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Traditional intrusion detection systems are being surpassed by the increasingly sophisticated
cyber threats that modern networks face. The increasing scale and complexity of modern
network environments, coupled with the evolving sophistication of cyber threats, have
rendered traditional Intrusion Detection Systems (IDS) inadequate for real-time and large-
scale protection. This paper presents a comprehensive review and design strategy for a
unified, real-time IDS and mitigation framework leveraging Apache Spark. This paper
proposes a unified real-time IDS framework that utilizes Apache Spark to address the
aforementioned disparity. The design combines threat intelligence, distributed machine
learning, and streaming data analytics to facilitate automated mitigation and scalable multi-
vector threat detection. We have identified critical limitations (e.g., offline detection, limited
attack scope, outdated datasets) and have developed a set of objectives to address them
through a review of current Spark-based IDS research. The outcome is a definitive roadmap
for a next-generation IDS that offers low-latency, adaptive, and transparent defense in high-
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throughput network environments.
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1. Introduction

The origins of intrusion detection can be traced to the
seminal model proposed by Dorothy E. Denning in 1987,
which introduced the formal comparison of audit records
with user behavior profiles to identify anomalies[2].
Throughout the 1990s, intrusion detection systems were
primarily host-centered and computationally lightweight.
The release of Snort 1.0 in 1998 marked a pivotal shift,
enabling community-driven signature sharing and a move
toward network-centric inspection. Recent real-world studies
show that open-source tools like Snort, Suricata, and Zeek
are still the most popular choices. Each has its own pros and
cons when it comes to detection coverage and performance
overhead.[3]. The limits of signature-based techniques, on
the other hand, were obvious during large worm outbreaks
such as Code Red and SQL Slammer, which were able to
circumvent static signature constraints. The introduction of
Cyber Threat Intelligence (CTI), which is described as
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adversary-centered, evidence-based knowledge that
enhances raw Indicators of Compromise (IoCs) with
contextual information such as motive, capability, and intent,
was hastened as a result of these problems[4]. Snort, Suricata,
and Zeek are some of the most well-known open-source IDS
tools. In scenarios with a lot of traffic, comparative studies
show that Suricata, which has a multithreaded architecture,
often works better than Snort and Zeek. These solutions use
signature-based detection methods, which work well against
known threats but may not work as well against new or
quickly changing ones.[5]. To address the limitations of
signature-based systems, the cybersecurity community has
increasingly turned to Cyber Threat Intelligence (CTI). CTI
involves the collection and analysis of information about
potential threats, enabling organizations to anticipate and
mitigate attacks more proactively[6].

Intrusion detection systems have seen a dramatic
improvement in their capabilities due to the development of
big data technology[7]. Apache Spark, utilizing in-memory
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processing and its Structured Streaming module, offers a
scalable framework for real-time analysis of extensive data,
which is essential for prompt danger identification in
contemporary networks.[8]. In response to different
processing requirements, architectural models such as
Lambda, Kappa, and Delta have been designed to suit both
batch and streaming workloads. Each offers different trade-
offs in terms of complexity, latency, and system performance
[91.

Even with these improvements, there are still big
problems to deal with. For instance, big data platforms like
Spark let you analyze data in real time, but they also make
things more complicated when it comes to state consistency,
stability, and system interaction[10]These enhancements
have not eliminated the existence of significant issues. Spark
and other big data platforms allow for real-time data analysis,
but they also introduce new challenges with respect to system
interaction, stability, and state consistency.[11].

The need for security solutions that are scalable, flexible,
and have low latency has become critical since cyber threats
are evolving at a faster rate than traditional intrusion
detection systems can keep up with. Current Spark-based
intrusion detection research indicates severe inadequacies,
despite Apache Spark's strong big-data processing platform
having the potential to provide real-time intrusion detection.
Unfortunately, a lot of the current methods aren't very good.
They use antiquated or fake datasets, don't automatically
mitigate assaults, can't explain their results, and only offer
binary classification of attacks. Their deployment is
hindered in modern, high-throughput network contexts due
to these restrictions, which are required for immediate and
intelligent replies. In order to fill these gaps, this study
examines current state-of-the-art implementations of IDS
that use Spark, compares and contrasts their pros and cons,
and then suggests a theoretical unified framework that
combines CTI with advanced machine learning to direct
future studies toward better real-time cybersecurity solutions.
This article provides an in-depth review of Intrusion
Detection Systems (IDS) developed on Apache Spark,
emphasizing the use of Cyber Threat Intelligence (CTI) to
improve detection efficacy. We highlight the strengths,
weaknesses, and common design patterns of current
approaches by carefully looking at recent studies.

Based on these findings, we present a conceptual unified
IDS architecture that overcomes the stated deficiencies,
including the absence of real-time streaming, insufficient
attack diversity, obsolete datasets, and the lack of automated
mitigation. This study makes three important contributions:

e Literature Synthesis — providing an up-to-date
overview of Spark-based IDS research and CTI
integration trends.

e  Gap Identification — highlighting persistent
shortcomings in scalability, attack coverage,
automation, and explainability.
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e Framework Recommendation — presenting a
conceptual architecture that can guide future research
toward more adaptive, transparent, and operationally
viable IDS solutions.

2. Security Challenges of Big Data

Big data describes datasets that are excessively large,
intricate, and swiftly produced, rendering conventional data
processing technologies inadequate for efficient management
[12]. The term "big data" has emerged as a result of the
exponential development of digital data over the past two
decades[13]. This term involved the complexity, velocity,
and variety of the vast quantities of data that have been
generated across a variety of domains[14]. It is frequently
distinguished by the "5 Vs": volume, velocity, variety,
veracity, and value[l]. Big data infrastructure needs
distributed systems and parallel computing architectures that
work across clusters of cheap hardware to process and
analyze this kind of data [15]. The key components of a big
data platform comprise data intake tools, such as Apache
Flume[16] and Kafka [17], distributed storage systems, such
as Amazon S3[18] and Hadoop Distributed File System
(HDFS)[19], and frameworks for distributed processing, like
Apache Hadoop[20] and Apache Spark[21]. Together, these
systems can take in, store, and handle huge amounts of data
while still being fault-tolerant and available [22], [23]. Big
data has many benefits. Businesses can get useful
information from large and varied datasets, improve
decision-making based on predictive analytics, streamline
operations, give customers more personalized experiences,
and find trends or outliers in real time [24]. Big data, for
instance, makes predictive diagnosis and patient monitoring
possible in the healthcare industry by utilizing real-time
sensor data and extensive electronic health records [25]. By
evaluating streaming transactional data, it makes it easier to
detect fraudulent activity and engage in algorithmic trading
in the financial sector[26]. Big data is utilized by
governments for the purposes of urban planning, traffic
optimization, and public safety. Retailers, on the other hand,
engage in consumer behavior analysis in order to enhance
inventory management and marketing techniques [27][28].

Big data poses substantial security and privacy
challenges, despite its transformative potential. The attack
surface is exacerbated by the inherent nature of distributed
architecture, which involves the partitioning of data across
multiple nodes and the concurrent access of data by a
variety of applications and users [29]. In big data
ecosystems, frequent vulnerabilities include unauthorized
data access, insecure APIs, and the absence of standardized
authentication mechanisms [30]. Additionally, the
integration of numerous open-source tools is a common
practice in big data environments. However, a significant
number of these tools lack built-in security features or
enforce feeble encryption standards. If protocols such as
SSL/TLS or disk-level encryption are not implemented,
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data in transit and at rest is vulnerable to intrusions [31].
Data provenance and integrity are additional significant
concerns. The continuous ingestion of data from a variety
of sources makes it challenging to verify accuracy and
ensure that it has not been tampered with[32]. Privacy is
also a very important problem. Collecting sensitive personal
data for big data analytics is common. If organizations don't
have the right tools for anonymization or consent, they
could be breaking privacy rules like the GDPR [33]or
HIPAA[34]. Furthermore, typical security methods such as
firewalls and perimeter-based access control are unsuitable
in big data environments that are cloud-based and dynamic,
where data is stored and processed across multiple sites that
are geographically separated[35]. To address these
problems, it requires both technical solutions, like
encryption, access controls, and audit logs, and policy
models that balance new ideas with good data management.

3. Strategy to Enhance Security in Big Data

Traditional data processing systems, including relational
databases and single-node processing engines, are
inadequately equipped to manage datasets that grow to
terabytes and petabytes while simultaneously guaranteeing
performance and fault tolerance[36]. To overcome these
challenges, big data technologies were created, which allow
parallel processing across clusters of machines through the
use of distributed computing frameworks [37]. Apache Spark
has become one of the most popular and powerful platforms
in the big data ecosystem thanks to its fast in-memory
computing and ability to work with a wide range of
processing paradigms, such as machine learning, graph
analytics, batch processing, and real-time streaming[38]. It is
a general-purpose distributed computing engine designed for
large-scale data processing. It was developed at UC
Berkeley’s AMPLab and later became an Apache top-level
project in 2014. Spark distinguishes itself from earlier
platforms like Hadoop MapReduce by emphasizing in-
memory processing, which significantly reduces the latency
associated with reading and writing intermediate results to
disk. At the heart of Spark is the concept of the Resilient
Distributed Dataset (RDD), an immutable distributed
collection of objects partitioned across the nodes of a cluster.
RDDs support two types of operations: transformations,
which lazily define a new dataset based on an existing one
(such as map, filter, or reduceByKey), and actions, which
trigger the actual execution and return results to the driver
program or write them to storage[39].

Spark applications follow a master—worker architecture.
The driver program, which is the main process of a Spark
application, converts user-defined code into a Directed
Acyclic Graph (DAG) representing the execution plan. This
DAG is then divided into stages, and tasks within these stages
are dispatched to executor processes running on worker
nodes. Executors are in control of running tasks and keeping
memory and storage for cached or durable RDDs in order
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[40]. Spark is able to integrate without any problems into a
wide variety of infrastructure setups because it supports
several cluster managers. These cluster managers include its
own built-in standalone manager [41], Apache Mesos[42],
Hadoop YARN[43], and Kubernetes[44]. Spark
implemented two significant optimization layers, Catalyst
and Tungsten, to enhance performance further. Catalyst is a
robust query optimizer utilized predominantly in Spark SQL
and DataFrame APIs. It employs rule-based and cost-based
optimizations, including predicate pushdown, constant
folding, and join reordering, to formulate efficient physical
execution plans [45]. In contrast, tungsten introduces
strategies for optimizing memory and CPU performance,
including as off-heap memory management, bytecode-level
optimizations, and whole-stage code creation[46]. These
parts work together to let Spark run complicated workloads
with performance that is almost as good as native code, while
still offering high-level APIs in Scala, Python, Java, and
R[47]. Apache Spark comes with a number of built-in
libraries that extend its capability to meet a variety of data
processing requirements. These libraries are in addition to the
core engine that Spark uses. The processing of structured
data is made possible by Spark SQL through the utilization
of both SQL queries and DataFrame/Dataset APIs[48].
MLIib provides a machine learning library that is scalable
and contains methods for classification, regression,
clustering, and recommendation systems[49]. GraphX offers
application programming interfaces (APIs) for graph-parallel
computation as well as algorithms such as PageRank and
linked factors[50]. Structured Streaming is an extension of
Spark SQL that allows developers to define continuous
processing logic with the same semantics as batch queries.
This extension helps developers create streaming
applications. Because of its unified architecture, Spark is
extremely well-suited for the construction of end-to-end data
pipelines, which include everything from the ingestion and
purification of data to the training and deployment of models
[51].

Apache Spark's features have been used in many
different areas. In banking, it helps find fraud and assess risk
in real time. In e-commerce, it runs recommendation engines
and analyzes customer behavior. In healthcare, it speeds up
genomic sequencing and medical imaging analytics[52].
Scientific organizations utilize Spark to analyze astronomical
data and climate models, capitalizing on its distributed
architecture to exceed the limitations of single-node systems.
Its connection with cloud platforms such AWS, Azure, and
GCP, as well as storage systems such as HDFS, S3, and
Cassandra, enhances its versatility[53]. Hence, Apache Spark
is an important part of the big data environment because it
gives people a quick, scalable, and adaptable way to work
with huge datasets in many different fields and situations. Its
design improvements—such as RDDs, DAG scheduling, in-
memory computing, and unified APIs not only make it better
than previous systems, but they also lay the groundwork for
further progress in Al and data analytics in the future.[54].
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4. Apache Spark’s in scalable intrusion

detection systems (IDS)

Apache Spark has grown to be an effective tool in the
last few years for analyzing a lot of network data to identify
security issues. Spark allows the fast process and analyze
massive amounts of network traffic, sometimes in less than a
second. This makes it valuable for finding threats in real
time[55]. Initial studies showed that Spark Streaming could
process massive amounts of network packets and
significantly shorten attack detection times when compared
to legacy systems[56]. A number of sophisticated machines
learning models, including ensemble methods, hybrid
approaches that incorporate multiple techniques, and deep
learning models (such as LSTM and CNN networks) have
replaced more simplistic ones as the area has progressed[57].
The amount and variety of data used in research has also
grown from small, simple datasets to millions of network
records from real or simulated environments. In follow the
key studies that have been achieved for utilized Apache
Spark with IDS. Gumaste et al. (2020)[58], proposed a real-
time Spark Streaming pipeline for DDoS detection in an
OpenStack-based private cloud. The system captures
mirrored virtual network traffic using a packet sniffer and
classifies it using a distributed 100-tree Random Forest
model implemented in Spark MLIib. Their experiments,
conducted on traffic generated during simulated ICMP
flooding over a ~4000-second interval, produced a private
dataset of moderate size (<1M records). The Random Forest
model achieved 94.4% detection accuracy on the real-time
dataset and 99.2% on the benchmark KDD Cup dataset,
outperforming Decision Tree and Logistic Regression in both
accuracy and false positive rate. Although the study
demonstrates improved detection and training time with
increased Spark cluster nodes, it does not report an exact
latency figure such as 430 ms. The system logs suspicious IP
addresses for administrator review but does not implement
automated mitigation (e.g., iptables blocking). Additionally,
it lacks runtime profiling for JVM or Spark resource
performance. The authors conclude that Random Forest
offers superior classifier accuracy in their Spark-based
detection pipeline. Haggag et al. (2020)[59], introduced
“DLS-IDS,” a distributed deep learning intrusion detection
system built on Apache Spark and trained using the NSL-
KDD dataset. The authors implemented three neural
models—Multilayer Perceptron (MLP), Recurrent Neural
Network (RNN), and Long Short-Term Memory (LSTM)—
within Spark’s distributed framework and compared their
performance to non-distributed (single-node CPU) versions.
Among these, the LSTM model achieved the highest test
accuracy of 82.2%, indicating modest detection performance.
Spark integration significantly improved training time
compared to the standalone setup. However, all experiments
were conducted in offline batch mode, without real-time
streaming, latency analysis, or mitigation capabilities. The
study also acknowledges that NSL-KDD is an outdated and
limited dataset, lacking representation of modern traffic and
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attacks. Thus, while DLS-IDS demonstrates Spark’s
feasibility for distributed deep learning in IDS applications,
its practical effectiveness is constrained by dataset
limitations and absence of real-time design.

In 2020, Morfino & Rampone[60], developed a near-
real-time intrusion detection system for [oT denial-of-service
attacks utilizing Apache Spark. Leveraging the SYNDOS-
2M synthetic dataset containing two million samples, they
trained and evaluated several Spark MLIib classifiers—
including logistic regression, decision tree, random forest,
and others on both binary and multiclass detection tasks. All
models achieved over 99% accuracy, with random forest
attaining 100% accuracy on the synthetic test set. Training
and detection were efficient; for instance, the decision tree
model trained in approximately 23.2 seconds, and the
detection time for 20,000 records was just 0.13 seconds,
indicating low system latency. Their Spark Streaming
pipeline processed live data, though the system did not
include automated mitigation or response mechanisms. The
primary limitation, as noted by the authors, is the reliance on
synthetic data (SYNDOS-2M), which may not fully capture
the characteristics of real-world IoT network traffic.

In 2022, Hagar & Gawali[61], compared three
approaches for network intrusion detection on the CSE-CIC-
IDS2018 dataset: a traditional machine learning pipeline
using Apache Spark’s MLIib, and two deep learning models
(CNN and LSTM). The authors first applied random forest—
based feature selection within Spark to reduce the dataset to
19 features. Both CNN and LSTM were trained as multi-class
classifiers, but the Spark-MLIlib model achieved the highest
overall performance, with Fl-scores of approximately 1.0
across all 15 traffic classes. Additionally, the Spark model
demonstrated the fastest training and evaluation times
(approximately 7.56 minutes and 39 seconds, respectively),
outperforming both deep learning models. The study was
conducted as an offline batch analysis; no real-time
streaming or mitigation mechanisms were implemented. The
authors also acknowledged important limitations, including
the use of extensive over- and undersampling (which
increases the risk of overfitting) and evaluation restricted to
a single dataset, thereby limiting generalizability. In addition.
Azeroual (2022)[62], evaluated the scalability and
performance modeling capabilities of Apache Spark MLIib
in a multi-node cluster environment, profiling the behavior
of K-Means clustering, Random Forest regression, and
Word2Vec on large synthetic datasets. The study reported
that MLIib-based predictive models could achieve up to 98%
accuracy in forecasting their own execution performance,
resulting in reductions of CPU usage by approximately 30%
and processing time by about 25%. Importantly, this research
focused solely on system-level performance prediction and
resource optimization, rather than on security or intrusion
detection efficacy. No specific IDS or threat detection
models were implemented, and no security metrics or
mitigation actions were evaluated; all experiments were
conducted offline and unrelated to attack detection quality.
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In 2023, Chliah et al. [63], developed a hybrid anomaly
detection system using Apache Spark, which combines
unsupervised and supervised machine learning techniques.
Their approach first applies K-means clustering to NetFlow
network data collected from Ibn Zohr University, then uses a
K-nearest neighbors (KNN) classifier within each cluster to
detect anomalies. Evaluated with k-fold cross-validation on
the entire dataset, their hybrid model achieved an overall
accuracy of 99.94%. All analysis was conducted offline using
batch machine learning, with no real-time latency
measurements or automated mitigation mechanisms
implemented. As noted by the authors, the use of a single
private dataset and the extremely high accuracy suggest
possible overfitting or data leakage, and generalizability to
broader or more diverse network environments remain
unproven.

In 2024, Talukder et al. (2024)[64], present a PySpark-
based intrusion detection system evaluated on the UNSW-
NBI1S5 dataset using both binary and multilabel classification
tasks. For binary classification, their Random Forest (RF)
model using the proposed feature set achieved the highest
accuracy of 99.59%, closely followed by Extra Trees (ET) at
99.59% and Decision Tree (DT) at 98.97%. XGBoost (XGB)
achieved 98.81%. Precision, recall, and F1-scores for RF and
ET exceeded 99%. In multilabel classification, both RF and
ET reached an accuracy of 99.95% with the proposed feature
set, while DT scored 99.79% and XGB 95.04%. The results
indicate that, with careful feature engineering, ensemble
models—particularly Random Forest and Extra Trees—can
deliver near-perfect classification on this benchmark in a
distributed Spark environment. All experiments were
conducted in offline batch mode, with no real-time mitigation
or streaming evaluation reported. Alrefaci & Ilyas
(2024)[65], present a real-time intrusion detection system
(IDS) for IoT networks utilizing the PySpark framework and
multiclass machine learning classification on the IoT-23

dataset. Their approach integrates data cleaning,
normalization, feature selection (SelectKBest,
SelectFromModel  with  XGB/RF), and SMOTE

oversampling to address class imbalance. Using the One-vs-
Rest (OVR) multiclass scheme, they compare Decision Tree
(DT), Random Forest (RF), Logistic Regression (LR), K-
Nearest Neighbors (KNN), and Extreme Gradient Boosting
(XGB). Among these, XGBoost achieves the highest overall
accuracy at 98.89%, while Random Forest offers the fastest
prediction time (0.0311 s). All top models exceed 97%
accuracy; for example, RF reaches 98.54% and KNN
98.87%. Detailed results are reported per-class and per-
model, with precision, recall, and F1-scores exceeding 95%
in most categories. The system operates in real-time with
Spark Streaming but does not implement automated
mitigation or blocking. The primary limitations are the use of
a single, reduced IoT-23 dataset, reliance on synthetic
balancing (SMOTE), and the absence of practical
deployment or response actions. The authors conclude that
ensemble models in PySpark are highly effective for accurate
and efficient real-time IoT attack detection, but further
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validation on more diverse datasets and operational scenarios
is needed. Also in same year, Mamdouh et al. [66], developed
areal-time intrusion detection system for loT networks using
PySpark, leveraging multiclass classification on the 10T-23
dataset. Their approach incorporated Spark Streaming,
MLIib, SMOTE oversampling, and feature selection, and
utilized a One-vs-Rest scheme to compare algorithms
including Decision Tree, Random Forest, Logistic
Regression, and XGBoost. Among these, XGBoost achieved
the highest classification accuracy at 98.89%, while Random
Forest provided the fastest prediction time at approximately
0.031 seconds. All evaluated models attained overall
accuracy above 98%, and the system demonstrated low
detection latency, suitable for real-time streaming
applications. However, the framework did not implement
automated mitigation or blocking, and the authors note key
limitations such as the use of a single IoT dataset and
synthetic balancing techniques; no practical deployment or
response actions were demonstrated. In addition, Alslman et
al. (2024)[67], propose a distributed DDoS attack detection
system utilizing a stacked ensemble of Random Forest and
XGBoost models, trained and evaluated on the CIC-
DDo0S2019 dataset. The system employs Apache Spark for
parallelized data processing and training, enabling scalability
to millions of records and significant reduction in model
training time. The ensemble model achieves 99.94%
accuracy across four classes (SYN, UDP, MSSQL, and
benign traffic), with Spark reducing training time for
Random Forest from 32 to 14 minutes and for XGBoost from
87 to 46 minutes roughly halving execution time compared
to non-distributed training. No streaming, real-time
mitigation, or response mechanisms are implemented; all
evaluation is conducted offline. Key limitations include the
exclusive focus on DDoS attacks (no multi-vector, non-
DDoS, or mixed traffic types) and reliance on a single, large,
labeled dataset, with no wvalidation in live operational
settings. The authors conclude that Spark-based stacked
ensembles are highly efficient for high-volume DDoS
detection, but further work is needed for broader applicability
and online deployment. Table 1 compares recent studies that
we discussed with describe its model structure, dataset used
point of strength and limitations. This summary highlights
prevalent deficiencies in the literature, including the absence
of genuine real-time processing and the lack of automated
mitigation functionalities.

5. Analysis of Recent studies

Although Apache Spark has enabled substantial
advances in scalable intrusion detection systems (IDS), a
review of recent literature reveals that significant
limitations persist in the practical deployment and
effectiveness of Spark-based IDS frameworks. Most current
solutions are limited to offline or batch processing and do
not support true real-time detection on streaming network
data (Haggag et al., 2020; Hagar & Gawali, 2022; Talukder
et al., 2024). As a result, these systems may fail to detect or
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Table 1. A comparison of recent IDS solutions based on Apache Spark, focusing on the model structure, dataset, best
performance, and main limitation of each study.

Authors [Ref] Model Structure | Dataset / Size Best Metric Train / Mitigation Key Limitation
Detect Time

Gumaste et al. [58] Spark Streaming, Private NetFlow 94.4% ACC Not stated Log only ICMP flood; offline; no

100-tree RF <IM (real); 99.2% (sub-second) mitigation/telemetry
(KDD)

Haggag et al. [59] Spark MLP, NSL-KDD ~125k 82.2% ACC Offline — Old/small data; no real-
RNN, LSTM (LSTM) batch time/streaming

Morfino & Spark MLIib (RF, | SYNDOS-2M 100% ACC Train 23s, — Synthetic IoT data; no

Rampone[60] DT, LR); (synthetic) (RF, synthetic) detect 0.13s blocking; realism
Streaming

Hagar & Spark RF feat. CSE-CIC- F1~=1.0 (RF) Train 7.56 — Resampling; offline; no

Gawali[61] select — CNN, IDS2018 ~2M min, eval mitigation
LSTM 39s

Azeroual [62] Spark MLIib Big Data (>GB, <98% ACC — — Not IDS; job/resource
scalability synthetic) (job perf) profiling only
(KMeans, RF,
Word2Vec)

Chliah et al. [63] Spark KMeans — | Private NetFlow 99.94% ACC Offline CV — Private data; possible overfit
KNN hybrid (unknown)

Talukder et al. [64] PySpark UNSW-NBLIS, 99.59% ACC Offline — Batch only; no real-time,
ensemble (XGB, CIC-IDS2017/18 (RF, binary) KDD/NSL-KDD not used
RF, ET, DT)

Alrefaei & Ilyas PySpark IoT-23 ~800k 98.89% ACC RF pred. — Single IoT set; SMOTE; no

[65] Streaming + OVR (XGB) 0.031s mitigation
(DT, RF, LR,
XGB)

Mamdouh et al. [66] | Spark Random CIC-IDS2018 >99% ACC Faster than — Offline only; few details
Forest (large) baseline

Alslman et al. [67], Spark ensemble CIC-DDoS2019 99.94% ACC Spark halves | — DDoS only; offline; no
(RF, XGB stack) ~2.9M (stacked) train time mitigation

respond promptly to fast-evolving threats in dynamic
environments. Integrated, end-to-end pipelines that unify
data ingestion, real-time feature processing, model
inference, and periodic model updating within Spark remain
rare (Morfino & Rampone, 2020; Chliah et al., 2023).

Moreover, many Spark-based IDS implementations
focus on a narrow subset of attack types or treat intrusion
detection as a binary classification problem, limiting their
ability to recognize diverse and complex multi-class or
multi-vector threats (Morfino & Rampone, 2020; Alslman
et al., 2024). The widespread use of outdated or synthetic
datasets (e.g., NSL-KDD, SYNDOS-2M) further restricts
the generalizability and robustness of these systems when
confronted with modern, real-world traffic patterns
(Haggag et al., 2020; Chliah et al., 2023). Issues such as
class imbalance and absence of operational validation
persist, even when newer datasets like UNSW-NBI15 or
CIC-IDS2018 are employed (Hagar & Gawali, 2022;
Talukder et al., 2024). Furthermore, the majority of
prototypes are restricted to detection and alerting, with the
absence of automated response mechanisms—such as real-
time blockage or reconfiguration of network policies—
almost universally observed (Gumaste et al., 2020; Alrefaei
& Ilyas, 2024). Other important aspects, including
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explainability of detection results, model fairness, and
monitoring of Spark cluster resource utilization, have
received little attention (Azeroual, 2022; Chliah et al.,
2023). Therefore, there is a pressing need for a Spark-based
IDS solution that goes beyond mere scalability and
detection accuracy to provide integrated, real-time intrusion
detection and automated mitigation across diverse attack
classes, while addressing explainability, fairness, and
resource monitoring in real production environments.

Based on the literature [58]- [67]), several key research
gaps are identified in the domain of Spark-based IDS:

e Lack of unified real-time processing pipelines:
There is no comprehensive end-to-end system that
seamlessly combines data streaming, feature
processing, model training, and live classification
within a single Spark-based IDS. Most current
implementations rely on offline or batch analysis
of stored data, meaning they cannot operate in true
real-time or adapt continuously to evolving
threats. A unified framework that supports
continuous learning and real-time detection
remains absent ([58], [59], [60], [61], [63], [64]).

e Inadequate multi-class and multi-vector
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detection at scale: Many existing solutions are
designed to detect only a single attack type or treat
intrusion detection as a simple binary (attack vs.
normal) problem. There is limited capability for
robust multi-class or multi-vector detection,
especially in large-scale environments. Systems
that perform well on specific attacks (e.g., SYN
flood or DDoS) often fail to generalize to other
threats. Achieving consistently high accuracy
across diverse attack vectors in big data streams
remains an unresolved challenge ([59], [60], [61],
[63], [64], [65], [67]).

e Absence of integrated mitigation and control:
Spark-based IDS research typically produces
passive detectors that only log or alert on detected
threats. Few, if any, systems integrate with
network enforcement mechanisms such as
firewalls (e.g., iptables), SDN controllers, or
automated response modules that could block or
mitigate malicious traffic in real time. Even state-
of-the-art streaming classifiers usually stop at
detection, without triggering any defensive actions
([58], [59], [60], [65], [67]).

e Poor telemetry and resource monitoring: There
is a lack of focus on operational monitoring of IDS
pipelines built on Spark. Most studies do not report
on the performance or resource utilization (CPU,
memory, network bandwidth) of their systems.
Without unified dashboards, feedback loops, or
real-time monitoring tools, it is difficult to
diagnose bottlenecks, tune performance, or ensure
reliability under production loads ([62]).

e Evaluation on outdated, synthetic, or
imbalanced datasets: Many published studies
validate their IDS solutions using datasets that are
either synthetic or do not reflect the complexity of
current network environments. The continued
reliance on datasets like NSL-KDD (from the late
1990s) and artificial data (e.g., SYNDOS-2M)
raises questions about the generalizability of these
models. When more recent datasets are used,
issues like class imbalance and insufficient
diversity are often not fully addressed, leading to
potential overfitting and limited real-world
applicability ([59], [60], [61], [63], [64], [65],
[67]).

Hence, even with recent developments, existing
Apache Spark-based IDS solutions continue having
limitations in actual implementation. Most systems
function on offline or batch data and are incapable of
executing genuine real-time detection on streaming network
traffic. They often concentrate on a limited spectrum of
attack vectors, frequently perceiving intrusion as a mere
binary issue, and commonly depend on obsolete or artificial
datasets, so compromising their efficacy on contemporary
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traffic. Significantly, nearly all of these systems lack
automated mitigation and explainability; they identify and
notify about dangers but do not engage in active response,
nor do they elucidate the rationale for detection. This gap
renders extensive, high-velocity network environments
susceptible to rapidly developing threats. A unified IDS
framework is essential that integrates Spark's large data
processing with sophisticated multi-vector detection and
proactive response. The proposed effort aims to enhance
real-time cyber defense for modern networks by integrating
scalability, threat diversity, and automation under a single
platform.

4. The Suggestion Strategy to Overcome the
Limitation of Recent Works

To address the above gaps, the following research
questions (RQs) are proposed for investigation:

e How can we design a unified, real-time intrusion
detection pipeline on Apache Spark that supports
streaming data and ensures low-latency, scalable
processing of network traffic? This question
focuses on the architectural and system design
needed to combine Spark Streaming, distributed
feature extraction, and model inference/training
into a seamless pipeline capable of handling high
throughput data with minimal delay.

e What machine learning and deep learning
techniques can enable accurate detection of
multiple attack classes and vectors at scale in a
Spark-based IDS, and how can we improve the
model’s generalization to new or imbalanced
datasets? This question examines the algorithms
and data aspects: it seeks to find suitable models
(or ensembles of models) that can classify a broad
range of intrusions in a multi-class setting, and
explores methods (like feature selection, retraining
with new data, or fairness-aware learning) to
maintain performance across evolving, large-scale
datasets.

e How can intrusion alerts from a Spark-based IDS
be automatically translated into mitigation actions
in real-world networks? In particular, what
framework can integrate the IDS with control
mechanisms (such as SDN controllers or firewall
rules) to proactively contain, or block attacks once
detected? This question addresses the bridge from
detection to response, asking how to embed or
attach the IDS into a larger security orchestration
so that it not only flags threats but also triggers
timely defensive measures.

e How can we incorporate explainability and
monitoring into a large-scale Spark IDS to enhance
its transparency and reliability? This question
probes the addition of supporting features to the
IDS: it aims to determine how we can provide
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explanations for detection decisions (e.g.,
indicating which features or rules fired for a given
alert) and how to continuously monitor the IDS’s
own performance (resource usage, processing
delays, etc.) in order to ensure the system remains
effective and does not introduce new blind spots or
failure points.

Corresponding to the research questions, the objectives
of this work are defined as follows:

Unified Streaming Pipeline — Design and
implement a unified IDS pipeline using Apache
Spark that combines real-time stream processing
with batch learning. The objective is to create an
architecture capable of ingesting live network data
(potentially via Kafka or similar), extracting
features on the fly, and applying machine learning
models in real-time, while also periodically
updating or retraining those models with new data
— all within the Spark ecosystem. This will directly
tackle the need for a scalable, low-latency IDS
solution.

Scalable Multi-Attack Detection — Develop
advanced detection algorithms and models suited
for Spark’s distributed environment that can
classify multiple types of attacks with high
accuracy. This involves exploring and evaluating
techniques such as deep neural networks,
ensemble methods, and hybrid approaches (e.g.,
combining anomaly detection with misuse
detection) to improve detection rates. A key part of
this objective is to ensure generalization: the
models should be trained and tested on modern,
diverse datasets (with appropriate handling of
class imbalance) so that the IDS is effective
against a wide array of known attack vectors and
can adapt to new or emerging threats.

Integration with Mitigation and Monitoring —
Integrate the intrusion detection pipeline with real-
world mitigation mechanisms and implement
system telemetry. Concretely, this objective will
create a link between the Spark IDS and network
control interfaces: for example, developing a
module that communicates with an SDN controller
to dynamically reroute or block malicious traffic,
or that updates firewall rules (iptables) when an
attack is confirmed. In tandem, the system will
include monitoring tools to track resource usage
and performance metrics of the Spark cluster (such
as throughput, latency per batch, CPU/memory
utilization of executors). This ensures the IDS can
not only detect but also respond to attacks in an
automated fashion, and that it operates reliably
under production conditions.
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e Explainability and Fairness — Incorporate
explainable Al techniques and fairness measures
into the IDS. The goal is to augment the Spark-
based IDS with components that can interpret the
model’s decisions (for example, generating
human-readable explanations for why an alert was
triggered, perhaps via feature importance or rule
extraction from complex models). Additionally,
the training process will include fairness
considerations to avoid biased detection (ensuring,
for instance, that detection performance is
consistent across different attack categories or
network segments). This objective will improve
user trust in the IDS by making it more transparent
and ensuring it behaves equitably on
heterogeneous data.

Based on the previous key point we suggest an IDS system
to overcome the limitations as illustrated in Figure 1.

Data Ingestion
] ]

Network Log Data
Traffic
L Apache Spark J
l Cyber
Threat

Detection Engine |intelligence

Machine Learning
Models

l

Automated Alerts
Mitigation

Monitoring
Dashboard

Figure 1. The suggested unified IDS framework

Figure 1. The suggested unified IDS framework
architecture shows how data flows from the first step of data
ingestion to threat detection and mitigation. Apache Spark's
distributed processing lets the system analyze live network
traffic and log streams in real time. Cyber Threat
Intelligence feeds are used to add known threat indications
to the detection engine. When the machine learning models
find an intrusion, they trigger an automated mitigation
module to stop or confine the danger. At the same time, a
monitoring dashboard logs events and lets security staff
know about them.

Conclusion

This review has methodically analyzed recent studies
on Apache Spark-based Intrusion Detection Systems (IDS),
using Cyber Threat Intelligence (CTI) and machine learning
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methodologies. Through an analysis of the strengths and
limitations of current solutions, we discovered persistent
limitations such as dependence on offline processing,
limited attack coverage, outdated datasets, lack of
automated mitigation, and lack of explainable results.
Based on these discoveries, we outlined the conceptual
framework of an integrated real-time Intrusion Detection
System and mitigation strategy that tackles these challenges
through the amalgamation of streaming analytics, multi-
vector detection, and automated response. This conceptual
architecture serves as a framework for future researchers to
develop more adaptive, transparent, and scalable IDS
solutions, thus enhancing the state of the art in Spark-based
cybersecurity research.

Based on the gaps identified through the literature we
reviewed, future researchers should cover and take in
consideration when developing Spark-based IDS solutions
the following aspects:

e Using Apache Spark Structured Streaming to analyze
live traffic without latency is true real-time streaming
integration.

e A more comprehensive multi-class attack detection
system that goes beyond just normal/abnormal
classification to encompass a wider range of intrusion
types that are always changing.

e Integration with Software-Defined Networking (SDN)
to make it possible to take quick action against threats,
including rerouting or blocking traffic.

e Adding modern datasets and actual traffic traces (such
CIC-IDS2018 and UNSW-NB15) to make sure the
model is strong and useful.

e Adding explainable Al methods to make detection
decisions more trustworthy and clearer.

e Automating the mitigation process so that systems can
not only find dangers but also stop them before they
happen.

e By implementing these suggestions, future work can
fix the problems with current systems and help build
real-time IDS frameworks that are more effective,
scalable, and usable in the long run.
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