅𝜅𝑟𝑟22+𝜅𝜅𝑟𝑟2𝑘𝑘0�𝐺𝐺1(𝑍𝑍)+𝜅𝜅𝜅𝜅𝑟𝑟2�

𝑑𝑑
𝑑𝑑𝑑𝑑𝐺𝐺0(𝑍𝑍)�

𝑟𝑟22
  

+ 1
𝑌𝑌
�
�𝛾𝛾2𝜅𝜅2+𝛾𝛾𝜅𝜅2𝑑𝑑2−𝛾𝛾𝜅𝜅2𝑟𝑟2+2𝛾𝛾𝜅𝜅2𝑘𝑘0��

𝑑𝑑
𝑑𝑑𝑑𝑑𝐺𝐺0(𝑍𝑍)�

2𝑟𝑟2
�  

+ 1
𝑌𝑌
�
𝛾𝛾2𝜅𝜅2� 𝑑𝑑2

𝑑𝑑𝑍𝑍2
𝐺𝐺0(𝑍𝑍)�𝑍𝑍2+�𝑘𝑘0𝑑𝑑2𝜅𝜅−𝑘𝑘0𝑟𝑟2𝜅𝜅2+𝑘𝑘02𝜅𝜅2�𝐺𝐺0(𝑍𝑍)

2𝑟𝑟2
�.  

 
(3. 19) 

 We must the power of Y is positive, then must be  

+ 1
𝑌𝑌
�
�𝛾𝛾2𝜅𝜅2+𝛾𝛾𝜅𝜅2𝑑𝑑2−𝛾𝛾𝜅𝜅2𝑟𝑟2+2𝛾𝛾𝜅𝜅2𝑘𝑘0��

𝑑𝑑
𝑑𝑑𝑑𝑑𝐺𝐺0(𝑍𝑍)�

2𝑟𝑟2
� +

1
𝑌𝑌
�
𝛾𝛾2𝜅𝜅2� 𝑑𝑑2

𝑑𝑑𝑍𝑍2
𝐺𝐺0(𝑍𝑍)�𝑍𝑍2+�𝑘𝑘0𝑑𝑑2𝜅𝜅−𝑘𝑘0𝑟𝑟2𝜅𝜅2+𝑘𝑘02𝜅𝜅2�𝐺𝐺0(𝑍𝑍)

2𝑟𝑟2
� = 0.  

After Solving the above ordinary differential equation, we 
get 

𝐺𝐺0(𝑍𝑍) = 𝑐𝑐1𝑍𝑍
−𝑘𝑘0𝛾𝛾 + 𝑐𝑐2𝑍𝑍

𝑑𝑑2−𝑟𝑟2+𝑘𝑘0
𝛾𝛾 . 

 
(3. 20) 

We must the power of 𝑍𝑍 is positive, then 𝑘𝑘0 = 0 and 𝑐𝑐2 = 0 
, then 𝐺𝐺0(𝑍𝑍) = 𝑐𝑐1. 
Theorem 3.2. The next two statements hold for system 
(3.1). 

i. For 𝛼𝛼 ≠ 0, the exponential factor of polynomial 
differential system (3.1), is 𝑒𝑒𝑧𝑧, with the cofactor 
𝜈𝜈𝑐𝑐1 − 𝛾𝛾𝑐𝑐1𝑧𝑧. 

ii. For 𝛼𝛼 = 0, the exponential factor of polynomial 
differential system (3.1), is 𝑒𝑒𝑥𝑥𝑥𝑥+𝑧𝑧, with the cofactor  
𝑣𝑣 − 𝛾𝛾𝛾𝛾. 

Proof. Let 𝐹𝐹 = 𝑒𝑒𝑔𝑔(𝑥𝑥,𝑦𝑦,𝑧𝑧) and 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧) satisfies the equation 
(2.4)  

��− 𝑟𝑟1
𝜅𝜅
− 𝛽𝛽�𝑥𝑥𝑥𝑥 − 𝑟𝑟1𝑥𝑥2

𝜅𝜅
+ (𝑟𝑟1 − 𝑑𝑑1)𝑥𝑥 −

𝛼𝛼𝛼𝛼� �𝜕𝜕𝑒𝑒
𝑔𝑔(𝑥𝑥,𝑦𝑦,𝑧𝑧)

𝜕𝜕𝜕𝜕
� + ��− 𝑟𝑟2

𝜅𝜅
− 𝛽𝛽�𝑥𝑥𝑥𝑥 − 𝑟𝑟2𝑦𝑦2

𝜅𝜅
+

(𝑟𝑟2 − 𝑑𝑑2)𝑦𝑦��𝜕𝜕𝑒𝑒
𝑔𝑔(𝑥𝑥,𝑦𝑦,𝑧𝑧)

𝜕𝜕𝜕𝜕
� + (𝜈𝜈 − 𝛾𝛾𝛾𝛾) �𝜕𝜕𝑒𝑒

𝑔𝑔(𝑥𝑥,𝑦𝑦,𝑧𝑧)

𝜕𝜕𝜕𝜕
� =

𝐿𝐿𝑒𝑒𝑔𝑔(𝑥𝑥,𝑦𝑦,𝑧𝑧).  
 

(3. 21) 

The above equation becomes 

��− 𝑟𝑟1
𝜅𝜅
− 𝛽𝛽�𝑥𝑥𝑥𝑥 − 𝑟𝑟1𝑥𝑥2

𝜅𝜅
+ (𝑟𝑟1 − 𝑑𝑑1)𝑥𝑥 −

𝛼𝛼𝛼𝛼� �𝜕𝜕𝜕𝜕(𝑥𝑥,𝑦𝑦,𝑧𝑧)
𝜕𝜕𝜕𝜕

� + ��− 𝑟𝑟2
𝜅𝜅
− 𝛽𝛽� 𝑥𝑥𝑥𝑥 − 𝑟𝑟2𝑦𝑦2

𝜅𝜅
+ (𝑟𝑟2 −

𝑑𝑑2)𝑦𝑦��𝜕𝜕𝜕𝜕(𝑥𝑥,𝑦𝑦,𝑧𝑧)
𝜕𝜕𝜕𝜕

�+ (𝜈𝜈 − 𝛾𝛾𝛾𝛾) �𝜕𝜕𝜕𝜕(𝑥𝑥,𝑦𝑦,𝑧𝑧)
𝜕𝜕𝜕𝜕

� = 𝐿𝐿.  

(3. 22) 

 where 𝐿𝐿 = 𝜆𝜆0 + 𝜆𝜆1𝑥𝑥 + 𝜆𝜆2𝑦𝑦 + 𝜆𝜆3𝑧𝑧. 
Now, we want to show that for 𝑛𝑛 ≥ 2, has no exponential 
factor of polynomial differential system (3.1). 
We apply the change of variables 
𝑥𝑥 = 𝜇𝜇−1𝑋𝑋, 𝑦𝑦 = 𝜇𝜇𝜇𝜇,     𝑧𝑧 = 𝜇𝜇−1𝑍𝑍,    𝑡𝑡 = 𝜇𝜇𝜇𝜇, where 
𝜇𝜇 ∈ ℝ\{0} 
Then the system (3.1), becomes 

𝑋̇𝑋 = −
𝑟𝑟1𝑋𝑋2

𝜅𝜅
+ (𝑟𝑟1 − 𝑑𝑑1)𝜇𝜇𝜇𝜇 − �

𝑟𝑟1
𝜅𝜅

+ 𝛽𝛽�𝜇𝜇2𝑋𝑋𝑋𝑋 − 𝛼𝛼𝛼𝛼𝛼𝛼 

𝑌̇𝑌 = −
𝑟𝑟2𝜇𝜇2

𝜅𝜅
𝑌𝑌2 + (𝑟𝑟2 − 𝑑𝑑2)𝜇𝜇𝜇𝜇 − �

𝑟𝑟2
𝜅𝜅

+ 𝛽𝛽�𝑋𝑋𝑋𝑋 
(3. 23) 

 𝑍̇𝑍 = 𝜈𝜈𝜇𝜇2 − 𝛾𝛾𝛾𝛾𝛾𝛾. 
where the dot indicates the variable's derivative.  

Let 𝐹𝐹(𝑋𝑋,𝑌𝑌,𝑍𝑍) = 𝜇𝜇ℎ(𝜇𝜇−1𝑋𝑋, 𝜇𝜇𝜇𝜇, 𝜇𝜇−1𝑍𝑍) = ∑ 𝜇𝜇𝑖𝑖𝐹𝐹𝑖𝑖(𝑋𝑋,𝑌𝑌,𝑍𝑍)𝑛𝑛
𝑖𝑖=0 , 

where 𝐹𝐹𝑖𝑖(𝑋𝑋,𝑌𝑌,𝑍𝑍) is the weight homogeneous part with 
weight degree 𝑛𝑛 − 𝑖𝑖 of 𝐹𝐹 and 𝑛𝑛 is the weight degree of 𝐹𝐹 
with weight exponent 𝑠𝑠 = (0,−1,−1).We also set 
𝐾𝐾(𝑋𝑋,𝑌𝑌,𝑍𝑍) = 𝜇𝜇2𝐾𝐾(𝜇𝜇−1𝑋𝑋, 𝜇𝜇𝜇𝜇, 𝜇𝜇−1𝑍𝑍) = 𝜇𝜇𝜆𝜆0 + 𝜆𝜆1𝑋𝑋 +
𝜇𝜇2𝜆𝜆2𝑌𝑌 + 𝜆𝜆3𝑍𝑍. 
Since 𝐹𝐹(𝑋𝑋,𝑌𝑌,𝑍𝑍) is an invariant algebraic surface of system 
(3.1), then Eq (3.15), can be written as 
�− 𝑟𝑟1𝑋𝑋2

𝜅𝜅
+ (𝑟𝑟1 − 𝑑𝑑1)𝜇𝜇𝜇𝜇 − �𝑟𝑟1

𝜅𝜅
+ 𝛽𝛽�𝜇𝜇2𝑋𝑋𝑋𝑋 −

𝛼𝛼𝛼𝛼𝛼𝛼� �∑ 𝜇𝜇𝑖𝑖 𝜕𝜕𝐹𝐹𝑖𝑖
𝜕𝜕𝜕𝜕

𝑛𝑛
𝑖𝑖=0 � + �− 𝑟𝑟2𝜇𝜇2

𝜅𝜅
𝑌𝑌2 + (𝑟𝑟2 − 𝑑𝑑2)𝜇𝜇𝜇𝜇 −

�𝑟𝑟2
𝜅𝜅

+ 𝛽𝛽�𝑋𝑋𝑋𝑋� �∑ 𝜇𝜇𝑖𝑖 𝜕𝜕𝐹𝐹𝑖𝑖
𝜕𝜕𝜕𝜕

𝑛𝑛
𝑖𝑖=0 � + (𝜈𝜈𝜇𝜇2 −

𝛾𝛾𝛾𝛾𝛾𝛾) �∑ 𝜇𝜇𝑖𝑖 𝜕𝜕𝐹𝐹𝑖𝑖
𝜕𝜕𝜕𝜕

𝑛𝑛
𝑖𝑖=0 � = (𝜇𝜇𝜆𝜆0 + 𝜆𝜆1𝑋𝑋 + 𝜇𝜇2𝜆𝜆2𝑌𝑌 +

𝜆𝜆3𝑍𝑍)∑ 𝜇𝜇𝑖𝑖𝐹𝐹𝑖𝑖𝑛𝑛
𝑖𝑖=0 .  

 
 
 
 
(3. 24) 

Calculate the coefficients of 𝜇𝜇0 in the Eq (3.17), we obtain 

 −
𝑟𝑟1�

𝜕𝜕
𝜕𝜕𝜕𝜕𝐹𝐹0(𝑋𝑋,𝑌𝑌,𝑍𝑍)�𝑋𝑋2

𝜅𝜅
−

(𝛽𝛽𝛽𝛽+𝑟𝑟2)� 𝜕𝜕
𝜕𝜕𝜕𝜕𝐹𝐹0(𝑋𝑋,𝑌𝑌,𝑍𝑍)�𝑋𝑋𝑋𝑋

𝜅𝜅
− 𝜆𝜆1𝑋𝑋 −

𝜆𝜆3𝑍𝑍 = 0. 

 
(3. 25) 

 The above differential equation has a solution 

𝐹𝐹0(𝑋𝑋,𝑌𝑌,𝑍𝑍) = −
𝜅𝜅𝜆𝜆1 ln(𝑋𝑋)−𝑓𝑓1�𝑌𝑌𝑋𝑋

−𝛽𝛽𝛽𝛽+𝑟𝑟2𝑟𝑟1 ,𝑍𝑍�𝑟𝑟1

𝑟𝑟1
+

𝜆𝜆3𝜅𝜅𝜅𝜅
𝑟𝑟1𝑋𝑋

.  
 

 
(3. 26) 

 Since 𝐹𝐹0(𝑋𝑋,𝑌𝑌,𝑍𝑍) is a weight homogeneous then we must  
𝜆𝜆1 = 0 ,  𝜆𝜆3 = 0 and  𝛽𝛽 = − 𝑟𝑟1+𝑟𝑟2

𝜅𝜅
.  

Now calculate the coefficients of 𝜇𝜇1 in the equation (3.17) 
and substitution 𝜆𝜆1 = 0 , 𝜆𝜆3 = 0, 𝛽𝛽 = −𝑟𝑟1+𝑟𝑟2

𝜅𝜅
 and  

𝐹𝐹0(𝑋𝑋,𝑌𝑌,𝑍𝑍) = 𝑓𝑓1(𝑍𝑍), we obtain 
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−
𝜅𝜅�(𝑑𝑑1−𝑟𝑟1)𝑋𝑋+𝛼𝛼𝛼𝛼�� 𝜕𝜕

𝜕𝜕𝜕𝜕𝑓𝑓1(𝑍𝑍)�+𝑟𝑟1�
𝜕𝜕
𝜕𝜕𝜕𝜕𝐹𝐹1(𝑋𝑋,𝑌𝑌,𝑍𝑍)�𝑋𝑋2

𝜅𝜅
−

𝜅𝜅�(𝑑𝑑1−𝑟𝑟1)�� 𝜕𝜕
𝜕𝜕𝜕𝜕𝑓𝑓1(𝑍𝑍)�+𝑟𝑟1�

𝜕𝜕
𝜕𝜕𝜕𝜕𝐹𝐹1(𝑋𝑋,𝑌𝑌,𝑍𝑍)�𝑌𝑌

𝜅𝜅
− 𝛾𝛾 � 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑓𝑓1(𝑍𝑍)� −

𝜆𝜆0 = 0.   

 
 
 
(3. 27) 

 The above differential equation has a solution 

𝐹𝐹1(𝑋𝑋,𝑌𝑌,𝑍𝑍) = 𝑓𝑓2(𝑋𝑋𝑋𝑋,𝑍𝑍) +
𝜅𝜅𝜅𝜅� 𝑑𝑑

𝑑𝑑𝑑𝑑𝑓𝑓1(𝑍𝑍)�+𝜆𝜆0

𝑟𝑟1𝑋𝑋
.  

 
(3. 28) 

 Since 𝐹𝐹1(𝑋𝑋,𝑌𝑌,𝑍𝑍) is a weight homogeneous then we must 
𝜆𝜆0 = 0 and since 𝜅𝜅 ≠ 0 and 𝛾𝛾 ≠ 0 , then 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑓𝑓1(𝑍𝑍) = 0, and 

we can say that 𝑓𝑓1(𝑍𝑍) = 𝑐𝑐1,then which is contradiction. 
Then the polynomial differential system (3.1), has an 
exponential factor of 𝑛𝑛 < 2. 
Therefore 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑔𝑔0(𝑥𝑥,𝑦𝑦) + 𝑔𝑔1(𝑥𝑥,𝑦𝑦)𝑧𝑧, the Eq (3.15) 
becomes 

��− 𝑟𝑟1
𝜅𝜅
− 𝛽𝛽�𝑥𝑥𝑥𝑥 − 𝑟𝑟1𝑥𝑥2

𝜅𝜅
+ (𝑟𝑟1 − 𝑑𝑑1)𝑥𝑥 −

𝛼𝛼𝛼𝛼� �𝜕𝜕(𝑔𝑔0(𝑥𝑥,𝑦𝑦)+𝑔𝑔1(𝑥𝑥,𝑦𝑦)𝑧𝑧)
𝜕𝜕𝜕𝜕

� + ��− 𝑟𝑟2
𝜅𝜅
− 𝛽𝛽� 𝑥𝑥𝑥𝑥 −

𝑟𝑟2𝑦𝑦2

𝜅𝜅
+ (𝑟𝑟2 − 𝑑𝑑2)𝑦𝑦��𝜕𝜕(𝑔𝑔0(𝑥𝑥,𝑦𝑦)+𝑔𝑔1(𝑥𝑥,𝑦𝑦)𝑧𝑧)

𝜕𝜕𝜕𝜕
� +

(𝜈𝜈 − 𝛾𝛾𝛾𝛾) �𝜕𝜕(𝑔𝑔0(𝑥𝑥,𝑦𝑦)+𝑔𝑔1(𝑥𝑥,𝑦𝑦)𝑧𝑧)
𝜕𝜕𝜕𝜕

� = 𝜆𝜆0 + 𝜆𝜆1𝑥𝑥 +
𝜆𝜆2𝑦𝑦 + 𝜆𝜆3𝑧𝑧.   

 
 
 
 
 
 
 
(3. 29) 

 Case (i) In this case 𝛼𝛼 ≠ 0 and the Eq (3.22), becomes 

��− 𝑟𝑟1
𝜅𝜅
− 𝛽𝛽�𝑥𝑥𝑥𝑥 − 𝑟𝑟1𝑥𝑥2

𝜅𝜅
+ (𝑟𝑟1 − 𝑑𝑑1)𝑥𝑥 −

𝛼𝛼𝛼𝛼� �𝜕𝜕(𝑔𝑔0(𝑥𝑥,𝑦𝑦)+𝑔𝑔1(𝑥𝑥,𝑦𝑦)𝑧𝑧)
𝜕𝜕𝜕𝜕

� + ��− 𝑟𝑟2
𝜅𝜅
− 𝛽𝛽� 𝑥𝑥𝑥𝑥 −

𝑟𝑟2𝑦𝑦2

𝜅𝜅
+ (𝑟𝑟2 − 𝑑𝑑2)𝑦𝑦��𝜕𝜕(𝑔𝑔0(𝑥𝑥,𝑦𝑦)+𝑔𝑔1(𝑥𝑥,𝑦𝑦)𝑧𝑧)

𝜕𝜕𝜕𝜕
� +

(𝜈𝜈 − 𝛾𝛾𝛾𝛾) �𝜕𝜕(𝑔𝑔0(𝑥𝑥,𝑦𝑦)+𝑔𝑔1(𝑥𝑥,𝑦𝑦)𝑧𝑧)
𝜕𝜕𝜕𝜕

� = 𝜆𝜆0 + 𝜆𝜆1𝑥𝑥 +
𝜆𝜆2𝑦𝑦 + 𝜆𝜆3𝑧𝑧.  
 

 
 
 
 
 
 
 
(3. 30) 

Calculate the coefficients of 𝑧𝑧𝑖𝑖 , 𝑖𝑖 = 0,1,2 , the following  
equations will obtain: 
𝑖𝑖 = 2:                   −𝛼𝛼 � 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑔𝑔1(𝑥𝑥,𝑦𝑦)� = 0. (3. 31) 

  

𝑖𝑖 = 1: ��− 𝑟𝑟1
𝜅𝜅
− 𝛽𝛽�𝑥𝑥𝑥𝑥 − 𝑟𝑟1𝑥𝑥2

𝜅𝜅
+ (𝑟𝑟1 −

𝑑𝑑1)𝑥𝑥�� 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑔𝑔1(𝑥𝑥,𝑦𝑦)� − 𝛼𝛼 � 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑔𝑔0(𝑥𝑥,𝑦𝑦)� +

��− 𝑟𝑟2
𝜅𝜅
− 𝛽𝛽�𝑥𝑥𝑥𝑥 − 𝑟𝑟2𝑦𝑦2

𝜅𝜅
+ (𝑟𝑟2 −

𝑑𝑑2)𝑦𝑦�� 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑔𝑔1(𝑥𝑥,𝑦𝑦)� − 𝛾𝛾𝑔𝑔1(𝑥𝑥,𝑦𝑦) − 𝜆𝜆3 = 0. 

 
 
 
 
 
 
 
 
(3. 32) 

 

𝑖𝑖 = 0: ��− 𝑟𝑟1
𝜅𝜅
− 𝛽𝛽�𝑥𝑥𝑥𝑥 − 𝑟𝑟1𝑥𝑥2

𝜅𝜅
+ (𝑟𝑟1 −

 
 
 

𝑑𝑑1)𝑥𝑥�� 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑔𝑔0(𝑥𝑥,𝑦𝑦)� + ��− 𝑟𝑟2

𝜅𝜅
− 𝛽𝛽�𝑥𝑥𝑥𝑥 −

𝑟𝑟2𝑦𝑦2

𝜅𝜅
+ (𝑟𝑟2 − 𝑑𝑑2)𝑦𝑦�� 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑔𝑔0(𝑥𝑥,𝑦𝑦)� +

𝜈𝜈𝑔𝑔1(𝑥𝑥,𝑦𝑦) − 𝜆𝜆1𝑥𝑥 − 𝜆𝜆2𝑦𝑦 − 𝜆𝜆0 = 0.  

 
 
 
 
(3. 33) 

 
From Eq (3.24), results  

𝑔𝑔1(𝑥𝑥,𝑦𝑦) = 𝑔𝑔1(𝑦𝑦). (3. 34) 
After substitution Eq (3.27), in Eq (3.25), we get 

��− 𝑟𝑟2
𝜅𝜅
− 𝛽𝛽�𝑥𝑥𝑥𝑥 − 𝑟𝑟2𝑦𝑦2

𝜅𝜅
+ (𝑟𝑟2 − 𝑑𝑑2)𝑦𝑦� � 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑔𝑔1(𝑦𝑦)� −

𝛼𝛼 � 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑔𝑔0(𝑥𝑥,𝑦𝑦)� − 𝛾𝛾𝑔𝑔1(𝑦𝑦) − 𝜆𝜆3 = 0.  

 
 
 
(3. 35) 

From equation (3.28) results 

𝑔𝑔0(𝑥𝑥,𝑦𝑦) =

−
�𝛽𝛽𝛽𝛽𝑥𝑥

2𝑦𝑦
2 +𝑑𝑑2𝜅𝜅𝜅𝜅𝜅𝜅−𝑟𝑟2𝜅𝜅𝜅𝜅𝜅𝜅+

𝑟𝑟2𝑥𝑥2𝑦𝑦
2 +𝑟𝑟2𝑥𝑥𝑦𝑦2��

𝑑𝑑
𝑑𝑑𝑑𝑑𝑔𝑔1(𝑦𝑦)�

𝛼𝛼𝛼𝛼
−

𝛾𝛾𝛾𝛾𝛾𝛾𝑔𝑔1(𝑦𝑦)+𝜆𝜆3𝜅𝜅𝜅𝜅
𝛼𝛼𝛼𝛼

+ 𝑔𝑔2(𝑦𝑦).   

(3. 36) 

Now substitution Eq (3.27) , (3.29), in Eq (3.26), we get 

1
2𝛼𝛼𝜅𝜅2

�2�(−𝛽𝛽𝛽𝛽 − 𝑟𝑟2)𝑥𝑥 + (𝑟𝑟2 − 𝑑𝑑2)𝜅𝜅 −

𝑟𝑟2𝑦𝑦� ��−
𝜅𝜅𝜅𝜅+𝑟𝑟2
2

� 𝑥𝑥 + (𝑟𝑟2 − 𝑑𝑑2)𝜅𝜅 −

𝑟𝑟2𝑦𝑦� 𝑥𝑥𝑦𝑦2 �
𝑑𝑑2

𝑑𝑑𝑦𝑦2
𝑔𝑔1(𝑦𝑦)� + 2�(−𝛽𝛽𝛽𝛽 − 𝑟𝑟2)𝑥𝑥 +

(𝑟𝑟2 − 𝑑𝑑2)𝜅𝜅 − 𝑟𝑟2𝑦𝑦�𝑦𝑦 ��−
𝜅𝜅𝜅𝜅+2𝑟𝑟1−𝑟𝑟2

2
� 𝑥𝑥 +

(−𝛽𝛽𝛽𝛽 − 𝛾𝛾 − 𝑑𝑑1 − 𝑑𝑑2 + 𝑟𝑟1 + 𝑟𝑟2)𝜅𝜅 − (𝑟𝑟1 +

2𝑟𝑟2)𝑦𝑦�𝑥𝑥 � 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑔𝑔1(𝑦𝑦)�+ 2𝜅𝜅 �(−𝛽𝛽𝛽𝛽 − 𝑟𝑟2)𝑥𝑥 +

(𝑟𝑟2 − 𝑑𝑑2)𝜅𝜅 − 𝑟𝑟2𝑦𝑦)𝛼𝛼𝛼𝛼 � 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑔𝑔2(𝑦𝑦)�+ �𝑟𝑟1𝛾𝛾𝑥𝑥2 −

�(−𝛽𝛽𝛽𝛽 − 𝑑𝑑1 + 𝑟𝑟1)𝜅𝜅 − 𝑟𝑟1𝑦𝑦�𝛾𝛾𝛾𝛾 + 𝛼𝛼𝛼𝛼𝛼𝛼�𝑔𝑔1(𝑦𝑦) +
𝑟𝑟1 𝜆𝜆3𝑥𝑥2 + (𝛽𝛽𝜆𝜆3𝑦𝑦 − 𝛼𝛼𝜆𝜆1 + 𝑑𝑑1𝜆𝜆3 − 𝑟𝑟1𝜆𝜆3)𝜅𝜅 +

𝑟𝑟1𝜆𝜆3𝑦𝑦�𝑥𝑥 − 𝛼𝛼𝛼𝛼(𝜆𝜆2𝑦𝑦 + 𝜆𝜆0)� = 0.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(3. 37) 

Now collect the Eq (3.30), with respect to 𝑥𝑥 and compute 
the coefficients of 𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 0,1,2,3. 
For 𝑖𝑖 = 3: 

1
2𝛼𝛼𝜅𝜅2

�2(−𝛽𝛽𝛽𝛽 − 𝑟𝑟2) �−𝛽𝛽𝛽𝛽+𝑟𝑟2
2

� 𝑦𝑦 � 𝑑𝑑2

𝑑𝑑𝑦𝑦2
𝑔𝑔1(𝑦𝑦)� +

2(−𝛽𝛽𝛽𝛽 − 𝑟𝑟2)𝑦𝑦 �−𝛽𝛽𝛽𝛽+2𝑟𝑟1+𝑟𝑟2
2

� � 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑔𝑔1(𝑦𝑦)�� = 0.   

(3. 38) 

After solving the above ordinary differential equation, we 
get 

𝑔𝑔1(𝑦𝑦) = 𝑐𝑐1 + 𝑐𝑐2𝑦𝑦
− 2𝑟𝑟1
𝛽𝛽𝛽𝛽+𝑟𝑟2 . 

(3. 39) 

We must the power of 𝑦𝑦 is integer then we must 𝑐𝑐2 = 0, 
then 

𝑔𝑔1(𝑦𝑦) = 𝑐𝑐1. (3. 40) 
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For 𝑖𝑖 = 2:  
1

2𝛼𝛼𝜅𝜅2
�2 ��(𝑟𝑟2 − 𝑑𝑑2)𝜅𝜅 − 𝑟𝑟2𝑦𝑦� �−

𝛽𝛽𝛽𝛽+𝑟𝑟2
2

� +

(−𝛽𝛽𝛽𝛽 − 𝑟𝑟2)�(𝑟𝑟2 − 𝑑𝑑2)𝜅𝜅 −

𝑟𝑟2𝑦𝑦��𝑦𝑦2 �
𝑑𝑑2

𝑑𝑑𝑦𝑦2
𝑔𝑔1(𝑦𝑦)�+ 2 ��(𝑟𝑟2 − 𝑑𝑑2)𝜅𝜅 −

𝑟𝑟2𝑦𝑦�𝑦𝑦 �−
𝛽𝛽𝛽𝛽+2𝑟𝑟1+𝑟𝑟2

2
� + (𝛽𝛽𝛽𝛽 − 𝑟𝑟2)𝑦𝑦�(−𝛽𝛽𝛽𝛽 −

𝛾𝛾 − 𝑑𝑑1 − 𝑑𝑑2 + 𝑟𝑟1 + 𝑟𝑟2)𝜅𝜅 − (𝑟𝑟1 +

2𝑟𝑟2)𝑦𝑦��� 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑔𝑔1(𝑦𝑦)� + 2𝜅𝜅(𝑟𝑟1𝛾𝛾𝑔𝑔1(𝑦𝑦) +

𝑟𝑟1𝜆𝜆3)� = 0.  

 
 
 
 
 
 
 
 
 
(3. 41) 

Now substitution the Eq (3.33), in the Eq (3.34), we get 
2𝜅𝜅(𝑟𝑟1𝛾𝛾𝑔𝑔1(𝑦𝑦) + 𝑟𝑟1𝜆𝜆3) = 0. (3. 42) 

Since 𝜅𝜅 ≠ 0, then 𝜆𝜆3 = −𝑐𝑐1𝛾𝛾. 
For 𝑖𝑖 = 1: 

1
2𝛼𝛼𝜅𝜅2

�2�(𝑟𝑟2 − 𝑑𝑑2)𝜅𝜅 − 𝑟𝑟2𝑦𝑦�
2
𝑦𝑦2 � 𝑑𝑑2

𝑑𝑑𝑦𝑦2
𝑔𝑔1(𝑦𝑦)�+

2�(𝑟𝑟2 − 𝑑𝑑2)𝜅𝜅 − 𝑟𝑟2𝑦𝑦�𝑦𝑦�(−𝛽𝛽𝛽𝛽 − 𝛾𝛾 − 𝑑𝑑1 − 𝑑𝑑2 +

𝑟𝑟1 + 𝑟𝑟2)𝜅𝜅 − (𝑟𝑟1 + 2𝑟𝑟2)𝑦𝑦�� 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑔𝑔1(𝑦𝑦)�+

2𝜅𝜅 �(𝛼𝛼(−𝛽𝛽𝛽𝛽 − 𝑟𝑟2)𝑦𝑦)� 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑔𝑔2(𝑦𝑦)� − �(−𝛽𝛽𝛽𝛽 −

𝑑𝑑1 + 𝑟𝑟1)𝜅𝜅 − 𝑟𝑟1𝑦𝑦�𝛾𝛾𝑔𝑔1(𝑦𝑦) + (𝛽𝛽𝜆𝜆3𝑦𝑦 − 𝛼𝛼𝜆𝜆1 +

𝑑𝑑1𝜆𝜆3 − 𝑟𝑟1𝜆𝜆3)𝜅𝜅 + 𝑟𝑟1𝜆𝜆3𝑦𝑦�� = 0.   

 
 
 
 
 
 
 
(3. 43) 

 After substitution 𝑔𝑔1(𝑦𝑦) = 𝑐𝑐1and 𝜆𝜆3 = −𝑐𝑐1𝛾𝛾 in Eq (3.36), 
we get 

1
𝛼𝛼𝛼𝛼

(−(−𝛽𝛽𝛽𝛽 − 𝑟𝑟1)𝛾𝛾𝑐𝑐1 − 𝛽𝛽𝑐𝑐1𝛾𝛾𝛾𝛾 − 𝑐𝑐1𝛾𝛾𝑟𝑟1)𝑦𝑦 −
(𝑟𝑟1 − 𝑑𝑑1)𝜅𝜅𝜅𝜅𝑐𝑐1 + (−𝛾𝛾𝑐𝑐1𝑑𝑑1 + 𝛾𝛾𝑐𝑐1𝑟𝑟1 −
𝛼𝛼𝜆𝜆1)𝜅𝜅 = 0.  

(3. 44) 

Then 𝜆𝜆1 = 0.  
For 𝑖𝑖 = 0: 
1
𝛼𝛼𝛼𝛼
��(𝑟𝑟2 − 𝑑𝑑2)𝜅𝜅 − 𝑟𝑟2𝑦𝑦�𝛼𝛼 �

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑔𝑔2(𝑦𝑦)�𝑦𝑦 +

𝛼𝛼𝛼𝛼𝛼𝛼𝑔𝑔1(𝑦𝑦) − 𝛼𝛼𝛼𝛼(𝜆𝜆2𝑦𝑦 + 𝜆𝜆0)� = 0.   

 
 
 
 
(3. 45) 

After substitution the 𝑔𝑔1(𝑦𝑦) = 𝑐𝑐1 , in Eq (3.38), we get  
1
𝛼𝛼𝛼𝛼
��(𝑟𝑟2 − 𝑑𝑑2)𝜅𝜅 − 𝑟𝑟2𝑦𝑦�𝛼𝛼 �

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑔𝑔2(𝑦𝑦)�𝑦𝑦 +

𝛼𝛼𝛼𝛼𝛼𝛼𝑐𝑐1 − 𝛼𝛼𝛼𝛼(𝜆𝜆2𝑦𝑦 + 𝜆𝜆0)� = 0.  

 
 
 
 
(3. 46) 

Now solving the above ordinary differential equation, we 
get 

𝑔𝑔2(𝑦𝑦) = �
𝜅𝜅(𝜈𝜈𝑐𝑐1 − 𝜆𝜆2𝑦𝑦 − 𝜆𝜆0)
𝑦𝑦(𝜅𝜅𝑑𝑑2 − 𝜅𝜅𝑟𝑟2 + 𝑟𝑟2𝑦𝑦)𝑑𝑑𝑑𝑑 + 𝑐𝑐2. 

 
(3. 47) 

After solving the above integration, we get 
𝑔𝑔2(𝑦𝑦) =
�(−𝜈𝜈𝑐𝑐1+𝜅𝜅𝜆𝜆2+𝜆𝜆0)𝑟𝑟2−𝜅𝜅𝑑𝑑2𝜆𝜆2� ln�(−𝜅𝜅+𝑦𝑦)𝑟𝑟2+𝜅𝜅𝑑𝑑2�+𝑟𝑟2 ln(𝑦𝑦)(𝜈𝜈𝑐𝑐1−𝜆𝜆0)

𝑟𝑟2(𝑑𝑑2−𝑟𝑟2) .  
 
(3. 48) 

Since 𝑔𝑔2(𝑦𝑦) is a polynomial function depends on variable 𝑦𝑦, 
then we must 
(−𝜈𝜈𝑐𝑐1 + 𝜅𝜅𝜆𝜆2 + 𝜆𝜆0)𝑟𝑟2 − 𝜅𝜅𝑑𝑑2𝜆𝜆2 = 0 and 𝜈𝜈𝑐𝑐1 − 𝜆𝜆0 = 0, then 
𝜆𝜆0 = 𝜈𝜈𝑐𝑐1 and 𝜆𝜆2 = 0, Hence 𝑔𝑔(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑐𝑐1𝑧𝑧 with cofactor 
𝐿𝐿 = 𝜈𝜈𝑐𝑐1 − 𝛾𝛾𝑐𝑐1𝑧𝑧. 
Case (ii) Similarly we can prove that, the exponential factor 
of polynomial differential system (3.1), is 𝑒𝑒𝑥𝑥𝑥𝑥+𝑧𝑧, with the 
cofactor 𝑣𝑣 − 𝛾𝛾𝛾𝛾. 
Proposition 3.3. when α ≠ 0, a set of all exponential 
factors for the biological system (3.1), consists of the 
following three: 

i. The exponential factor 
��(𝑑𝑑2−𝑟𝑟2)+𝛾𝛾𝑧𝑧�𝜅𝜅+𝑟𝑟2(𝑧𝑧+1)𝑦𝑦�

(𝑑𝑑2−𝑟𝑟2)𝜅𝜅+𝑟𝑟2𝑦𝑦
 with 

cofactor 𝛾𝛾𝛾𝛾 and with parameters 𝛾𝛾 = 𝑟𝑟2 − 𝑑𝑑2 , 
𝜈𝜈 = 0. 

ii. The exponential factor  
�6�𝛾𝛾3−𝛾𝛾3𝑧𝑧+𝜈𝜈3�𝜅𝜅2+2���−𝑧𝑧3−1�𝑦𝑦−𝑥𝑥�𝛾𝛾2+𝑧𝑧�(3𝜈𝜈𝜈𝜈+𝛾𝛾)𝑦𝑦+𝛼𝛼�𝛾𝛾−3𝜈𝜈2𝑦𝑦𝑦𝑦+𝛼𝛼𝛼𝛼6 �𝑟𝑟2𝜅𝜅−𝛼𝛼𝑟𝑟2

2𝑦𝑦𝑦𝑦�

6𝛾𝛾2�𝛾𝛾𝛾𝛾−𝑟𝑟2𝑦𝑦3 �𝜅𝜅
  

with cofactor 2𝑟𝑟2𝑥𝑥
𝜅𝜅

+ 𝛾𝛾𝛾𝛾 + 𝜈𝜈�𝛼𝛼𝑟𝑟2−3𝛾𝛾2𝜅𝜅�
3𝜅𝜅𝛾𝛾2

 and with 
parameters 𝑟𝑟1 = 0,𝑑𝑑1 = 6𝛾𝛾,𝑑𝑑2 = 𝑟𝑟2 − 3𝛾𝛾. 

iii. The exponential factor  
6𝜅𝜅𝛾𝛾2+�−𝑟𝑟2�𝑧𝑧6+1�𝑦𝑦−6𝜅𝜅𝛾𝛾𝑧𝑧�𝛾𝛾+𝑟𝑟2𝛾𝛾𝑦𝑦𝑦𝑦

6𝛾𝛾2𝜅𝜅−𝛾𝛾𝑟𝑟2𝑦𝑦
 

With cofactor 𝛾𝛾𝛾𝛾 and with parameters 𝜈𝜈 = 0, 
𝑑𝑑2 = 𝑟𝑟2 − 6𝛾𝛾. 

 
Theorem 3.4. The biological system (3.1), has a Darboux 
first integral of the form 

 𝐻𝐻(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = �𝑒𝑒
𝑧𝑧+

6𝜅𝜅𝛾𝛾2+�−𝑟𝑟2�𝑧𝑧6+1�𝑦𝑦−6𝜅𝜅𝛾𝛾𝑧𝑧�𝛾𝛾+𝑟𝑟2𝛾𝛾𝑦𝑦𝑦𝑦
6𝛾𝛾2𝜅𝜅−𝛾𝛾𝑟𝑟2𝑦𝑦 �

𝛼𝛼1

if 𝜆𝜆 = 0, 

𝜈𝜈 = 0, 𝜉𝜉1 = 0, 𝜉𝜉2 = 𝛼𝛼1where 𝜆𝜆,𝛼𝛼1, 𝜉𝜉1, 𝜉𝜉2 ∈ ℝ. 
 
Proof. By Proposition 3.1, Theorem 3.2, and Proposition 
3.3, the system (3.1), has an invariant algebraic surface of 
the form 𝑦𝑦 + (𝑑𝑑2−𝑟𝑟2)𝜅𝜅

𝑟𝑟2
  with cofactors −𝑟𝑟2𝑦𝑦

𝜅𝜅
 and has an 

exponential factor of the form 𝑒𝑒𝑧𝑧, 

𝑒𝑒

�6�𝛾𝛾3−𝛾𝛾3𝑧𝑧+𝜈𝜈3�𝜅𝜅2+2���−𝑧𝑧3−1�𝑦𝑦−𝑥𝑥�𝛾𝛾2+𝑧𝑧�(3𝜈𝜈𝜈𝜈+𝛾𝛾)𝑦𝑦+𝛼𝛼�𝛾𝛾−3𝜈𝜈2𝑦𝑦𝑦𝑦+𝛼𝛼𝛼𝛼6 �𝑟𝑟2𝜅𝜅−𝛼𝛼𝑟𝑟2
2𝑦𝑦𝑦𝑦�

6𝛾𝛾2�𝛾𝛾𝛾𝛾−𝑟𝑟2𝑦𝑦3 �𝜅𝜅  

and 𝑒𝑒
6𝜅𝜅𝛾𝛾2+�−𝑟𝑟2�𝑧𝑧6+1�𝑦𝑦−6𝜅𝜅𝛾𝛾𝑧𝑧�𝛾𝛾+𝑟𝑟2𝛾𝛾𝑦𝑦𝑦𝑦

6𝛾𝛾2𝜅𝜅−𝛾𝛾𝑟𝑟2𝑦𝑦   with cofactors 
 𝜈𝜈 − 𝛾𝛾𝛾𝛾,2𝑟𝑟2𝑥𝑥

𝜅𝜅
+ 𝛾𝛾𝛾𝛾 + 𝜈𝜈�𝛼𝛼𝑟𝑟2−3𝛾𝛾2𝜅𝜅�

3𝜅𝜅𝛾𝛾2
 and 𝛾𝛾𝑧𝑧 respectively,  

By Darboux Theorem there exist 𝜆𝜆,𝛼𝛼1, 𝜉𝜉1, 𝜉𝜉2 ∈ ℝ, such that 
𝜆𝜆 �− 𝑟𝑟2𝑦𝑦

𝜅𝜅
� + 𝛼𝛼1(𝜈𝜈 − 𝛾𝛾𝛾𝛾) + 𝜉𝜉1 �

2𝑟𝑟2𝑥𝑥
𝜅𝜅

+ 𝛾𝛾𝛾𝛾 +
𝜈𝜈�𝛼𝛼𝑟𝑟2−3𝛾𝛾2𝜅𝜅�

3𝜅𝜅𝛾𝛾2
� + 𝜉𝜉2(𝛾𝛾𝑧𝑧) = 0.   

 
 
(3. 49) 

 Then by theorem (2.8), 
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𝐻𝐻(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = �𝑦𝑦 + (𝑑𝑑2−𝑟𝑟2)𝜅𝜅
𝑟𝑟2

�
𝜆𝜆

(𝑒𝑒𝑧𝑧)  

�𝑒𝑒
�6�𝛾𝛾3−𝛾𝛾3𝑧𝑧+𝜈𝜈3�𝜅𝜅2+2���−𝑧𝑧3−1�𝑦𝑦−𝑥𝑥�𝛾𝛾2+𝑧𝑧�(3𝜈𝜈𝜈𝜈+𝛾𝛾)𝑦𝑦+𝛼𝛼�𝛾𝛾−3𝜈𝜈2𝑦𝑦𝑦𝑦+𝛼𝛼𝛼𝛼6 �𝑟𝑟2𝜅𝜅−𝛼𝛼𝑟𝑟2

2𝑦𝑦𝑦𝑦�

6𝛾𝛾2�𝛾𝛾𝛾𝛾−𝑟𝑟2𝑦𝑦3 �𝜅𝜅 �   

�𝑒𝑒
6𝜅𝜅𝛾𝛾2+�−𝑟𝑟2�𝑧𝑧6+1�𝑦𝑦−6𝜅𝜅𝛾𝛾𝑧𝑧�𝛾𝛾+𝑟𝑟2𝛾𝛾𝑦𝑦𝑦𝑦

6𝛾𝛾2𝜅𝜅−𝛾𝛾𝑟𝑟2𝑦𝑦 �
𝜉𝜉2

 .   

 
 
 
 
 
 
(3. 50) 

Is a Darboux first integral of the system (3.1), after solving 
the Eq (3.42), 
we get then 𝜆𝜆 = 0, 𝜈𝜈 = 0, 𝜉𝜉1 = 0, 𝜉𝜉2 = 𝛼𝛼1 and by 
proposition 3.2 𝛽𝛽 = −𝑟𝑟2

𝜅𝜅
, after substitutions the 𝜆𝜆 = 0, 𝜈𝜈 =

0, 𝜉𝜉1 = 0, 
𝜉𝜉2 = 𝛼𝛼1, 𝛽𝛽 = −𝑟𝑟2

𝜅𝜅
 in the Eq (3.43), then 

𝐻𝐻(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) =

�𝑒𝑒
𝑧𝑧+

6𝜅𝜅𝛾𝛾2+�−𝑟𝑟2�𝑧𝑧6+1�𝑦𝑦−6𝜅𝜅𝛾𝛾𝑧𝑧�𝛾𝛾+𝑟𝑟2𝛾𝛾𝑦𝑦𝑦𝑦
6𝛾𝛾2𝜅𝜅−𝛾𝛾𝑟𝑟2𝑦𝑦 �

𝛼𝛼1

.  

 
(3. 51) 

 Now, by definition of first integral (2.2), 𝐻𝐻(𝑥𝑥,𝑦𝑦, 𝑧𝑧) satisfies 
�𝑟𝑟1𝑥𝑥 �1 − 𝑥𝑥+𝑦𝑦

𝜅𝜅
� − 𝑑𝑑1𝑥𝑥 + 𝑟𝑟2𝑥𝑥𝑥𝑥

𝜅𝜅
− 𝛼𝛼𝛼𝛼� �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� +

�𝑟𝑟2𝑥𝑥 �1 − 𝑥𝑥+𝑦𝑦
𝜅𝜅
� + 𝑟𝑟2𝑥𝑥𝑥𝑥

𝜅𝜅
− 𝑑𝑑2𝑥𝑥� �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� +

(−𝛾𝛾𝛾𝛾) �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 0.  

 
 
(3. 52) 

 Then the system (3.1), has a Darboux first integral of the 
form  

𝐻𝐻(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = �𝑒𝑒
𝑧𝑧+

6𝜅𝜅𝛾𝛾2+�−𝑟𝑟2�𝑧𝑧6+1�𝑦𝑦−6𝜅𝜅𝛾𝛾𝑧𝑧�𝛾𝛾+𝑟𝑟2𝛾𝛾𝑦𝑦𝑦𝑦
6𝛾𝛾2𝜅𝜅−𝛾𝛾𝑟𝑟2𝑦𝑦 �

𝛼𝛼1

. 

 

 
 
Remark 3.5. The following statements true for the 
biological system (3.1), has a polynomial first integral of 
the form. 

i. 𝐻𝐻(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑥𝑥𝑦𝑦2 − 𝑥𝑥2𝑦𝑦 + 𝑥𝑥𝑥𝑥 + 1 if and only if 
𝛼𝛼 = 0, 𝛽𝛽 = −3𝑟𝑟2

𝜅𝜅
, 𝑑𝑑1 = 𝑟𝑟2(𝜅𝜅−1)

𝜅𝜅
 and  

𝑑𝑑2 = 𝑟𝑟2(𝜅𝜅+1)
𝜅𝜅

.  
ii. 𝐻𝐻(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑥𝑥𝑥𝑥 + 1 if and only if 𝛼𝛼 = 0, 𝛽𝛽 =

−𝑟𝑟1+𝑟𝑟2
𝜅𝜅

, 𝑑𝑑1 = 𝑟𝑟1 + 𝑟𝑟2 − 𝑑𝑑2 .  
The Table 2. shows the system (2) exhibits with 3D 

projection and by choosing a different value for each of the 
parameter’s 𝑟𝑟1, 𝜅𝜅, 𝑑𝑑1, 𝛽𝛽, 𝛼𝛼, 𝑟𝑟2, 𝑑𝑑2and 𝛾𝛾, for a particular set of 
beginning conditions, 3D projection of the system (2) was 
plotted. 

 
 
 
 
 
 
 
 

Figure 1. Local phase portraits of system (2) for initial 
conditions 𝒙𝒙(𝟎𝟎) = 𝟏𝟏𝟏𝟏, 𝒚𝒚(𝟎𝟎) = 𝟕𝟕.𝟓𝟓, and 𝒛𝒛(𝟎𝟎) = 𝟒𝟒, 𝒓𝒓𝟏𝟏 =
𝟏𝟏𝟏𝟏−𝟐𝟐, 𝜿𝜿 = 𝟑𝟑𝟑𝟑, 𝒅𝒅𝟏𝟏 = 𝟑𝟑 × 𝟏𝟏𝟏𝟏−𝟑𝟑, 𝜷𝜷 = 𝟏𝟏𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏−𝟑𝟑, 𝜶𝜶 =
𝟏𝟏𝟏𝟏−𝟖𝟖, 𝒓𝒓𝟐𝟐 = 𝟐𝟐, 𝒅𝒅𝟐𝟐 = 𝟐𝟐and 𝜸𝜸 = 𝟏𝟏𝟏𝟏−𝟏𝟏: On the 𝒙𝒙, 𝒚𝒚, and 𝒛𝒛 
planes, there is a 3D projection. 

 
Conclusion 

The results of this study lead to the following 
conclusions. First, system (3.1) has exactly one invariant 
algebraic surface 𝑦𝑦 + (𝑑𝑑2−𝑟𝑟2)𝜅𝜅

𝑟𝑟2
, where 𝛽𝛽 = −𝑟𝑟2

𝜅𝜅
 (see Theorem 

3.1), secondly, the biological system (3.1) includes just one 
initial integral and a few exponential elements (see Theorem 
3.2 and Proposition 3.3). Finally, the system (1.1) has a 
Darboux first integral (see Theorem 3.4). 
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Table 1. The system (2) exhibits with 3D projection. 
Parameters Unit Description Parameter 

value  
𝑟𝑟1 𝑑𝑑𝑑𝑑𝑦𝑦−1 The growth rate of non-

infected tumor cells  
10−2 

𝜅𝜅 
 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
 

The maximum capacity 
that tumor cells can occupy  
 

30 

𝑑𝑑1 
 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑦𝑦−1 
 

Uninfected tumor cells 
death rate  
 

3 × 10−3 

𝛽𝛽 
 

𝑑𝑑𝑑𝑑𝑦𝑦−1 
 

The rate of spread of the 
virus  
 

147
× 10−3 

𝛼𝛼 
 

𝑑𝑑𝑑𝑑𝑦𝑦−1 
 

Parts of tumor cells killed 
by chemotherapy  
 

10−8 

𝑟𝑟2 
 

𝑑𝑑𝑑𝑑𝑦𝑦−1 
 

The growth rate of infected 
tumor cells  
 

2 

𝑑𝑑2 
 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑦𝑦−1 
 

The rate of death of 
infected tumor cells  
 

2 

𝛾𝛾 𝑑𝑑𝑑𝑑𝑦𝑦−1 The rate of decline in the 
concentration of 
chemotherapy  
 

9 × 10−1 



Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 2, 2025 (84-91)  

91 
 

References 
 
[1]  M. H. R. O. Ashyani A, "Stability Analysis of Mathematical Model 

of Virus Therapy," Iranian Journal of Mathematical Sciences and 
Informatics, vol. 11, no. 2, pp. 97-110, 2016.  

[2]  M. P. M. A. I. I. K. S. P. N. M. &. A. A. Zeyaullah, "Oncolytic Viruses 
in the Treatment of Cancer: A Review of Current Strategies," Cancer 
Cell International, vol. 12, no. 56, p. 14, 2012.  

[3]  K. D. J.-S. L. B. D. B. J. C. &. M. J. A. Ottolino-Perry, "Intelligent 
Design: Combination Therapy With Oncolytic Viruses," Molecular 
Therapy, vol. 18, no. 2, p. 251–263, 2010.  

[4]  G. Darboux, "De ´lemploi des solutions particuli`eres algbriques dans 
´ıint`egration des systmes," C. R. Math. Acad. Sci. Paris, vol. 86, pp. 
1012-1014.  

[5]  G. Darboux, "Mémoire sur les équations différentielles algébriques du 
second ordre et du premier degré," Bull. Sci. Math. 2´eme s´erie, vol. 
2, pp. 151-200, 1878.  

[6]  A. M. Husien, "Darboux integrability of a general circuit system," 
Elsevier, 2025.  

[7]  A. I. A. a. N. A. S. Adnan A. Jalal, "Darboux Integrability of a 
Generalized 3D Chaotic Sprott ET9 System," Baghdad Science 
Journa, vol. 19, no. 3, pp. 542-550, 2022.  

[8]  S. F. &. O. K. B. Mohammed, "Darboux and Analytic First Integrals 
of the Generalized Michelson System," Al-Rafidain Journal of 
Computer Sciences and Mathematics (RJCM), p. 65–69, 2024.  

[9]  J. L. a. X. Zhang, "Rational first integrals in the Darboux theory of 
integrability in Cn," Bulletin of the Belgian Mathematical Society - 
Series 2 (also known as Bull. Sci. Math.), vol. 134, no. 2, pp. 189-195, 
2010.  

[10]  X. Z. Jaume Llibre, "On the Darboux integrability of polynomial 
differential systems," Qualitative Theory of Dynamical Systems, vol. 
11, pp. 129-144, 2012.  

[11]  A. A. Husien AM, "Analytic Integrability of Generalized 3-
Dimensional Chaotic Systems," PLOS ONE, vol. 19, no. 4, 2024.  

[12]  J. Y. J. a. Z. X. Llibre, " On polynomial integrability of the Euler 
equations on so(4)," J. Geom. Phys., vol. 96, pp. 36-41, 2002.  

[13]  A. I. A. W. A. Aween Karim, "Integrability of a Family of Lotka–
Volterra Three Species Biological System," arXiv [math.DS — 
Dynamical Systems], 2023.  

[14]  V. V. C. a. L. J. Barreira, "Integrability and limit cycles of the Moon-
Rand system," International Journal of Non-Linear Mechanics, vol. 
69, pp. 129-136, 2015.  

[15]  J. a. V. C. Llibre, "Integrability of the Bianchi IX system," Journal of 
Mathematical Physics, vol. 46, pp. 1-13, 2005.  

 
 
 
 


