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Traditional intrusion detection systems are being surpassed by the increasingly sophisticated 
cyber threats that modern networks face. The increasing scale and complexity of modern 
network environments, coupled with the evolving sophistication of cyber threats, have 
rendered traditional Intrusion Detection Systems (IDS) inadequate for real-time and large-
scale protection. This paper presents a comprehensive review and design strategy for a 
unified, real-time IDS and mitigation framework leveraging Apache Spark. This paper 
proposes a unified real-time IDS framework that utilizes Apache Spark to address the 
aforementioned disparity.  The design combines threat intelligence, distributed machine 
learning, and streaming data analytics to facilitate automated mitigation and scalable multi-
vector threat detection.  We have identified critical limitations (e.g., offline detection, limited 
attack scope, outdated datasets) and have developed a set of objectives to address them 
through a review of current Spark-based IDS research.  The outcome is a definitive roadmap 
for a next-generation IDS that offers low-latency, adaptive, and transparent defense in high-
throughput network environments. 
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1. Introduction 

The origins of intrusion detection can be traced to the 
seminal model proposed by Dorothy E. Denning in 1987, 
which introduced the formal comparison of audit records 
with user behavior profiles to identify anomalies[2]. 
Throughout the 1990s, intrusion detection systems were 
primarily host-centered and computationally lightweight. 
The release of Snort 1.0 in 1998 marked a pivotal shift, 
enabling community-driven signature sharing and a move 
toward network-centric inspection. Recent real-world studies 
show that open-source tools like Snort, Suricata, and Zeek 
are still the most popular choices. Each has its own pros and 
cons when it comes to detection coverage and performance 
overhead.[3]. The limits of signature-based techniques, on 
the other hand, were obvious during large worm outbreaks 
such as Code Red and SQL Slammer, which were able to 
circumvent static signature constraints.  The introduction of 
Cyber Threat Intelligence (CTI), which is described as 

adversary-centered, evidence-based knowledge that 
enhances raw Indicators of Compromise (IoCs) with 
contextual information such as motive, capability, and intent, 
was hastened as a result of these problems[4]. Snort, Suricata, 
and Zeek are some of the most well-known open-source IDS 
tools.  In scenarios with a lot of traffic, comparative studies 
show that Suricata, which has a multithreaded architecture, 
often works better than Snort and Zeek.  These solutions use 
signature-based detection methods, which work well against 
known threats but may not work as well against new or 
quickly changing ones.[5]. To address the limitations of 
signature-based systems, the cybersecurity community has 
increasingly turned to Cyber Threat Intelligence (CTI). CTI 
involves the collection and analysis of information about 
potential threats, enabling organizations to anticipate and 
mitigate attacks more proactively[6]. 

Intrusion detection systems have seen a dramatic 
improvement in their capabilities due to the development of 
big data technology[7]. Apache Spark, utilizing in-memory 
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processing and its Structured Streaming module, offers a 
scalable framework for real-time analysis of extensive data, 
which is essential for prompt danger identification in 
contemporary networks.[8]. In response to different 
processing requirements, architectural models such as 
Lambda, Kappa, and Delta have been designed to suit both 
batch and streaming workloads. Each offers different trade-
offs in terms of complexity, latency, and system performance 
[9]. 

Even with these improvements, there are still big 
problems to deal with.  For instance, big data platforms like 
Spark let you analyze data in real time, but they also make 
things more complicated when it comes to state consistency, 
stability, and system interaction[10]These enhancements 
have not eliminated the existence of significant issues.   Spark 
and other big data platforms allow for real-time data analysis, 
but they also introduce new challenges with respect to system 
interaction, stability, and state consistency.[11]. 

The need for security solutions that are scalable, flexible, 
and have low latency has become critical since cyber threats 
are evolving at a faster rate than traditional intrusion 
detection systems can keep up with.  Current Spark-based 
intrusion detection research indicates severe inadequacies, 
despite Apache Spark's strong big-data processing platform 
having the potential to provide real-time intrusion detection.  
Unfortunately, a lot of the current methods aren't very good. 
They use antiquated or fake datasets, don't automatically 
mitigate assaults, can't explain their results, and only offer 
binary classification of attacks.  Their deployment is 
hindered in modern, high-throughput network contexts due 
to these restrictions, which are required for immediate and 
intelligent replies.  In order to fill these gaps, this study 
examines current state-of-the-art implementations of IDS 
that use Spark, compares and contrasts their pros and cons, 
and then suggests a theoretical unified framework that 
combines CTI with advanced machine learning to direct 
future studies toward better real-time cybersecurity solutions. 
This article provides an in-depth review of Intrusion 
Detection Systems (IDS) developed on Apache Spark, 
emphasizing the use of Cyber Threat Intelligence (CTI) to 
improve detection efficacy.  We highlight the strengths, 
weaknesses, and common design patterns of current 
approaches by carefully looking at recent studies.   

Based on these findings, we present a conceptual unified 
IDS architecture that overcomes the stated deficiencies, 
including the absence of real-time streaming, insufficient 
attack diversity, obsolete datasets, and the lack of automated 
mitigation.  This study makes three important contributions: 

• Literature Synthesis – providing an up-to-date 
overview of Spark-based IDS research and CTI 
integration trends. 

• Gap Identification – highlighting persistent 
shortcomings in scalability, attack coverage, 
automation, and explainability. 

• Framework Recommendation – presenting a 
conceptual architecture that can guide future research 
toward more adaptive, transparent, and operationally 
viable IDS solutions. 
 

2. Security Challenges of Big Data 
Big data describes datasets that are excessively large, 

intricate, and swiftly produced, rendering conventional data 
processing technologies inadequate for efficient management 
[12]. The term "big data" has emerged as a result of the 
exponential development of digital data over the past two 
decades[13]. This term involved the complexity, velocity, 
and variety of the vast quantities of data that have been 
generated across a variety of domains[14].  It is frequently 
distinguished by the "5 Vs": volume, velocity, variety, 
veracity, and value[1]. Big data infrastructure needs 
distributed systems and parallel computing architectures that 
work across clusters of cheap hardware to process and 
analyze this kind of data [15]. The key components of a big 
data platform comprise data intake tools, such as Apache 
Flume[16] and Kafka [17], distributed storage systems, such 
as Amazon S3[18] and Hadoop Distributed File System 
(HDFS)[19], and frameworks for distributed processing, like 
Apache Hadoop[20] and Apache Spark[21]. Together, these 
systems can take in, store, and handle huge amounts of data 
while still being fault-tolerant and available [22], [23]. Big 
data has many benefits. Businesses can get useful 
information from large and varied datasets, improve 
decision-making based on predictive analytics, streamline 
operations, give customers more personalized experiences, 
and find trends or outliers in real time [24]. Big data, for 
instance, makes predictive diagnosis and patient monitoring 
possible in the healthcare industry by utilizing real-time 
sensor data and extensive electronic health records [25]. By 
evaluating streaming transactional data, it makes it easier to 
detect fraudulent activity and engage in algorithmic trading 
in the financial sector[26]. Big data is utilized by 
governments for the purposes of urban planning, traffic 
optimization, and public safety. Retailers, on the other hand, 
engage in consumer behavior analysis in order to enhance 
inventory management and marketing techniques [27][28]. 

Big data poses substantial security and privacy 
challenges, despite its transformative potential.  The attack 
surface is exacerbated by the inherent nature of distributed 
architecture, which involves the partitioning of data across 
multiple nodes and the concurrent access of data by a 
variety of applications and users [29]. In big data 
ecosystems, frequent vulnerabilities include unauthorized 
data access, insecure APIs, and the absence of standardized 
authentication mechanisms [30]. Additionally, the 
integration of numerous open-source tools is a common 
practice in big data environments. However, a significant 
number of these tools lack built-in security features or 
enforce feeble encryption standards.  If protocols such as 
SSL/TLS or disk-level encryption are not implemented, 
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data in transit and at rest is vulnerable to intrusions [31]. 
Data provenance and integrity are additional significant 
concerns. The continuous ingestion of data from a variety 
of sources makes it challenging to verify accuracy and 
ensure that it has not been tampered with[32]. Privacy is 
also a very important problem. Collecting sensitive personal 
data for big data analytics is common. If organizations don't 
have the right tools for anonymization or consent, they 
could be breaking privacy rules like the GDPR [33]or 
HIPAA[34]. Furthermore, typical security methods such as 
firewalls and perimeter-based access control are unsuitable 
in big data environments that are cloud-based and dynamic, 
where data is stored and processed across multiple sites that 
are geographically separated[35]. To address these 
problems, it requires both technical solutions, like 
encryption, access controls, and audit logs, and policy 
models that balance new ideas with good data management.  
 

3. Strategy to Enhance Security in Big Data 
Traditional data processing systems, including relational 

databases and single-node processing engines, are 
inadequately equipped to manage datasets that grow to 
terabytes and petabytes while simultaneously guaranteeing 
performance and fault tolerance[36]. To overcome these 
challenges, big data technologies were created, which allow 
parallel processing across clusters of machines through the 
use of distributed computing frameworks [37]. Apache Spark 
has become one of the most popular and powerful platforms 
in the big data ecosystem thanks to its fast in-memory 
computing and ability to work with a wide range of 
processing paradigms, such as machine learning, graph 
analytics, batch processing, and real-time streaming[38]. It is 
a general-purpose distributed computing engine designed for 
large-scale data processing. It was developed at UC 
Berkeley’s AMPLab and later became an Apache top-level 
project in 2014. Spark distinguishes itself from earlier 
platforms like Hadoop MapReduce by emphasizing in-
memory processing, which significantly reduces the latency 
associated with reading and writing intermediate results to 
disk. At the heart of Spark is the concept of the Resilient 
Distributed Dataset (RDD), an immutable distributed 
collection of objects partitioned across the nodes of a cluster. 
RDDs support two types of operations: transformations, 
which lazily define a new dataset based on an existing one 
(such as map, filter, or reduceByKey), and actions, which 
trigger the actual execution and return results to the driver 
program or write them to storage[39]. 

Spark applications follow a master–worker architecture. 
The driver program, which is the main process of a Spark 
application, converts user-defined code into a Directed 
Acyclic Graph (DAG) representing the execution plan. This 
DAG is then divided into stages, and tasks within these stages 
are dispatched to executor processes running on worker 
nodes. Executors are in control of running tasks and keeping 
memory and storage for cached or durable RDDs in order 

[40]. Spark is able to integrate without any problems into a 
wide variety of infrastructure setups because it supports 
several cluster managers. These cluster managers include its 
own built-in standalone manager [41], Apache Mesos[42], 
Hadoop YARN[43], and Kubernetes[44].  Spark 
implemented two significant optimization layers, Catalyst 
and Tungsten, to enhance performance further.  Catalyst is a 
robust query optimizer utilized predominantly in Spark SQL 
and DataFrame APIs.  It employs rule-based and cost-based 
optimizations, including predicate pushdown, constant 
folding, and join reordering, to formulate efficient physical 
execution plans [45]. In contrast, tungsten introduces 
strategies for optimizing memory and CPU performance, 
including as off-heap memory management, bytecode-level 
optimizations, and whole-stage code creation[46]. These 
parts work together to let Spark run complicated workloads 
with performance that is almost as good as native code, while 
still offering high-level APIs in Scala, Python, Java, and 
R[47]. Apache Spark comes with a number of built-in 
libraries that extend its capability to meet a variety of data 
processing requirements. These libraries are in addition to the 
core engine that Spark uses.  The processing of structured 
data is made possible by Spark SQL through the utilization 
of both SQL queries and DataFrame/Dataset APIs[48].  
MLlib provides a machine learning library that is scalable 
and contains methods for classification, regression, 
clustering, and recommendation systems[49].  GraphX offers 
application programming interfaces (APIs) for graph-parallel 
computation as well as algorithms such as PageRank and 
linked factors[50].  Structured Streaming is an extension of 
Spark SQL that allows developers to define continuous 
processing logic with the same semantics as batch queries. 
This extension helps developers create streaming 
applications.  Because of its unified architecture, Spark is 
extremely well-suited for the construction of end-to-end data 
pipelines, which include everything from the ingestion and 
purification of data to the training and deployment of models 
[51].  

Apache Spark's features have been used in many 
different areas.  In banking, it helps find fraud and assess risk 
in real time. In e-commerce, it runs recommendation engines 
and analyzes customer behavior. In healthcare, it speeds up 
genomic sequencing and medical imaging analytics[52]. 
Scientific organizations utilize Spark to analyze astronomical 
data and climate models, capitalizing on its distributed 
architecture to exceed the limitations of single-node systems.  
Its connection with cloud platforms such AWS, Azure, and 
GCP, as well as storage systems such as HDFS, S3, and 
Cassandra, enhances its versatility[53]. Hence, Apache Spark 
is an important part of the big data environment because it 
gives people a quick, scalable, and adaptable way to work 
with huge datasets in many different fields and situations.  Its 
design improvements—such as RDDs, DAG scheduling, in-
memory computing, and unified APIs not only make it better 
than previous systems, but they also lay the groundwork for 
further progress in AI and data analytics in the future.[54]. 



Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 2, 2025 (92-102)  

95 
 

4. Apache Spark’s in scalable intrusion 
detection systems (IDS) 
Apache Spark has grown to be an effective tool in the 

last few years for analyzing a lot of network data to identify 
security issues.  Spark allows the fast process and analyze 
massive amounts of network traffic, sometimes in less than a 
second. This makes it valuable for finding threats in real 
time[55]. Initial studies showed that Spark Streaming could 
process massive amounts of network packets and 
significantly shorten attack detection times when compared 
to legacy systems[56].  A number of sophisticated machines 
learning models, including ensemble methods, hybrid 
approaches that incorporate multiple techniques, and deep 
learning models (such as LSTM and CNN networks) have 
replaced more simplistic ones as the area has progressed[57]. 
The amount and variety of data used in research has also 
grown from small, simple datasets to millions of network 
records from real or simulated environments. In follow the 
key studies that have been achieved for utilized Apache 
Spark with IDS. Gumaste et al. (2020)[58], proposed a real-
time Spark Streaming pipeline for DDoS detection in an 
OpenStack-based private cloud. The system captures 
mirrored virtual network traffic using a packet sniffer and 
classifies it using a distributed 100-tree Random Forest 
model implemented in Spark MLlib. Their experiments, 
conducted on traffic generated during simulated ICMP 
flooding over a ~4000-second interval, produced a private 
dataset of moderate size (<1M records). The Random Forest 
model achieved 94.4% detection accuracy on the real-time 
dataset and 99.2% on the benchmark KDD Cup dataset, 
outperforming Decision Tree and Logistic Regression in both 
accuracy and false positive rate. Although the study 
demonstrates improved detection and training time with 
increased Spark cluster nodes, it does not report an exact 
latency figure such as 430 ms. The system logs suspicious IP 
addresses for administrator review but does not implement 
automated mitigation (e.g., iptables blocking). Additionally, 
it lacks runtime profiling for JVM or Spark resource 
performance. The authors conclude that Random Forest 
offers superior classifier accuracy in their Spark-based 
detection pipeline. Haggag et al. (2020)[59], introduced 
“DLS-IDS,” a distributed deep learning intrusion detection 
system built on Apache Spark and trained using the NSL-
KDD dataset. The authors implemented three neural 
models—Multilayer Perceptron (MLP), Recurrent Neural 
Network (RNN), and Long Short-Term Memory (LSTM)—
within Spark’s distributed framework and compared their 
performance to non-distributed (single-node CPU) versions. 
Among these, the LSTM model achieved the highest test 
accuracy of 82.2%, indicating modest detection performance. 
Spark integration significantly improved training time 
compared to the standalone setup. However, all experiments 
were conducted in offline batch mode, without real-time 
streaming, latency analysis, or mitigation capabilities. The 
study also acknowledges that NSL-KDD is an outdated and 
limited dataset, lacking representation of modern traffic and 

attacks. Thus, while DLS-IDS demonstrates Spark’s 
feasibility for distributed deep learning in IDS applications, 
its practical effectiveness is constrained by dataset 
limitations and absence of real-time design. 

In 2020, Morfino & Rampone[60], developed a near-
real-time intrusion detection system for IoT denial-of-service 
attacks utilizing Apache Spark. Leveraging the SYNDOS-
2M synthetic dataset containing two million samples, they 
trained and evaluated several Spark MLlib classifiers—
including logistic regression, decision tree, random forest, 
and others on both binary and multiclass detection tasks. All 
models achieved over 99% accuracy, with random forest 
attaining 100% accuracy on the synthetic test set. Training 
and detection were efficient; for instance, the decision tree 
model trained in approximately 23.2 seconds, and the 
detection time for 20,000 records was just 0.13 seconds, 
indicating low system latency. Their Spark Streaming 
pipeline processed live data, though the system did not 
include automated mitigation or response mechanisms. The 
primary limitation, as noted by the authors, is the reliance on 
synthetic data (SYNDOS-2M), which may not fully capture 
the characteristics of real-world IoT network traffic.  

In 2022, Hagar & Gawali[61], compared three 
approaches for network intrusion detection on the CSE-CIC-
IDS2018 dataset: a traditional machine learning pipeline 
using Apache Spark’s MLlib, and two deep learning models 
(CNN and LSTM). The authors first applied random forest–
based feature selection within Spark to reduce the dataset to 
19 features. Both CNN and LSTM were trained as multi-class 
classifiers, but the Spark-MLlib model achieved the highest 
overall performance, with F1-scores of approximately 1.0 
across all 15 traffic classes. Additionally, the Spark model 
demonstrated the fastest training and evaluation times 
(approximately 7.56 minutes and 39 seconds, respectively), 
outperforming both deep learning models. The study was 
conducted as an offline batch analysis; no real-time 
streaming or mitigation mechanisms were implemented. The 
authors also acknowledged important limitations, including 
the use of extensive over- and undersampling (which 
increases the risk of overfitting) and evaluation restricted to 
a single dataset, thereby limiting generalizability. In addition. 
Azeroual (2022)[62], evaluated the scalability and 
performance modeling capabilities of Apache Spark MLlib 
in a multi-node cluster environment, profiling the behavior 
of K-Means clustering, Random Forest regression, and 
Word2Vec on large synthetic datasets. The study reported 
that MLlib-based predictive models could achieve up to 98% 
accuracy in forecasting their own execution performance, 
resulting in reductions of CPU usage by approximately 30% 
and processing time by about 25%. Importantly, this research 
focused solely on system-level performance prediction and 
resource optimization, rather than on security or intrusion 
detection efficacy. No specific IDS or threat detection 
models were implemented, and no security metrics or 
mitigation actions were evaluated; all experiments were 
conducted offline and unrelated to attack detection quality. 
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In 2023, Chliah et al. [63], developed a hybrid anomaly 
detection system using Apache Spark, which combines 
unsupervised and supervised machine learning techniques. 
Their approach first applies K-means clustering to NetFlow 
network data collected from Ibn Zohr University, then uses a 
K-nearest neighbors (KNN) classifier within each cluster to 
detect anomalies. Evaluated with k-fold cross-validation on 
the entire dataset, their hybrid model achieved an overall 
accuracy of 99.94%. All analysis was conducted offline using 
batch machine learning, with no real-time latency 
measurements or automated mitigation mechanisms 
implemented. As noted by the authors, the use of a single 
private dataset and the extremely high accuracy suggest 
possible overfitting or data leakage, and generalizability to 
broader or more diverse network environments remain 
unproven.  

In 2024, Talukder et al. (2024)[64], present a PySpark-
based intrusion detection system evaluated on the UNSW-
NB15 dataset using both binary and multilabel classification 
tasks. For binary classification, their Random Forest (RF) 
model using the proposed feature set achieved the highest 
accuracy of 99.59%, closely followed by Extra Trees (ET) at 
99.59% and Decision Tree (DT) at 98.97%. XGBoost (XGB) 
achieved 98.81%. Precision, recall, and F1-scores for RF and 
ET exceeded 99%. In multilabel classification, both RF and 
ET reached an accuracy of 99.95% with the proposed feature 
set, while DT scored 99.79% and XGB 95.04%. The results 
indicate that, with careful feature engineering, ensemble 
models—particularly Random Forest and Extra Trees—can 
deliver near-perfect classification on this benchmark in a 
distributed Spark environment. All experiments were 
conducted in offline batch mode, with no real-time mitigation 
or streaming evaluation reported. Alrefaei & Ilyas 
(2024)[65], present a real-time intrusion detection system 
(IDS) for IoT networks utilizing the PySpark framework and 
multiclass machine learning classification on the IoT-23 
dataset. Their approach integrates data cleaning, 
normalization, feature selection (SelectKBest, 
SelectFromModel with XGB/RF), and SMOTE 
oversampling to address class imbalance. Using the One-vs-
Rest (OVR) multiclass scheme, they compare Decision Tree 
(DT), Random Forest (RF), Logistic Regression (LR), K-
Nearest Neighbors (KNN), and Extreme Gradient Boosting 
(XGB). Among these, XGBoost achieves the highest overall 
accuracy at 98.89%, while Random Forest offers the fastest 
prediction time (0.0311 s). All top models exceed 97% 
accuracy; for example, RF reaches 98.54% and KNN 
98.87%. Detailed results are reported per-class and per-
model, with precision, recall, and F1-scores exceeding 95% 
in most categories. The system operates in real-time with 
Spark Streaming but does not implement automated 
mitigation or blocking. The primary limitations are the use of 
a single, reduced IoT-23 dataset, reliance on synthetic 
balancing (SMOTE), and the absence of practical 
deployment or response actions. The authors conclude that 
ensemble models in PySpark are highly effective for accurate 
and efficient real-time IoT attack detection, but further 

validation on more diverse datasets and operational scenarios 
is needed. Also in same year, Mamdouh et al. [66], developed 
a real-time intrusion detection system for IoT networks using 
PySpark, leveraging multiclass classification on the IoT-23 
dataset. Their approach incorporated Spark Streaming, 
MLlib, SMOTE oversampling, and feature selection, and 
utilized a One-vs-Rest scheme to compare algorithms 
including Decision Tree, Random Forest, Logistic 
Regression, and XGBoost. Among these, XGBoost achieved 
the highest classification accuracy at 98.89%, while Random 
Forest provided the fastest prediction time at approximately 
0.031 seconds. All evaluated models attained overall 
accuracy above 98%, and the system demonstrated low 
detection latency, suitable for real-time streaming 
applications. However, the framework did not implement 
automated mitigation or blocking, and the authors note key 
limitations such as the use of a single IoT dataset and 
synthetic balancing techniques; no practical deployment or 
response actions were demonstrated. In addition, Alslman et 
al. (2024)[67], propose a distributed DDoS attack detection 
system utilizing a stacked ensemble of Random Forest and 
XGBoost models, trained and evaluated on the CIC-
DDoS2019 dataset. The system employs Apache Spark for 
parallelized data processing and training, enabling scalability 
to millions of records and significant reduction in model 
training time. The ensemble model achieves 99.94% 
accuracy across four classes (SYN, UDP, MSSQL, and 
benign traffic), with Spark reducing training time for 
Random Forest from 32 to 14 minutes and for XGBoost from 
87 to 46 minutes roughly halving execution time compared 
to non-distributed training. No streaming, real-time 
mitigation, or response mechanisms are implemented; all 
evaluation is conducted offline. Key limitations include the 
exclusive focus on DDoS attacks (no multi-vector, non-
DDoS, or mixed traffic types) and reliance on a single, large, 
labeled dataset, with no validation in live operational 
settings. The authors conclude that Spark-based stacked 
ensembles are highly efficient for high-volume DDoS 
detection, but further work is needed for broader applicability 
and online deployment. Table 1 compares recent studies that 
we discussed with describe its model structure, dataset used 
point of strength and limitations. This summary highlights 
prevalent deficiencies in the literature, including the absence 
of genuine real-time processing and the lack of automated 
mitigation functionalities. 

 

5. Analysis of Recent studies 
Although Apache Spark has enabled substantial 

advances in scalable intrusion detection systems (IDS), a 
review of recent literature reveals that significant 
limitations persist in the practical deployment and 
effectiveness of Spark-based IDS frameworks. Most current 
solutions are limited to offline or batch processing and do 
not support true real-time detection on streaming network 
data (Haggag et al., 2020; Hagar & Gawali, 2022; Talukder 
et al., 2024). As a result, these systems may fail to detect or  
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Table 1. A comparison of recent IDS solutions based on Apache Spark, focusing on the model structure, dataset, best 
performance, and main limitation of each study. 

Authors [Ref] Model Structure Dataset / Size Best Metric Train / 
Detect Time 

Mitigation Key Limitation 

Gumaste et al. [58] Spark Streaming, 
100-tree RF 

Private NetFlow 
<1M 

94.4% ACC 
(real); 99.2% 
(KDD) 

Not stated 
(sub-second) 

Log only ICMP flood; offline; no 
mitigation/telemetry 

Haggag et al. [59] Spark MLP, 
RNN, LSTM 

NSL-KDD ~125k 82.2% ACC 
(LSTM) 

Offline 
batch 

— Old/small data; no real-
time/streaming 

Morfino & 
Rampone[60] 

Spark MLlib (RF, 
DT, LR); 
Streaming 

SYNDOS-2M 
(synthetic) 

100% ACC 
(RF, synthetic) 

Train 23s, 
detect 0.13s 

— Synthetic IoT data; no 
blocking; realism 

Hagar & 
Gawali[61] 

Spark RF feat. 
select → CNN, 
LSTM 

CSE-CIC-
IDS2018 ~2M 

F1 ≈ 1.0 (RF) Train 7.56 
min, eval 
39s 

— Resampling; offline; no 
mitigation 

Azeroual [62] Spark MLlib 
scalability 
(KMeans, RF, 
Word2Vec) 

Big Data (>GB, 
synthetic) 

≤98% ACC 
(job perf) 

— — Not IDS; job/resource 
profiling only 

Chliah et al. [63] Spark KMeans → 
KNN hybrid 

Private NetFlow 
(unknown) 

99.94% ACC Offline CV — Private data; possible overfit 

Talukder et al. [64] PySpark 
ensemble (XGB, 
RF, ET, DT) 

UNSW-NB15, 
CIC-IDS2017/18 

99.59% ACC 
(RF, binary) 

Offline — Batch only; no real-time, 
KDD/NSL-KDD not used 

Alrefaei & Ilyas 
[65] 

PySpark 
Streaming + OvR 
(DT, RF, LR, 
XGB) 

IoT-23 ~800k 98.89% ACC 
(XGB) 

RF pred. 
0.031s 

— Single IoT set; SMOTE; no 
mitigation 

Mamdouh et al. [66] Spark Random 
Forest 

CIC-IDS2018 
(large) 

>99% ACC Faster than 
baseline 

— Offline only; few details 

Alslman et al. [67], Spark ensemble 
(RF, XGB stack) 

CIC-DDoS2019 
~2.9M 

99.94% ACC 
(stacked) 

Spark halves 
train time 

— DDoS only; offline; no 
mitigation 

respond promptly to fast-evolving threats in dynamic 
environments. Integrated, end-to-end pipelines that unify 
data ingestion, real-time feature processing, model 
inference, and periodic model updating within Spark remain 
rare (Morfino & Rampone, 2020; Chliah et al., 2023). 

Moreover, many Spark-based IDS implementations 
focus on a narrow subset of attack types or treat intrusion 
detection as a binary classification problem, limiting their 
ability to recognize diverse and complex multi-class or 
multi-vector threats (Morfino & Rampone, 2020; Alslman 
et al., 2024). The widespread use of outdated or synthetic 
datasets (e.g., NSL-KDD, SYNDOS-2M) further restricts 
the generalizability and robustness of these systems when 
confronted with modern, real-world traffic patterns 
(Haggag et al., 2020; Chliah et al., 2023). Issues such as 
class imbalance and absence of operational validation 
persist, even when newer datasets like UNSW-NB15 or 
CIC-IDS2018 are employed (Hagar & Gawali, 2022; 
Talukder et al., 2024).  Furthermore, the majority of 
prototypes are restricted to detection and alerting, with the 
absence of automated response mechanisms—such as real-
time blockage or reconfiguration of network policies—
almost universally observed (Gumaste et al., 2020; Alrefaei 
& Ilyas, 2024). Other important aspects, including 

explainability of detection results, model fairness, and 
monitoring of Spark cluster resource utilization, have 
received little attention (Azeroual, 2022; Chliah et al., 
2023). Therefore, there is a pressing need for a Spark-based 
IDS solution that goes beyond mere scalability and 
detection accuracy to provide integrated, real-time intrusion 
detection and automated mitigation across diverse attack 
classes, while addressing explainability, fairness, and 
resource monitoring in real production environments. 

Based on the literature [58]- [67]), several key research 
gaps are identified in the domain of Spark-based IDS: 

• Lack of unified real-time processing pipelines: 
There is no comprehensive end-to-end system that 
seamlessly combines data streaming, feature 
processing, model training, and live classification 
within a single Spark-based IDS. Most current 
implementations rely on offline or batch analysis 
of stored data, meaning they cannot operate in true 
real-time or adapt continuously to evolving 
threats. A unified framework that supports 
continuous learning and real-time detection 
remains absent ([58], [59], [60], [61], [63], [64]). 

• Inadequate multi-class and multi-vector 
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detection at scale: Many existing solutions are 
designed to detect only a single attack type or treat 
intrusion detection as a simple binary (attack vs. 
normal) problem. There is limited capability for 
robust multi-class or multi-vector detection, 
especially in large-scale environments. Systems 
that perform well on specific attacks (e.g., SYN 
flood or DDoS) often fail to generalize to other 
threats. Achieving consistently high accuracy 
across diverse attack vectors in big data streams 
remains an unresolved challenge ([59], [60], [61], 
[63], [64], [65], [67]). 

• Absence of integrated mitigation and control: 
Spark-based IDS research typically produces 
passive detectors that only log or alert on detected 
threats. Few, if any, systems integrate with 
network enforcement mechanisms such as 
firewalls (e.g., iptables), SDN controllers, or 
automated response modules that could block or 
mitigate malicious traffic in real time. Even state-
of-the-art streaming classifiers usually stop at 
detection, without triggering any defensive actions 
([58], [59], [60], [65], [67]). 

• Poor telemetry and resource monitoring: There 
is a lack of focus on operational monitoring of IDS 
pipelines built on Spark. Most studies do not report 
on the performance or resource utilization (CPU, 
memory, network bandwidth) of their systems. 
Without unified dashboards, feedback loops, or 
real-time monitoring tools, it is difficult to 
diagnose bottlenecks, tune performance, or ensure 
reliability under production loads ([62]). 

• Evaluation on outdated, synthetic, or 
imbalanced datasets: Many published studies 
validate their IDS solutions using datasets that are 
either synthetic or do not reflect the complexity of 
current network environments. The continued 
reliance on datasets like NSL-KDD (from the late 
1990s) and artificial data (e.g., SYNDOS-2M) 
raises questions about the generalizability of these 
models. When more recent datasets are used, 
issues like class imbalance and insufficient 
diversity are often not fully addressed, leading to 
potential overfitting and limited real-world 
applicability ([59], [60], [61], [63], [64], [65], 
[67]). 

Hence, even with recent developments, existing 
Apache Spark-based IDS solutions continue having 
limitations in actual implementation.  Most systems 
function on offline or batch data and are incapable of 
executing genuine real-time detection on streaming network 
traffic.  They often concentrate on a limited spectrum of 
attack vectors, frequently perceiving intrusion as a mere 
binary issue, and commonly depend on obsolete or artificial 
datasets, so compromising their efficacy on contemporary 

traffic.  Significantly, nearly all of these systems lack 
automated mitigation and explainability; they identify and 
notify about dangers but do not engage in active response, 
nor do they elucidate the rationale for detection.  This gap 
renders extensive, high-velocity network environments 
susceptible to rapidly developing threats.  A unified IDS 
framework is essential that integrates Spark's large data 
processing with sophisticated multi-vector detection and 
proactive response.  The proposed effort aims to enhance 
real-time cyber defense for modern networks by integrating 
scalability, threat diversity, and automation under a single 
platform. 

4. The Suggestion Strategy to Overcome the 
Limitation of Recent Works  

To address the above gaps, the following research 
questions (RQs) are proposed for investigation: 

• How can we design a unified, real-time intrusion 
detection pipeline on Apache Spark that supports 
streaming data and ensures low-latency, scalable 
processing of network traffic? This question 
focuses on the architectural and system design 
needed to combine Spark Streaming, distributed 
feature extraction, and model inference/training 
into a seamless pipeline capable of handling high 
throughput data with minimal delay. 

• What machine learning and deep learning 
techniques can enable accurate detection of 
multiple attack classes and vectors at scale in a 
Spark-based IDS, and how can we improve the 
model’s generalization to new or imbalanced 
datasets? This question examines the algorithms 
and data aspects: it seeks to find suitable models 
(or ensembles of models) that can classify a broad 
range of intrusions in a multi-class setting, and 
explores methods (like feature selection, retraining 
with new data, or fairness-aware learning) to 
maintain performance across evolving, large-scale 
datasets. 

• How can intrusion alerts from a Spark-based IDS 
be automatically translated into mitigation actions 
in real-world networks? In particular, what 
framework can integrate the IDS with control 
mechanisms (such as SDN controllers or firewall 
rules) to proactively contain, or block attacks once 
detected? This question addresses the bridge from 
detection to response, asking how to embed or 
attach the IDS into a larger security orchestration 
so that it not only flags threats but also triggers 
timely defensive measures. 

• How can we incorporate explainability and 
monitoring into a large-scale Spark IDS to enhance 
its transparency and reliability? This question 
probes the addition of supporting features to the 
IDS: it aims to determine how we can provide 
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explanations for detection decisions (e.g., 
indicating which features or rules fired for a given 
alert) and how to continuously monitor the IDS’s 
own performance (resource usage, processing 
delays, etc.) in order to ensure the system remains 
effective and does not introduce new blind spots or 
failure points. 

 
Corresponding to the research questions, the objectives 

of this work are defined as follows: 

• Unified Streaming Pipeline – Design and 
implement a unified IDS pipeline using Apache 
Spark that combines real-time stream processing 
with batch learning. The objective is to create an 
architecture capable of ingesting live network data 
(potentially via Kafka or similar), extracting 
features on the fly, and applying machine learning 
models in real-time, while also periodically 
updating or retraining those models with new data 
– all within the Spark ecosystem. This will directly 
tackle the need for a scalable, low-latency IDS 
solution. 

• Scalable Multi-Attack Detection – Develop 
advanced detection algorithms and models suited 
for Spark’s distributed environment that can 
classify multiple types of attacks with high 
accuracy. This involves exploring and evaluating 
techniques such as deep neural networks, 
ensemble methods, and hybrid approaches (e.g., 
combining anomaly detection with misuse 
detection) to improve detection rates. A key part of 
this objective is to ensure generalization: the 
models should be trained and tested on modern, 
diverse datasets (with appropriate handling of 
class imbalance) so that the IDS is effective 
against a wide array of known attack vectors and 
can adapt to new or emerging threats. 

• Integration with Mitigation and Monitoring – 
Integrate the intrusion detection pipeline with real-
world mitigation mechanisms and implement 
system telemetry. Concretely, this objective will 
create a link between the Spark IDS and network 
control interfaces: for example, developing a 
module that communicates with an SDN controller 
to dynamically reroute or block malicious traffic, 
or that updates firewall rules (iptables) when an 
attack is confirmed. In tandem, the system will 
include monitoring tools to track resource usage 
and performance metrics of the Spark cluster (such 
as throughput, latency per batch, CPU/memory 
utilization of executors). This ensures the IDS can 
not only detect but also respond to attacks in an 
automated fashion, and that it operates reliably 
under production conditions. 

• Explainability and Fairness – Incorporate 
explainable AI techniques and fairness measures 
into the IDS. The goal is to augment the Spark-
based IDS with components that can interpret the 
model’s decisions (for example, generating 
human-readable explanations for why an alert was 
triggered, perhaps via feature importance or rule 
extraction from complex models). Additionally, 
the training process will include fairness 
considerations to avoid biased detection (ensuring, 
for instance, that detection performance is 
consistent across different attack categories or 
network segments). This objective will improve 
user trust in the IDS by making it more transparent 
and ensuring it behaves equitably on 
heterogeneous data. 

Based on the previous key point we suggest an IDS system 
to overcome the limitations as illustrated in Figure 1.  

 
Figure 1. The suggested unified IDS framework 

Figure 1. The suggested unified IDS framework 
architecture shows how data flows from the first step of data 
ingestion to threat detection and mitigation.  Apache Spark's 
distributed processing lets the system analyze live network 
traffic and log streams in real time.  Cyber Threat 
Intelligence feeds are used to add known threat indications 
to the detection engine.  When the machine learning models 
find an intrusion, they trigger an automated mitigation 
module to stop or confine the danger. At the same time, a 
monitoring dashboard logs events and lets security staff 
know about them. 

 

Conclusion 
This review has methodically analyzed recent studies 

on Apache Spark-based Intrusion Detection Systems (IDS), 
using Cyber Threat Intelligence (CTI) and machine learning 
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methodologies.  Through an analysis of the strengths and 
limitations of current solutions, we discovered persistent 
limitations such as dependence on offline processing, 
limited attack coverage, outdated datasets, lack of 
automated mitigation, and lack of explainable results. 
Based on these discoveries, we outlined the conceptual 
framework of an integrated real-time Intrusion Detection 
System and mitigation strategy that tackles these challenges 
through the amalgamation of streaming analytics, multi-
vector detection, and automated response.  This conceptual 
architecture serves as a framework for future researchers to 
develop more adaptive, transparent, and scalable IDS 
solutions, thus enhancing the state of the art in Spark-based 
cybersecurity research. 

Based on the gaps identified through the literature we 
reviewed, future researchers should cover and take in 
consideration when developing Spark-based IDS solutions 
the following aspects: 

• Using Apache Spark Structured Streaming to analyze 
live traffic without latency is true real-time streaming 
integration. 

• A more comprehensive multi-class attack detection 
system that goes beyond just normal/abnormal 
classification to encompass a wider range of intrusion 
types that are always changing. 

• Integration with Software-Defined Networking (SDN) 
to make it possible to take quick action against threats, 
including rerouting or blocking traffic. 

• Adding modern datasets and actual traffic traces (such 
CIC-IDS2018 and UNSW-NB15) to make sure the 
model is strong and useful. 

• Adding explainable AI methods to make detection 
decisions more trustworthy and clearer. 

• Automating the mitigation process so that systems can 
not only find dangers but also stop them before they 
happen. 

• By implementing these suggestions, future work can 
fix the problems with current systems and help build 
real-time IDS frameworks that are more effective, 
scalable, and usable in the long run. 
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